JPH0727955A - Optical fiber cable for measuring temperature of geothermal well - Google Patents

Optical fiber cable for measuring temperature of geothermal well

Info

Publication number
JPH0727955A
JPH0727955A JP5197913A JP19791393A JPH0727955A JP H0727955 A JPH0727955 A JP H0727955A JP 5197913 A JP5197913 A JP 5197913A JP 19791393 A JP19791393 A JP 19791393A JP H0727955 A JPH0727955 A JP H0727955A
Authority
JP
Japan
Prior art keywords
optical fiber
metal tube
length
difference
metallic pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5197913A
Other languages
Japanese (ja)
Other versions
JP2999099B2 (en
Inventor
Hideaki Futajima
英明 二島
Yoshikazu Murata
吉和 村田
Kenji Watanabe
憲治 渡辺
Koichi Yasuga
弘一 安賀
Yasuhiro Ogata
康弘 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kyushu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP5197913A priority Critical patent/JP2999099B2/en
Publication of JPH0727955A publication Critical patent/JPH0727955A/en
Application granted granted Critical
Publication of JP2999099B2 publication Critical patent/JP2999099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To prevent damage of metallic pipes and an increase in transmission loss by previously specifying the length of optical fibers at a service environmental temp. to the length of the metallic pipes at the same temp. or below specifying a difference between both to a difference between the inside lengths of the metallic pipes or above. CONSTITUTION:The optical fibers are previously provided with surplus lengths and are housed slightly long in the metallic pipes at the time of producing the metallic pipe optical fibers. The lengths of the optical fibers 2 at the time of use are specified to the length of the metallic pipes 1 or below to avert stagnating of the optical fibers in the lower part and generating fine bends therein even at the time of perpendicular laying and to avert generating of tension which arises from a difference in the lengths along the inside of the metallic pipes with the positions in the pipe due to spiral disposition of the metallic pipes 1 in formation into a cable of a twisted structure in such a case. The difference between the length along the centers of the metallic pipes 1 and the length along the inside of the metallic pipes 1 when the optical fibers 2 are nearest the central (center of a spiral shape) side of the cable section is confined to the difference between the inside lengths of the metallic pipes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地熱井など坑井の温度
測定に用いる光ファイバケーブルの構造に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an optical fiber cable used for measuring the temperature of a well such as a geothermal well.

【0002】[0002]

【従来の技術】光ファイバの一端からパルス光を入射し
てその光ファイバ中で発生するラマン後方散乱光を時間
的にサンプリング測定し、得られたデータに演算処理を
施すことで光ファイバ沿いの温度分布を測定する装置が
既に実用化されている。
2. Description of the Related Art Raman backscattered light generated in an optical fiber is temporally sampled and measured by injecting pulsed light from one end of the optical fiber, and the obtained data is subjected to arithmetic processing so that the data along the optical fiber Devices for measuring temperature distribution have already been put to practical use.

【0003】このような目的で用いられる光ファイバ
は、それ自体に外部の温度が伝わり易いよう、被覆が極
力少ないことが望まれる。その一方で、外力や水分から
光ファイバ自体を保護する必要もある。このため、光フ
ァイバ素線を金属管に収納した構造の光ファイバケーブ
ル(金属管光ファイバ)が使用されていた。
The optical fiber used for such a purpose is desired to have as little coating as possible so that the external temperature is easily transmitted to itself. On the other hand, it is necessary to protect the optical fiber itself from external force and moisture. Therefore, an optical fiber cable (metal tube optical fiber) having a structure in which an optical fiber element wire is housed in a metal tube has been used.

【0004】又、地熱発電所の坑井(地熱井)の測温で
は、坑内の腐食性熱水から保護するためサーミスタ等の
測温素子を耐腐食性の金属管に収納し、金属管に重りを
付けて地熱井内に徐々に降ろす方法も行われている。
When measuring the temperature of a well (geothermal well) of a geothermal power plant, a temperature measuring element such as a thermistor is housed in a corrosion-resistant metal tube to protect it from corrosive hot water in the mine. Another method is to gradually lower the geothermal well with a weight.

【0005】[0005]

【発明が解決しようとする課題】ところでこのような用
途では、金属管と光ファイバ素線の線膨張係数の違いか
ら金属管の方が伸びが大きいため、光ファイバ素線に引
張張力がかからないよう、予め製造時に金属管より光フ
ァイバを長く収納しておくことが行われている。しか
し、光ファイバケーブルを鉛直又はほぼ鉛直に伸ばして
布設する必要があるため、金属管内で光ファイバ素線は
次第に自重で落下し、金属管下方に細かく曲がって留ま
るため伝送損失の増加を引き起こすことがあった。
By the way, in such an application, the elongation of the metal tube is larger due to the difference in coefficient of linear expansion between the metal tube and the optical fiber element wire, so that tensile tension is not applied to the optical fiber element wire. It is practiced to store an optical fiber longer than a metal tube in advance during manufacturing. However, since it is necessary to lay the optical fiber cable vertically or almost vertically, the optical fiber element wire gradually falls under its own weight inside the metal tube and bends finely below the metal tube to remain, causing an increase in transmission loss. was there.

【0006】又、地熱井内部は高温の腐食性熱水で満た
され、特に最深部は高水圧・高温の状態であるため、金
属管を密封し、熱水浸入に伴う光ファイバの強度劣化な
どを防止する必要がある。この密封は金属管光ファイバ
単独あるいは他の材料と複合したケーブル化の後に行わ
れるため、通常は金属管端部に施される。その一方、光
ファイバケーブルを坑井に挿入するには、その端部に数
十kgの重りを取り付けなければならない。しかし、光
ファイバケーブルの端部は前記のように密封されている
ため、重りの取り付けに際して金属管を押し潰したり曲
げたりすると、金属管に割れなどの損傷を伴うという問
題があった。
Further, since the inside of the geothermal well is filled with high temperature corrosive hot water, and especially the deepest part is under high water pressure and high temperature, the metal tube is sealed and the strength of the optical fiber is deteriorated due to hot water infiltration. Need to be prevented. Since this sealing is performed after forming a cable of a metal tube optical fiber or a composite of other materials into a cable, it is usually applied to the end of the metal tube. On the other hand, in order to insert an optical fiber cable into a well, a weight of several tens of kilograms must be attached to its end. However, since the end portion of the optical fiber cable is sealed as described above, there is a problem that if the metal tube is crushed or bent when the weight is attached, the metal tube is damaged such as cracked.

【0007】[0007]

【課題を解決するための手段】本発明はこのような課題
を解消するためになされたもので、その第一の特徴は、
温度変化に伴う光ファイバ素線と金属管の長さの差を相
殺できるよう、光ファイバケーブルを金属管光ファイバ
が含まれる撚線構造としたことにある。即ち、使用環境
温度における光ファイバ素線の長さを同温度における金
属管の長さ以下とし、かつ両者の差を螺旋状に配された
金属管の内部長の差以上となるようにした。又、この金
属管の末端は封止されているが、特に地熱井内にケーブ
ルを降ろす際の重りを取り付け易いよう、金属管の末端
を、端部が凸型の金属長尺体で封止することが望まし
い。このようなケーブルは、金属管光ファイバ同士を撚
合わせてもよいし、金属管光ファイバと金属線とを撚合
わせてもよい。即ち、少なくとも1本の金属管光ファイ
バが撚合わせに用いられていればよく、撚線を構成する
線材の数にも限定はない。又、第二の特徴は、光ファイ
バの自重による落下を防ぐため、金属管光ファイバの管
内に光ファイバ固定部を離散的に設けたことにある。
The present invention has been made in order to solve such a problem, and the first feature thereof is as follows.
The optical fiber cable has a stranded wire structure including a metal tube optical fiber so as to cancel out the difference in length between the optical fiber element wire and the metal tube due to temperature change. That is, the length of the optical fiber strand at the use environment temperature is set to be equal to or less than the length of the metal tube at the same temperature, and the difference between the two is set to be equal to or more than the difference between the internal lengths of the metal tubes spirally arranged. Although the end of this metal tube is sealed, the end of the metal tube is sealed with a long metal body with a convex end so that it is easy to attach a weight when lowering the cable in the geothermal well. Is desirable. In such a cable, the metal tube optical fibers may be twisted together, or the metal tube optical fiber and the metal wire may be twisted together. That is, it is sufficient that at least one metal tube optical fiber is used for twisting, and the number of wire rods forming the twisted wire is not limited. The second feature is that the optical fiber fixing portions are discretely provided in the metal tube optical fiber tube in order to prevent the optical fiber from dropping due to its own weight.

【0008】[0008]

【作用】先ず、第一の特徴に関する作用から説明する。
金属管光ファイバの製造時、予め光ファイバに余長をと
って長めに収納しておくことは既に述べた。しかし、温
度上昇に伴う伸びは光ファイバよりも金属管の方が大き
いため、光ファイバの余長によっては使用時に金属管の
方が長い場合もあればその逆の場合もある。鉛直布設に
よる使用時、光ファイバ素線の方が短ければ問題はない
が長ければ自重で落下して下方に細かく曲がってとどま
る。又、鉛直布設した場合、金属管も光ファイバもほぼ
直線状に配され、線膨張係数の違いから両者の伸びに違
いを生じ、光ファイバ素線と金属管内面に摩擦を生じて
光ファイバ素線に引張張力がかかる。本発明は使用時に
おける光ファイバ素線の長さを金属管の長さ以下とし、
鉛直布設時でも光ファイバが下方にとどまって細かな曲
がりを生じることを回避すると共に、撚線構造のケーブ
ルとすることで金属管を螺旋状に配し、金属管内部沿い
の長さが管内位置によって異なることで張力の発生を回
避した。
First, the operation relating to the first characteristic will be described.
It has already been stated that when manufacturing the metal tube optical fiber, an extra length is previously stored in the optical fiber to store the optical fiber in a longer length. However, since the elongation due to the temperature rise is larger in the metal tube than in the optical fiber, depending on the extra length of the optical fiber, the metal tube may be longer in use or vice versa. When using by vertical installation, there is no problem if the optical fiber strand is shorter, but if it is long, it will drop by its own weight and stay finely bent downward. Also, when installed vertically, both the metal tube and the optical fiber are arranged in a substantially straight line, and due to the difference in the coefficient of linear expansion, there is a difference in elongation between the two, causing friction between the optical fiber element wire and the inner surface of the metal tube, and Tensile tension is applied to the wire. The present invention, the length of the optical fiber strand at the time of use and less than the length of the metal tube,
It prevents the optical fiber from staying downward and causing a slight bend even when installed vertically, and the metal pipe is arranged in a spiral by using a cable with a stranded wire structure, and the length along the inside of the metal pipe is located inside the pipe. The generation of tension was avoided by varying the

【0009】金属管を螺旋状にしたとき、管内における
光ファイバ素線の位置を平均化してみれば金属管中心沿
いに位置していると考えられるので、この場合の金属管
中心沿いの長さと、光ファイバ素線がケーブル断面の中
心(螺旋形状の中心)側に最も近づいたときの金属管内
部沿いの長さとの差を金属管内部長の差とする。
When the metal tube is made into a spiral shape, it can be considered that it is located along the center of the metal tube if the positions of the optical fiber strands in the tube are averaged. Therefore, in this case, the length along the center of the metal tube is The difference between the length of the optical fiber element and the length along the inside of the metal pipe when the optical fiber is closest to the center of the cross section of the cable (the center of the spiral shape) is defined as the difference in the inner length of the metal pipe.

【0010】ここで、光ファイバ素線の膨張長さと金属
管の膨張長さとの差が前記金属管内部長の差以下であれ
ば、金属管が伸びた場合、光ファイバ素線は引張張力を
受ける分を金属管内部でケーブル断面の中心側に移動す
ることで相殺できるため、張力を受けないようにするこ
とができる。
Here, if the difference between the expansion length of the optical fiber strand and the expansion length of the metal pipe is equal to or less than the difference in the internal length of the metal pipe, when the metal pipe extends, the optical fiber strand receives tensile tension. The tension can be prevented because the components can be offset by moving the components toward the center side of the cable cross section inside the metal tube.

【0011】さらに、使用時において光ファイバ素線が
金属管よりも短く、両者の長さの差が前記金属管内部長
の差以上であれば、上記のように光ファイバ素線が金属
管内部でケーブル断面の中心側に移動しても余長を生じ
ることがない。尚、実用上は金属管の末端まで光ファイ
バが入っている方が好ましいのは当然で、製造時には光
ファイバと金属管の端部とを揃えた方がよい。つまり光
ファイバと金属管の長さが等しいため端部が揃っている
か、光ファイバの方が長くても金属管内部で波打って収
納されているため端部が揃っている状態とすればよい。
Further, when the optical fiber wire is shorter than the metal tube in use and the difference in length between the two is equal to or more than the difference in internal length of the metal tube, the optical fiber wire is inside the metal tube as described above. Even if it moves to the center side of the cable cross section, no extra length is generated. In practice, it is naturally preferable that the optical fiber is inserted up to the end of the metal tube, and it is better to align the optical fiber and the end of the metal tube during manufacturing. In other words, the lengths of the optical fiber and the metal tube are equal, so the ends are aligned, or even if the optical fiber is longer, the ends are aligned because they are housed in a corrugated inside the metal pipe. .

【0012】光ファイバ素線の長さは、以上のことを考
慮して次の関係で設計することが好ましい。 製造時の金属管の実長 :LM (m) 製造時の光ファイバ素線の実長:LF (m) 金属の線膨張係数 :αM 光ファイバの線膨張係数 :αF 予想される使用時の上昇温度 :T (℃) 撚線構造によって金属管内で相殺できる光ファイバの余
長率 (金属管内部長の差と金属管中心沿いの長さとの比
率):β (%) とすると、温度Tで使用する際、光ファイバに張力がか
からない条件は、温度がT上昇した場合に生じる金属管
の膨張長さと光ファイバの膨張長さの差が撚線構造で相
殺できることで、次の式で表される。 LM×(αM−αF)×T≦β×LF…式 又、使用状態で光ファイバが余らない条件は次の式で
表される。 LM×(1+αM×T)≧LF×(1+αF×T)+β
×LF…式 上記・式より製造時の光ファイバの長さと金属管の
長さの理想的な比が求められ、 LF/LM=(αM−αF)×T/β となる。ただし、実際の使用環境温度は未知で不均一な
場合が一般的であり、実際のケーブル設計では使用環境
温度を推定し、その分布形態に合わせて上記の考え方を
適用の上、LF又はβを決定する必要がある。
Considering the above, it is preferable to design the length of the optical fiber strand in the following relationship. Actual length of metal tube during manufacturing: LM (m) Actual length of optical fiber strand during manufacturing: LF (m) Linear expansion coefficient of metal: αM Linear expansion coefficient of optical fiber: αF Expected rise during use Temperature: T (℃) Extra length ratio of optical fiber that can be offset in the metal tube by the twisted wire structure (ratio of difference in internal length of metal tube to length along center of metal tube): β (%), used at temperature T In this case, the condition that tension is not applied to the optical fiber is that the difference between the expansion length of the metal tube and the expansion length of the optical fiber that occurs when the temperature rises by T can be canceled by the twisted wire structure, and is expressed by the following formula. . LM × (αM−αF) × T ≦ β × LF ... Formula Further, the condition that the optical fiber does not remain in the used state is expressed by the following formula. LM × (1 + αM × T) ≧ LF × (1 + αF × T) + β
XLF ... Equation From the above equation, the ideal ratio of the length of the optical fiber at the time of manufacture to the length of the metal tube is obtained, and LF / LM = (αM−αF) × T / β. However, the actual operating environment temperature is generally unknown and non-uniform, and in actual cable design, the operating environment temperature is estimated, and the above concept is applied according to the distribution form to determine LF or β. Need to decide.

【0013】さらに本発明では金属管光ファイバの末端
を、端部が凸型の金属長尺体で密封することで、熱水等
の浸入を防止している。このとき、重りは光ファイバを
密封する金属管でなく、金属長尺体に取り付けることが
できるため、金属管が損傷することもない。
Further, according to the present invention, the end of the metal tube optical fiber is sealed with a metal elongated body having a convex end to prevent the intrusion of hot water or the like. At this time, since the weight can be attached to the metal elongated body instead of the metal tube for sealing the optical fiber, the metal tube is not damaged.

【0014】次に、第二の特徴に関する作用を説明す
る。従来、金属管内全長にわたって樹脂を充填すること
は浸水防止などの目的で行われているが、地熱井のよう
な高温環境で使用すると樹脂自体の熱劣化が光ファイバ
の伝送損失に悪影響を及ぼしたり、金属管が伸びた際の
力が光ファイバに加わるため好ましくない。本発明は金
属管内部に光ファイバ素線の固定部を離散的に設けるこ
とによって、ケーブルを鉛直に布設した場合でも光ファ
イバ素線が自重で下方に落下することを防止すると共
に、樹脂の熱劣化による悪影響も最小限に抑えている。
従って、光ファイバは金属管内で必要以上に細かく曲が
ることはなく、伝送損失の増加を引き起こすこともな
い。又、この構成によれば、伝送損失が増加しない範囲
で製造時に光ファイバ素線を金属管よりも長く収納して
おくことができる。
Next, the operation relating to the second feature will be described. Conventionally, the resin has been filled over the entire length of the metal tube for the purpose of preventing water infiltration, but when used in a high temperature environment such as a geothermal well, thermal deterioration of the resin itself may adversely affect the transmission loss of the optical fiber. However, the force when the metal tube is stretched is applied to the optical fiber, which is not preferable. The present invention prevents the optical fiber strand from dropping downward by its own weight even when the cable is installed vertically by providing the fixing portion of the optical fiber strand inside the metal tube in a discrete manner. The adverse effects of deterioration are also minimized.
Therefore, the optical fiber does not bend more finely than necessary in the metal tube and does not cause an increase in transmission loss. Further, according to this configuration, the optical fiber element wire can be stored longer than the metal tube at the time of manufacturing within a range where the transmission loss does not increase.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。 (実施例1)図1は本発明ケーブルの断面図で、SUS316
・ハステロイ・インコロイの3種類の金属管1に光ファ
イバ素線2を収納したものと、3本の亜鉛メッキ鋼線3
をSUS316線4の周りに撚合わせたものを示している。金
属管1の材質は特に限定するものではないが、SUS304や
SUS316等のステンレス鋼や、ハステロイ・インコネル・
インコロイ等で呼ばれるニッケルを主体とする合金の
他、チタンなどの耐腐食性金属が好ましい。又、金属管
1の径は圧壊強度・引張強度などの使用条件と製造条件
によって選択すればよく、例えば内径:0.7〜3.6
mm、外径:1.0〜4.0mm、肉厚:0.1〜0.
3mm程度のものが挙げられる。本例では金属管1及び
金属線3,4の外径が2mmで、金属管1の内径は1.
6mmのものを用いた。一方、上記金属管内に収納され
る光ファイバ素線2についても、その材質・構造は特に
限定されない。金属管内に収納できるサイズであればど
んなものでもよく、用途に応じて選択すればよい。ここ
ではコア径50μm,クラッド径125μmの石英ガラ
ス製光ファイバで、その周りに耐熱性の樹脂被覆を施し
て外径210μmのものを使用した。
EXAMPLES Examples of the present invention will be described below. (Embodiment 1) FIG. 1 is a sectional view of a cable of the present invention, which is SUS316.
・ Three kinds of metal tubes 1 of Hastelloy and Incoloy, in which the optical fiber wire 2 is housed, and 3 galvanized steel wires 3
Shows that the wire is twisted around the SUS316 wire 4. The material of the metal tube 1 is not particularly limited, but SUS304 or
Stainless steel such as SUS316, Hastelloy Inconel,
In addition to an alloy mainly composed of nickel called incoloy or the like, a corrosion resistant metal such as titanium is preferable. The diameter of the metal tube 1 may be selected depending on the use conditions such as crushing strength and tensile strength and the manufacturing conditions. For example, inner diameter: 0.7 to 3.6.
mm, outer diameter: 1.0 to 4.0 mm, wall thickness: 0.1 to 0.
The thing about 3 mm is mentioned. In this example, the outer diameter of the metal tube 1 and the metal wires 3 and 4 is 2 mm, and the inner diameter of the metal tube 1 is 1.
A 6 mm one was used. On the other hand, the material and structure of the optical fiber element wire 2 housed in the metal tube are not particularly limited. Any size can be used as long as it can be stored in the metal tube, and it may be selected according to the application. Here, an optical fiber made of silica glass having a core diameter of 50 μm and a cladding diameter of 125 μm and having an outer diameter of 210 μm with a heat-resistant resin coating around it was used.

【0016】この例では、撚線ピッチは120mmであ
り、金属管と光ファイバの径との関係から光ファイバ素
線2が金属管内の中心に位置した場合と、金属管内でケ
ーブル断面の中心側に位置した場合との長さの差(金属
管内部長の差)を求めると次のようになる。金属管1の
中心に位置した場合、光ファイバの中心はケーブル断面
の中心から2mmとなるため、1ピッチ進むときの光フ
ァイバの長さL1は L1=√(1202 +(2×2×π)2 )=120.6
56 となる。又、ケーブル断面の中心側に位置した場合、光
ファイバの中心はケーブル断面の中心から1.305m
mとなるため、1ピッチ進むときの光ファイバの長さL
2は L2=√(1202 +(2×1.305×π)2 )=1
20.280 となる。よって、金属管内部長の差δLのL1に対する
比率=余長率βは β=(δL/L1)×100=0.31% である。
In this example, the stranded wire pitch is 120 mm, and when the optical fiber element wire 2 is located in the center of the metal tube due to the relationship between the diameter of the metal tube and the optical fiber, and in the center of the cable cross section inside the metal tube. When the difference in length from the case where the position is located (difference in internal length of the metal pipe) is obtained, the result is as follows. When located at the center of the metal tube 1, the center of the optical fiber is 2 mm from the center of the cable cross section, so the length L1 of the optical fiber when traveling one pitch is L1 = √ (120 2 + (2 × 2 × π ) 2 ) = 120.6
56. When located on the center side of the cable cross section, the center of the optical fiber is 1.305 m from the center of the cable cross section.
Since it is m, the length L of the optical fiber when traveling one pitch
2 is L2 = √ (120 2 + (2 × 1.305 × π) 2 ) = 1
It becomes 20.280. Therefore, the ratio of the difference δL in the internal length of the metal pipe to L1 = the extra length ratio β is β = (δL / L1) × 100 = 0.31%.

【0017】一方、ハステロイの金属管について考える
と、ハステロイの線膨張係数13×10-6に対して光フ
ァイバ素線の線膨張係数は1.1×10-6程度なので使
用時の温度上昇が260℃であるとすると両者の伸び量
の差は下記の計算により0.31%になる。 (13×10-6−1.1×10-6)×260×100=
0.31(%) 従って、先のβの結果と考え合わせると、このケーブル
では全体が上昇温度260℃の環境で使用されるとすれ
ば、製造時の光ファイバ素線の長さと金属管の長さを等
しくしておけば、光ファイバ素線には全く張力がかから
ないことになる。
Meanwhile, considering the metal tube Hastelloy, the temperature rise during use because the linear expansion coefficient of the optical fiber with respect to the linear expansion coefficient of 13 × 10 -6 of Hastelloy degree 1.1 × 10 -6 is If the temperature is 260 ° C., the difference between the two elongation amounts is 0.31% according to the following calculation. (13 × 10 −6 −1.1 × 10 −6 ) × 260 × 100 =
0.31 (%) Therefore, considering the above β results, assuming that the entire cable is used in an environment with an elevated temperature of 260 ° C, the length of the optical fiber and the metal tube at the time of manufacture If the lengths are made equal, no tension is applied to the optical fiber strand.

【0018】このケーブルの密封部を図2に基づいて説
明する。(A)図は布設ドラム5から先端に重り6を付
けて引き出されたケーブル7を示し、(B)図は(A)
図丸印部分を拡大したもの、(C)図は(B)図におけ
る密封部をさらに拡大したものを示す。(C)図に示す
ように、両側が凸型の栓8を用いて光ファイバ素線2の
入っている金属管1と空の金属管9(光ファイバが入っ
てないだけで、金属管光ファイバと同じもの:長さ2
m)をYAGレーザにより溶接接続して密封した。この
栓8の両端凸部外径(1.5mm)は金属管1,9の内
径にほぼ等しく、中央部外径が金属管1,9の外径に等
しい。両端凸部外径を金属管1,9の内径よりも若干細
くしたのは、金属管内に挿入し易くするためである。
The sealed portion of this cable will be described with reference to FIG. The figure (A) shows the cable 7 pulled out from the laying drum 5 with the weight 6 attached to the tip, and the figure (B) shows (A).
The circled portion in the figure is enlarged, and the figure (C) shows the sealed portion in the figure (B) further enlarged. (C) As shown in the figure, the metal tube 1 containing the optical fiber element 2 and the empty metal tube 9 (only the optical fiber is not included, the metal tube optical Same as fiber: length 2
m) was welded and sealed with a YAG laser. The outer diameter (1.5 mm) of the convex portions at both ends of the plug 8 is substantially equal to the inner diameter of the metal tubes 1 and 9, and the outer diameter of the central portion is equal to the outer diameter of the metal tubes 1 and 9. The outer diameters of the convex portions at both ends are made slightly smaller than the inner diameters of the metal pipes 1 and 9 in order to facilitate insertion into the metal pipes.

【0019】又、この栓8の両端凸部は、それぞれ5m
m、中央部も5mmの長さであるが、溶接に十分な長さ
であれば特に制限はない。尚、両端凸部を溶接に必要な
長さよりも長めにとることによって、溶接後の使用時に
金属管が曲げられたとき等、その応力が溶接部に集中す
ることを防止できる。このような構造とすることで、空
の金属管に重りを取り付けることができるため、重りの
取り付けに際して光ファイバ素線を密封する金属管を傷
つけることもない。実際に前記空の金属管に重さ10k
gの重りをつり下げて地熱井内にケーブルを布設したと
ころ、何等問題なく正常に使用できた。
The projections on both ends of the plug 8 are 5 m each.
m and the central portion also have a length of 5 mm, but there is no particular limitation as long as the length is sufficient for welding. By making the convex portions on both ends longer than the length required for welding, it is possible to prevent the stress from concentrating on the weld portion when the metal pipe is bent during use after welding. With such a structure, since the weight can be attached to the empty metal tube, the metal tube that seals the optical fiber element wire is not damaged when the weight is attached. Actually, the empty metal tube weighs 10k
When a cable was laid in the geothermal well with the g weight suspended, it could be used normally without any problems.

【0020】さらに、これと同様な機能を有する構造と
して図3に示すものがある。(A)図に示すものは金属
線10の一端を凸状に形成して栓としたもので、(B)図
に示すものは図2記載の栓と同様な栓8を用い、空の金
属管9の代わりに金属線11を溶接したものである。
Further, there is a structure shown in FIG. 3 as a structure having a function similar to this. What is shown in FIG. (A) is a plug formed by forming one end of a metal wire 10 into a convex shape, and what is shown in (B) is a plug 8 similar to the plug shown in FIG. Instead of the pipe 9, a metal wire 11 is welded.

【0021】(実施例2)次に、光ファイバ固定部を設
けた例を図4に基づいて説明する。これは金属管光ファ
イバの断面を示すもので、図示のように金属管内部に1
00m間隔で光ファイバ素線2の移動を防止する固定部
12を設けている。本例では固定部12として2液混合硬化
型のシリコンゴムを使用したが、光ファイバの損失増加
に悪影響を及ぼさないものであれば特に限定されない。
(Embodiment 2) Next, an example in which an optical fiber fixing portion is provided will be described with reference to FIG. This shows a cross section of a metal tube optical fiber.
Fixing part that prevents movement of the optical fiber strand 2 at intervals of 00 m
12 are provided. In this example, the two-part mixed curing type silicone rubber is used as the fixing portion 12, but it is not particularly limited as long as it does not adversely affect the loss increase of the optical fiber.

【0022】光ファイバ素線2は金属管1の長さに比べ
て0.31%長く収納されており、実施例1の計算と同
様に温度が260℃上昇しても金属管の伸びが光ファイ
バ素線に張力を与えることはない。又、このケーブルを
鉛直に布設しても光ファイバ固定部が設けられているた
め、自重で光ファイバが下方にとどまって細かく曲がる
こともない。尚、固定部12の間隔は金属管1の内径,使
用する温度範囲,製造時の光ファイバ素線の余長等から
検討すればよく、100mに限定されるものではない。
The optical fiber wire 2 is stored 0.31% longer than the length of the metal tube 1, and even if the temperature rises by 260 ° C., the elongation of the metal tube is increased by 0.31% as compared with the length of the metal tube 1. No tension is applied to the fiber strand. Further, even if this cable is laid vertically, the optical fiber fixing portion is provided, so that the optical fiber does not stay downward and bend finely due to its own weight. The distance between the fixing portions 12 may be determined in consideration of the inner diameter of the metal tube 1, the temperature range used, the extra length of the optical fiber wire at the time of manufacture, and is not limited to 100 m.

【0023】[0023]

【発明の効果】以上説明したように、本発明ケーブルに
よれば重りを付けて鉛直につり下げて布設する場合で
も、光ファイバが自重で移動し、細かく曲がって下方に
とどまることで生じる伝送損失の増加を防止できる。
又、確実に光ファイバを金属管内に密封でき、重りの取
り付けに伴う金属管の損傷も防げるため、水の内部浸入
による光ファイバの劣化を防止できる。従って、地熱発
電所の地熱井などでの温度測定に使用すれば便利であ
る。
As described above, according to the cable of the present invention, even when the cable is hung and vertically laid, the optical fiber moves by its own weight and bends finely and stays downward, resulting in transmission loss. Can be prevented from increasing.
Further, the optical fiber can be securely sealed in the metal tube, and the metal tube can be prevented from being damaged due to the attachment of the weight. Therefore, the deterioration of the optical fiber due to the intrusion of water can be prevented. Therefore, it is convenient to use for temperature measurement in geothermal wells of geothermal power plants.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明ケーブルの断面図である。FIG. 1 is a sectional view of a cable of the present invention.

【図2】本発明ケーブルの密封部の説明図で、(A)は
布設ドラムから先端に重りを付けて引き出されたケーブ
ルを、(B)は(A)図丸印部分を拡大したものを、
(C)は(B)図における密封部を拡大したものを示
す。
2A and 2B are explanatory views of a sealed portion of a cable of the present invention, in which FIG. 2A is a cable pulled out from a laying drum with a weight attached to its tip, and FIG. 2B is an enlarged view of a circled portion in FIG. ,
(C) shows an enlarged view of the sealed portion in (B).

【図3】本発明ケーブルの密封部を示す断面図、(A)
は金属線の一端を凸状に形成して栓としたもの、(B)
は両端が凸状の栓に金属線を溶接したものを示す。
FIG. 3 is a cross-sectional view showing a sealed portion of the cable of the present invention, (A)
Is a plug formed by forming one end of a metal wire into a convex shape, (B)
Indicates a metal wire welded to a plug having convex ends.

【図4】金属管内に光ファイバ固定部を設けた本発明ケ
ーブルの断面図である。
FIG. 4 is a cross-sectional view of a cable of the present invention in which an optical fiber fixing portion is provided inside a metal tube.

【符号の説明】[Explanation of symbols]

1,9 金属管 2 光ファイバ素線 3 亜鉛メッキ鋼線 4 SUS316線 5 布設ドラム 6 重り 7 ケーブル 8 栓 10,11 金属線 12 固定部 1,9 Metal tube 2 Optical fiber element wire 3 Galvanized steel wire 4 SUS316 wire 5 Laying drum 6 Weight 7 Cable 8 Plug 10,11 Metal wire 12 Fixed part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 憲治 福岡市中央区渡辺通二丁目1番82号 九州 電力株式会社内 (72)発明者 安賀 弘一 福岡市中央区渡辺通二丁目1番82号 九州 電力株式会社内 (72)発明者 緒方 康弘 福岡市中央区渡辺通二丁目1番82号 九州 電力株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kenji Watanabe 2-82 Watanabe-dori, Chuo-ku, Fukuoka City Kyushu Electric Power Co., Inc. (72) Koichi Yasuga 2-82-1 Watanabe-dori, Chuo-ku, Fukuoka No. Kyushu Electric Power Co., Inc. (72) Inventor Yasuhiro Ogata 1-282 Watanabe-dori, Chuo-ku, Fukuoka City Kyushu Electric Power Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ素線を金属管内に収納した金
属管光ファイバが含まれる撚線構造の光ファイバケーブ
ルであって、 使用環境温度における光ファイバ素線の長さは同温度に
おける金属管の長さ以下で、かつ両者の差は螺旋状に配
された金属管の内部長の差以上であり、 前記金属管の末端は封止されてなることを特徴とする地
熱井測温用光ファイバケーブル。
1. A stranded optical fiber cable including a metal tube optical fiber in which an optical fiber element wire is housed in a metal tube, wherein the length of the optical fiber element wire at the ambient temperature is the metal tube at the same temperature. Is less than or equal to the length, and the difference between them is greater than or equal to the difference in the internal length of the metal pipe arranged in a spiral shape, and the end of the metal pipe is sealed. .
【請求項2】 金属管の末端を、端部が凸型の金属長尺
体での封止してなることを特徴とする請求項1記載の地
熱井測温用光ファイバケーブル。
2. An optical fiber cable for geothermal well temperature measurement according to claim 1, wherein the end of the metal tube is sealed with a metal elongated body having a convex end.
【請求項3】 光ファイバ素線を金属管内に収納した光
ファイバケーブルであって、前記金属管内部に光ファイ
バ固定部を離散的に設けたことを特徴とする地熱井測温
用光ファイバケーブル。
3. An optical fiber cable for geothermal well temperature measurement, which is an optical fiber cable in which an optical fiber element wire is housed in a metal tube, and optical fiber fixing portions are discretely provided inside the metal tube.
JP5197913A 1993-07-14 1993-07-14 Fiber optic cable for geothermal well temperature measurement Expired - Fee Related JP2999099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5197913A JP2999099B2 (en) 1993-07-14 1993-07-14 Fiber optic cable for geothermal well temperature measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5197913A JP2999099B2 (en) 1993-07-14 1993-07-14 Fiber optic cable for geothermal well temperature measurement

Publications (2)

Publication Number Publication Date
JPH0727955A true JPH0727955A (en) 1995-01-31
JP2999099B2 JP2999099B2 (en) 2000-01-17

Family

ID=16382359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5197913A Expired - Fee Related JP2999099B2 (en) 1993-07-14 1993-07-14 Fiber optic cable for geothermal well temperature measurement

Country Status (1)

Country Link
JP (1) JP2999099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249917A (en) * 2007-03-30 2008-10-16 Fujikura Line Tech Ltd Distribution line cable disposed between columns and method of retaining cable
JP2010237546A (en) * 2009-03-31 2010-10-21 Occ Corp Metal tube optical fiber cable and method of manufacturing the same
JP2014191208A (en) * 2013-03-27 2014-10-06 Occ Corp Metal tube optical fiber cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249917A (en) * 2007-03-30 2008-10-16 Fujikura Line Tech Ltd Distribution line cable disposed between columns and method of retaining cable
JP2010237546A (en) * 2009-03-31 2010-10-21 Occ Corp Metal tube optical fiber cable and method of manufacturing the same
JP2014191208A (en) * 2013-03-27 2014-10-06 Occ Corp Metal tube optical fiber cable

Also Published As

Publication number Publication date
JP2999099B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
EP0554789B1 (en) Fiber optic cable
US4504112A (en) Hermetically sealed optical fiber
US20040258373A1 (en) Monitoring cable
CA1219155A (en) Armored optical fiber cable
US4696542A (en) Armored optical fiber cable
AU780741B2 (en) Dynamic umbilicals with with internal steel rods
US7424190B2 (en) Fiber optic cable for use in harsh environments
US6785450B2 (en) Self-supporting fiber optic cable
US6404961B1 (en) Optical fiber cable having fiber in metal tube core with outer protective layer
CA2259719C (en) Fiber optic well logging cable
JPS60212715A (en) Flexible stretch body
JPH04265916A (en) Optical fiber cable
US11880084B2 (en) Cable to reduce optical fiber movement and methods to fabricate
JPH0727955A (en) Optical fiber cable for measuring temperature of geothermal well
JPS59501560A (en) Sealed tube incorporating optical fiber surrounded by armored cable
US20190212516A1 (en) Fiber optic cable for inhibiting breaching fluid flow
JPS63189814A (en) Heat resisting optical fiber
KR100982084B1 (en) Optical fiber cable
JP2784085B2 (en) Metal tube with optical fiber
KR102072402B1 (en) Temperature measurement device and method of manufacturing temperature measurement device
JP2784075B2 (en) Fiber optic cable
JPH0973029A (en) Metallic pipe type optical unit
CN113640930A (en) OPGW optical cable sensing optical fiber optical unit and manufacturing method thereof and optical cable
JPH095589A (en) Optical fiber cable
JP2698203C (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees