JPH0727892A - Device for measuring water quauty environment at bottom of reactor pressure vessel - Google Patents

Device for measuring water quauty environment at bottom of reactor pressure vessel

Info

Publication number
JPH0727892A
JPH0727892A JP5154941A JP15494193A JPH0727892A JP H0727892 A JPH0727892 A JP H0727892A JP 5154941 A JP5154941 A JP 5154941A JP 15494193 A JP15494193 A JP 15494193A JP H0727892 A JPH0727892 A JP H0727892A
Authority
JP
Japan
Prior art keywords
water quality
reactor
housing
pressure vessel
environment measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5154941A
Other languages
Japanese (ja)
Other versions
JP3270200B2 (en
Inventor
Junichi Takagi
純一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15494193A priority Critical patent/JP3270200B2/en
Publication of JPH0727892A publication Critical patent/JPH0727892A/en
Application granted granted Critical
Publication of JP3270200B2 publication Critical patent/JP3270200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To directly measure the water quality environment at the reactor bottom by arranging water quality environment measuring device in the housing penetrating true bottom of reactor pressure vessel. CONSTITUTION:A water quality environment measuring equipment 21 is inserted in the reactor bottom position (a-part) in an in-core monitor housing 26 penetrating through the reactor bottom plate 25 of a reactor pressure vessel 10. At the reactor bottom, welded part (c-part) which is especially important for water quality environment (corrosion electric potential, solved oxigen, crack propagation velocity, etc.) exists between the lower plate 25 and the housing 26, and welding thermal effect part 27 exists in the housing 26 side. Inside the housing on the other hand, a gap part (b-part) exists between the housing 26 and the cover tube 28 of a local power region system detector (LPRM). A measuring equipment 21 measures the water quality of the reactor water flowing down the b-part and into the tube 28 and reaching the a-part and transmits the signal to the processing device with measured signal transmission cables 22 led out of the vessel 10 and then penetrating the containment. By this, water quality in the reactor bottom can be directly measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子炉(以下
BWRという。)における一次冷却材の水質を把握する
ための原子炉圧力容器炉底部水質環境測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor bottom water quality measuring device for a reactor pressure vessel for grasping the water quality of a primary coolant in a boiling water reactor (hereinafter referred to as BWR).

【0002】[0002]

【従来の技術】原子力プラントにおいては原子炉冷却材
に高温高圧水を用いており、その厳しい環境条件のもと
では構造材料の腐食挙動が重要な問題となっている。特
にBWRではオーステナイト系ステンレス鋼配管におい
て、溶接部等の熱影響部に応力腐食割れ(以下SCCと
記す。SCCはStress Corrosion Cracking の略。)と
いう事象が発生した例がある。
2. Description of the Related Art In a nuclear power plant, high-temperature high-pressure water is used as a reactor coolant, and under severe environmental conditions, the corrosion behavior of structural materials is an important issue. Particularly in BWRs, there is an example in which a phenomenon of stress corrosion cracking (hereinafter referred to as SCC. SCC is an abbreviation of Stress Corrosion Cracking) occurs in a heat-affected zone such as a welded portion in austenitic stainless steel piping.

【0003】このSCCという事象は3つの要因、すな
わち、材料、応力、環境という因子が重畳した時に発生
すると一般に言われている。材料の因子としては特にSU
S304系のステンレス鋼の溶接部という条件が挙げられ
る。すなわち、溶接時の熱影響によって炭化クロムの析
出が起こるためにクロム欠乏層が生じ、耐力が低下する
点が問題となっている。また、応力の因子としては、や
はり溶接時に生じる部材への残留熱応力が挙げられ、溶
接法の改善等により残留応力除去を施すことが行われて
いる。一方、環境側の因子としては、塩素イオン等の不
純物、溶存酸素等が、高温水という腐食環境下で存在す
ることが挙げられる。原子力プラントにおいては原子炉
冷却材の水質管理が厳重に行われており、BWRプラン
トでは一次系水を極力、中性純水に保つ努力が払われて
いる。従って不純物濃度は低く保たれている。一方、溶
存酸素濃度については炉心での水の放射線分解により酸
素が発生するため、200 〜300ppb程度の溶存酸素が存在
することは避けられない。よって、SCCに対する環境
因子としては不純物イオンの存在とともに、溶存酸素の
存在がより重要となっている。原子炉温度(285 ℃)に
おいては200ppb前後の溶存酸素はSCCを発生させるの
に十分なレベルである。
It is generally said that this SCC phenomenon occurs when three factors, that is, materials, stress and environment, are superposed. SU as a material factor
The condition is a welded part of S304 type stainless steel. That is, there is a problem in that a chromium deficient layer is generated due to the precipitation of chromium carbide due to the heat effect during welding, and the yield strength is reduced. Further, as a factor of the stress, the residual thermal stress to the member that occurs during welding is also mentioned, and the residual stress is removed by improving the welding method or the like. On the other hand, environmental factors include impurities such as chlorine ions, dissolved oxygen, and the like existing in a corrosive environment of high-temperature water. Water quality of reactor coolants is strictly controlled in nuclear power plants, and efforts are made to keep primary water as neutral pure water as much as possible in BWR plants. Therefore, the impurity concentration is kept low. On the other hand, regarding the dissolved oxygen concentration, it is unavoidable that dissolved oxygen of about 200 to 300 ppb exists because oxygen is generated by radiolysis of water in the core. Therefore, as an environmental factor for SCC, the presence of dissolved oxygen is more important as well as the presence of impurity ions. At the reactor temperature (285 ° C), dissolved oxygen around 200 ppb is at a sufficient level to generate SCC.

【0004】さらに、最近では炉心外配管よりも一段と
厳しい腐食環境にある炉内構造物あるいは炉底部等の原
子炉圧力容器耐圧バウンダリについては材料健全性の維
持、長寿命化を図るため、炉内の腐食環境の把握が重要
な課題となっている。計算機シミュレーションによるB
WRプラント一次系水質のモデル解析によれば、炉心部
の溶存酸素濃度は500ppb〜800ppb程度また炉底部でも20
0ppb〜300ppb程度になることが示されており、さらに、
酸素と同等、あるいは、それ以上の腐食性が予想される
過酸化水素も数100ppb程度存在するとされている。
Further, in recent years, in order to maintain material integrity and prolong the life of the reactor pressure vessel pressure boundary such as the reactor internals or the reactor bottom, which are in a more severe corrosive environment than the external core piping, Understanding the corrosive environment is an important issue. B by computer simulation
According to the model analysis of the water quality of the primary system of the WR plant, the dissolved oxygen concentration in the core is about 500 ppb to 800 ppb and even at the bottom of the reactor,
It has been shown to be about 0 ppb to 300 ppb.
It is said that hydrogen peroxide, which is expected to have corrosiveness equal to or higher than that of oxygen, exists in the range of several hundreds of ppb.

【0005】このように、炉内は高放射線場であるため
に酸化性の強い放射線分解生成物が高濃度で存在し、材
料の腐食環境としては極めて苛酷であると考えられる。
従来、BWRプラント一次系の炉水水質は、原子炉再環
境系、あるいは原子炉冷却材浄化系に設けられた試料採
取点から炉水をサンプリングし、常温に冷却した後、測
定している。この様子を図7に示す。すなわち、図7は
BWR一次系の水素注入システムの構成を示す系統図で
ある。炉心1で発生した蒸気は高圧タービン2、および
低圧タービン3で仕事をした後、復水器4に導かれ、冷
却凝縮されて水に戻る。この復水は復水ポンプ5、復水
浄化系6を経て、高圧復水ポンプ7、給水加熱器8およ
び給水ポンプ9により昇温加圧され、原子炉圧力容器10
に注入される。一方、原子炉水は原子炉再循環ポンプ11
によってその一部または全部が炉外を強制再循環してお
り、この原子炉再循環系12から分岐して原子炉冷却浄化
系13が設けられている。通常、このどちらかの系統から
サンプリングライン14を介して炉水のサンプリングを行
い、分析ラック15において溶存酸素濃度、導電率等を測
定している。
As described above, since the inside of the furnace is in a high radiation field, highly decomposing radiation decomposition products are present in a high concentration, and it is considered that the corrosive environment of the material is extremely severe.
Conventionally, the water quality of reactor water in the primary system of a BWR plant is measured by sampling the reactor water from a sampling point provided in a reactor re-environment system or a reactor coolant purification system, cooling it to room temperature, and then measuring it. This state is shown in FIG. That is, FIG. 7 is a system diagram showing the configuration of the BWR primary system hydrogen injection system. The steam generated in the core 1 works in the high-pressure turbine 2 and the low-pressure turbine 3 and is then guided to the condenser 4, where it is cooled and condensed to return to water. This condensate is heated and pressurized by a high-pressure condensate pump 7, a feedwater heater 8 and a feedwater pump 9 through a condensate pump 5 and a condensate purification system 6, and a reactor pressure vessel 10
Is injected into. On the other hand, the reactor water is the reactor recirculation pump 11
A part or all of them are forcedly recirculated outside the reactor, and a reactor cooling and purification system 13 is provided branching from the reactor recirculation system 12. Normally, the reactor water is sampled from either of these systems via the sampling line 14, and the dissolved oxygen concentration, conductivity, etc. are measured in the analysis rack 15.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
炉水水質測定においては、図7に示されるように炉心外
配管に備えられた試料採取点から炉水が導かれており、
必ずしも炉心1内の水質を直接測定しているわけではな
い。そして、すでに計算機シミュレーション結果にも示
されているように、炉心1部の水質と炉心外配管におけ
る水質とは大きく異なることが予想される。すなわち、
高温で熱的に不安定な過酸化水素の挙動の影響およびダ
ウンカマ一部における酸素と水素との再結合の効果によ
り、炉心部と炉外とではその水質に大きな隔たりがある
ものと考えられる。
However, in the conventional water quality measurement of reactor water, as shown in FIG. 7, the reactor water is guided from the sampling point provided in the out-core pipe,
The water quality in the core 1 is not necessarily measured directly. Then, as already shown in the computer simulation result, it is expected that the water quality of the core 1 part and the water quality in the pipe outside the core will be significantly different. That is,
Due to the behavior of hydrogen peroxide, which is thermally unstable at high temperature, and the effect of recombination of oxygen and hydrogen in a part of downcomer, it is considered that there is a large difference in water quality between the core and the outside.

【0007】従って、従来の炉水水質測定においては炉
内構造物等が位置するところの炉内腐食環境を正確には
評価できないという課題があった。特に、炉底部等の原
子炉圧力容器耐圧バウンダリーの材料健全性を維持する
ことは、プラント稼働率の向上、プラントの長寿命化を
図る上で極めて重要である。しかしながら、原子炉底部
の水質環境を直接把握しようという試みは、これまでな
されていない。
Therefore, in the conventional water quality measurement of reactor water, there was a problem that the in-reactor corrosive environment where the in-reactor structures are located cannot be accurately evaluated. In particular, maintaining the material integrity of the reactor pressure vessel pressure boundary such as the bottom of the reactor is extremely important for improving the plant operating rate and extending the life of the plant. However, no attempt has been made so far to directly grasp the water quality environment at the bottom of the reactor.

【0008】本発明は上記の点を考慮してなされたもの
で、炉底部の水質環境(腐食電位、溶存酸素、き裂進展
速度等)を直接測定することができる原子炉圧力容器炉
底部水質環境測定装置を提供することを目的としてい
る。
The present invention has been made in consideration of the above points, and it is possible to directly measure the water quality environment (corrosion potential, dissolved oxygen, crack growth rate, etc.) at the bottom of the reactor. It is intended to provide an environment measuring device.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、原子炉圧力容器の底部を貫通す
るハウジング内に配置された水質環境測定器と、水質環
境測定器からの測定信号を伝達しハウンジングの底部を
貫通する測定信号伝達用ケーブルと、測定信号伝達用ケ
ーブルの他端に接続された測定信号処理装置とから成る
ことを特徴とする原子炉圧力容器炉底部水質環境測定装
置を提供する。
In order to achieve the above object, in the present invention, a water quality environment measuring instrument arranged in a housing penetrating the bottom of a reactor pressure vessel, and measurement from the water quality environment measuring instrument Measuring the water quality of the reactor bottom Vessel, which comprises a measurement signal transmission cable for transmitting a signal and penetrating the bottom of the hound, and a measurement signal processing device connected to the other end of the measurement signal transmission cable. Provide a device.

【0010】[0010]

【作用】このように構成することにより、水質環境測定
器はハウジング内に配置され、しかも原子炉圧力容器の
炉底部の高さに位置している。このハウジング内に局部
出力領域系検出器(以下LPRMという。)等が挿入さ
れているが、このLPRMには冷却用細孔が形成されて
いるためハウジング内を軸方向上方に向って炉水が流通
している。このためハウジング内に配置された水質環境
測定器により炉底部の水質を直接測定することが可能で
ある。
With this configuration, the water quality environment measuring instrument is arranged in the housing and is located at the height of the reactor bottom of the reactor pressure vessel. A local power range detector (hereinafter referred to as LPRM) and the like are inserted in this housing. Since cooling holes are formed in this LPRM, the reactor water flows axially upward in the housing. It is in circulation. Therefore, it is possible to directly measure the water quality at the bottom of the furnace by the water environment measuring instrument arranged in the housing.

【0011】[0011]

【実施例】以下、図1および図2を参照しながら本発明
に係る原子炉圧力容器炉底部水質環境測定装置の第1の
実施例について説明する。図1はBWR一次系構成を示
す系統図である。炉心1で発生した蒸気は高圧タービン
2および低圧タービン3で仕事をした後、復水器4に導
かれ、冷却凝縮されて水に戻る。この復水は復水ポンプ
5、復水浄化系6を経て高圧復水ポンプ7、給水加熱器
8および給水ポンプ9により昇温加圧され、原子炉圧力
容器10に注入される。一方、原子炉水は原子炉再循環ポ
ンプ11によってその一部または全部が炉外を強制再循環
しており、この原子炉再循環系12から分岐して原子炉冷
却浄化系13が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a reactor bottom water quality environment measuring apparatus according to the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a system diagram showing a BWR primary system configuration. The steam generated in the core 1 works in the high-pressure turbine 2 and the low-pressure turbine 3, and then is guided to the condenser 4, where it is cooled and condensed to return to water. The condensate is heated and pressurized by a high-pressure condensate pump 7, a feed water heater 8 and a feed water pump 9 via a condensate pump 5 and a condensate purification system 6, and is injected into a reactor pressure vessel 10. On the other hand, a part or all of the reactor water is forcibly recirculated outside the reactor by a reactor recirculation pump 11, and a reactor cooling and purification system 13 is provided by branching from this reactor recirculation system 12. There is.

【0012】この実施例においては、水質環境測定器21
を原子炉圧力容器10の炉底部下鏡25を貫通するハウジン
グであるインコアモニタハウジング26内の炉底部の位置
に挿入している。この水質環境測定器21からの測定信号
21aを伝達するために水質環境測定器21には測定信号伝
達用ケーブル22が接続されている。この測定信号伝達用
ケーブル22は、インコアモニタハウジング26の底部を貫
通し、原子炉圧力容器10を出た後は、更に格納容器23を
貫通して、この格納容器23の外部に設置された測定信号
処理装置24に接続されている。
In this embodiment, the water environment measuring instrument 21
Is inserted at the position of the bottom of the in-core monitor housing 26 which is a housing penetrating the bottom bottom mirror 25 of the reactor pressure vessel 10. Measurement signal from this water quality environment measuring instrument 21
A cable 22 for transmitting a measurement signal is connected to the water environment measuring instrument 21 for transmitting the signal 21a. The measurement signal transmission cable 22 penetrates the bottom of the in-core monitor housing 26, and after exiting the reactor pressure vessel 10, further penetrates the containment vessel 23 and is installed outside the containment vessel 23. It is connected to the signal processing device 24.

【0013】次にこのような構成からなる第1の実施例
の作用について説明する。図2は、図1における炉底部
を拡大して示す縦断面図である。この炉底部の水質環境
として特に重要な箇所は図中のb部およびc部である。
即ち原子炉圧力容器10の炉底部下鏡25とインコアモニタ
ハウジング26の間には溶接部があり、このインコアハウ
ジング26側には、材料健全性上問題となる溶接熱影響部
27が存在する。一方インコアモニタハウジング26の内部
には、LPRMを構成するLPRMカバーチューブ28が
存在し、このLPRMカバーチューブ28の内部には、移
動式炉心内計装(以下TIPという。)が挿入されてい
る。このLPRMカバーチューブ28とインコアモニタハ
ウジング26との間隙部が図中のb部である。従って、こ
のb部の水質環境が悪ければ、インコアモニタハウジン
グ26の内面から、またc部の水質が悪ければインコアモ
ニタハウジング26の外面から材料健全性が損われ、応力
腐食割れのような損傷を生じ、ひいては原子炉圧力容器
10からの炉水の漏洩といった事態に至る。
Next, the operation of the first embodiment constructed as above will be described. FIG. 2 is a vertical cross-sectional view showing the furnace bottom portion in FIG. 1 in an enlarged manner. Particularly important parts of the water quality environment at the bottom of the furnace are parts b and c in the figure.
That is, there is a welding portion between the reactor bottom lower mirror 25 of the reactor pressure vessel 10 and the in-core monitor housing 26, and on the in-core housing 26 side, there is a welding heat-affected zone which causes a problem in material integrity.
There are 27. On the other hand, inside the in-core monitor housing 26, there is an LPRM cover tube 28 that constitutes an LPRM, and inside this LPRM cover tube 28, a mobile in-core instrumentation (hereinafter referred to as TIP) is inserted. A gap between the LPRM cover tube 28 and the in-core monitor housing 26 is a portion b in the figure. Therefore, if the water quality environment of the part b is bad, the material integrity is impaired from the inner surface of the in-core monitor housing 26, and if the water quality of the part c is bad, the material integrity is impaired and damage such as stress corrosion cracking occurs. Occurred, and eventually the reactor pressure vessel
It leads to a situation such as leakage of reactor water from 10.

【0014】なお、インコアモニタハウジング26の代り
に、制御棒駆動機構(以下CRDという。)ハウジング
31の場合は、図3に示すように、炉底部鏡板25とスタブ
チューブ32、このスタブチューブ32とCRDハウジング
31の間の2箇所の溶接部32a,32bが存在する。
In place of the in-core monitor housing 26, a control rod drive mechanism (hereinafter referred to as CRD) housing.
In the case of 31, as shown in FIG. 3, the furnace bottom end plate 25 and the stub tube 32, the stub tube 32 and the CRD housing
There are two welds 32a and 32b between 31.

【0015】このような第1の実施例による効果につい
て説明する。水質環境測定器21は、図2のa部に設置さ
れている。このa部は前記b部と同温度、同放射線量率
であり、炉水はb部を下降してLPRMカバーチューブ
28最下部にある冷却用細孔を経由してLPRMカバーチ
ューブ28内に入り上昇流となってa部に到達する。この
ためa部の水質はb部の水質とほぼ同等と考えられる。
このように、水質環境測定器21をa部に設置することに
よりb部の水質を測定することができる。
The effect of the first embodiment will be described. The water quality environment measuring instrument 21 is installed in part a of FIG. The part a has the same temperature and the same radiation dose rate as the part b, and the reactor water descends the part b to the LPRM cover tube.
It enters the LPRM cover tube 28 via the cooling pores at the bottom of the 28 and forms an ascending flow to reach part a. Therefore, the water quality of part a is considered to be almost the same as that of part b.
In this way, by installing the water quality environment measuring instrument 21 in the portion a, the water quality in the portion b can be measured.

【0016】次に第2の実施例を図4を用いて説明す
る。図4においては、LPRMカバーチューブ28のb部
位置に細孔28aを1個ないし複数個を形成し、b部の炉
水が直接a部に流入し、水質環境測定器21に接触する構
造としている。
Next, a second embodiment will be described with reference to FIG. In FIG. 4, one or a plurality of pores 28a are formed at the position b of the LPRM cover tube 28 so that the reactor water in the part b directly flows into the part a and comes into contact with the water quality measuring instrument 21. There is.

【0017】この第2の実施例では、b部の水質環境を
より直接的に測定できる長所がある。さらに第3の実施
例を図5を用いて説明する。図5においては、第2の実
施例におけるLPRMカバーチューブ28に形成した細孔
28aに加えて、インコアモニタハウジング26にも細孔26
aを1個ないし数個を形成し、c部の炉水がb部を経由
してa部に直接流入し、水質環境測定器に接触する構造
としている。
The second embodiment has an advantage that the water quality environment of the part b can be measured more directly. Further, a third embodiment will be described with reference to FIG. In FIG. 5, the pores formed in the LPRM cover tube 28 in the second embodiment.
In addition to 28a, the in-core monitor housing 26 also has pores 26
One or several a's are formed so that the reactor water in the c-section directly flows into the a-section via the b-section and comes into contact with the water environment measuring instrument.

【0018】この第3の実施例では溶接部cが直接炉水
に触れる部分の炉水の水質環境を直接測定することがで
きる長所がある。水質環境測定器21の種類としては、例
えば腐食電位測定計、溶存酸素計、き裂進展測定計、溶
存水素計を挙げられる。更には、この他の測定項目とし
て温度、導電率、pH、過酸化水素などがある。
The third embodiment has an advantage that the water quality environment of the reactor water at the portion where the weld c directly contacts the reactor water can be directly measured. Examples of the type of the water quality environment measuring instrument 21 include a corrosion potential measuring instrument, a dissolved oxygen measuring instrument, a crack progress measuring instrument, and a dissolved hydrogen measuring instrument. Further, other measurement items include temperature, conductivity, pH, hydrogen peroxide and the like.

【0019】以上の実施例では、LPRM検出器のLP
RMカバーチューブ28を水質環境測定器21の収納容器と
して用いた場合であるが、この水質環境測定器21の収納
容器として専用の容器を設けて供してもよい。
In the above embodiment, the LP of the LPRM detector
Although the RM cover tube 28 is used as a storage container for the water quality environment measuring instrument 21, a dedicated container may be provided as a storage container for the water quality environment measuring instrument 21.

【0020】すなわち、原子炉圧力容器10に挿入される
LPRM検出器は近時そのワイドレンジ化に伴い、予備
孔(ペネトレーション)が生じるようになっている。こ
の予備孔に従来のLPRM検出器とほぼ同一形状の容器
を設け、この容器内に収納した水質環境測定器21を炉底
部位置に設置することもできる。
That is, the LPRM detector to be inserted into the reactor pressure vessel 10 has recently come to have a preliminary hole (penetration) as its range becomes wider. It is also possible to provide a container having substantially the same shape as the conventional LPRM detector in this preliminary hole, and to install the water quality environment measuring instrument 21 housed in this container at the bottom position of the furnace.

【0021】さらに第4の実施例を図6に示す。この実
施例では、実プラントでは炉水溶存酸素濃度を低減のた
め水素注入装置31を介して水素注入を行っている。この
水素注入量を制御するために測定信号処理装置24の出力
信号24aを水素注入量制御装置32に入力し、この水素注
入量制御装置32からの出力信号24bにより水素注入量を
制御することができる。
Further, a fourth embodiment is shown in FIG. In this embodiment, in an actual plant, hydrogen injection is performed via the hydrogen injection device 31 in order to reduce the concentration of dissolved oxygen in the furnace. In order to control the hydrogen injection amount, the output signal 24a of the measurement signal processing device 24 is input to the hydrogen injection amount control device 32, and the hydrogen injection amount is controlled by the output signal 24b from the hydrogen injection amount control device 32. it can.

【0022】例えば、水素環境測定器21が腐食電位測定
用計器の場合、その指示値が−230mV(SHE)以下
となるように水素注入量を制御し、炉底部の材料健全性
を確保することができる。
For example, when the hydrogen environment measuring instrument 21 is a corrosion potential measuring instrument, the hydrogen injection amount should be controlled so that the indicated value is -230 mV (SHE) or less, and the soundness of the material at the bottom of the furnace should be ensured. You can

【0023】[0023]

【発明の効果】本発明によれば、これまで確認すること
のできなかった炉底部の水質を直接把握することができ
る。これにより、炉底部耐圧境界部の材料健全性に関し
て環境因子の面から評価を行うことが可能となり、プラ
ント長寿命化検討に資するなどの効果がある。
According to the present invention, it is possible to directly grasp the water quality at the bottom of the furnace, which could not be confirmed until now. As a result, it becomes possible to evaluate the material integrity of the pressure-resistant boundary part of the furnace bottom from the viewpoint of environmental factors, and it has an effect of contributing to the study of extending the life of the plant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉圧力容器炉底部環境測定装
置の第1の実施例を示す系統図。
FIG. 1 is a system diagram showing a first embodiment of a reactor pressure vessel bottom environment measuring device according to the present invention.

【図2】図1に示す原子炉圧力容器炉底部環境測定装置
の炉底部を拡大して示す縦断面図。
FIG. 2 is an enlarged vertical sectional view showing a furnace bottom portion of the reactor pressure vessel furnace bottom environment measuring apparatus shown in FIG.

【図3】制御棒駆動機構ハウジングの炉底部における溶
接部を示す縦断面図。
FIG. 3 is a vertical cross-sectional view showing a welded portion in a furnace bottom portion of a control rod drive mechanism housing.

【図4】本発明に係る原子炉圧力容器炉底部環境測定装
置の第2の実施例の炉底部を拡大して示す縦断面図。
FIG. 4 is an enlarged vertical sectional view showing a reactor bottom of a second embodiment of the reactor pressure vessel furnace bottom environment measuring device according to the present invention.

【図5】本発明に係る原子炉圧力容器炉底部環境測定装
置の第3の実施例の炉底部を拡大して示す縦断面図。
FIG. 5 is an enlarged vertical sectional view showing a reactor bottom of a third embodiment of the reactor pressure vessel furnace bottom environment measuring device according to the present invention.

【図6】本発明に係る原子炉圧力容器炉底部環境測定装
置の第4の実施例の構成を示す系統図。
FIG. 6 is a system diagram showing the configuration of a fourth embodiment of the reactor pressure vessel bottom environment measuring apparatus according to the present invention.

【図7】従来の水質測定装置の構成を示す系統図。FIG. 7 is a system diagram showing a configuration of a conventional water quality measuring device.

【符号の説明】[Explanation of symbols]

10…原子炉圧力容器 21…水質環境測定器 21a…測定信号 22…測定信号伝達用ケーブル 24…測定信号処理装置 25…炉底部下鏡 26…インコアモニタハウジング 27…溶接熱影響部 28…LPRMカバーチューブ 10 ... Reactor pressure vessel 21 ... Water environment measuring instrument 21a ... Measurement signal 22 ... Measurement signal transmission cable 24 ... Measurement signal processing device 25 ... Reactor bottom lower mirror 26 ... In-core monitor housing 27 ... Welding heat affected zone 28 ... LPRM cover tube

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器の底部を貫通するハウジ
ング内に配置された水質環境測定器と、この水質環境測
定器からの測定信号を伝達し前記ハウジングの底部を貫
通する測定信号伝達用ケーブルと、この測定信号伝達用
ケーブルの他端に接続された測定信号処理装置とから成
ることを特徴とする原子炉圧力容器炉底部水質環境測定
装置。
1. A water environment measuring instrument arranged in a housing penetrating the bottom of a reactor pressure vessel, and a measurement signal transmitting cable for transmitting a measurement signal from the water quality measuring instrument and penetrating the bottom of the housing. And a measurement signal processing device connected to the other end of this measurement signal transmission cable, a reactor pressure vessel bottom water quality environment measuring device.
【請求項2】 前記水質環境測定器として腐食電位測定
器を配置することを特徴とする請求項1記載の原子炉圧
力容器炉底部水質環境測定装置。
2. The reactor bottom water quality environment measuring device according to claim 1, wherein a corrosion potential measuring device is arranged as the water quality environment measuring device.
【請求項3】 前記水質環境測定器として溶存酸素計を
配置することを特徴とする請求項1記載の原子炉圧力容
器炉底部水質環境測定装置。
3. The reactor bottom water quality environment measuring apparatus according to claim 1, wherein a dissolved oxygen meter is arranged as the water quality environment measuring instrument.
【請求項4】 前記水質環境測定器としてき裂進展測定
計を配置することを特徴とする請求項1記載の原子炉圧
力容器炉底部水質環境測定装置。
4. The reactor bottom water quality environment measuring apparatus according to claim 1, further comprising a crack growth meter as the water quality measuring instrument.
【請求項5】 前記水質環境測定器として炉水の水素を
計測する溶存水素計を配置することを特徴とする請求項
1記載の原子炉圧力容器炉底部水質環境測定装置。
5. The reactor bottom water quality environment measuring device according to claim 1, wherein a dissolved hydrogen meter for measuring hydrogen in the reactor water is arranged as the water quality environment measuring device.
JP15494193A 1993-06-25 1993-06-25 Reactor pressure vessel furnace bottom water quality measurement system Expired - Lifetime JP3270200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15494193A JP3270200B2 (en) 1993-06-25 1993-06-25 Reactor pressure vessel furnace bottom water quality measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15494193A JP3270200B2 (en) 1993-06-25 1993-06-25 Reactor pressure vessel furnace bottom water quality measurement system

Publications (2)

Publication Number Publication Date
JPH0727892A true JPH0727892A (en) 1995-01-31
JP3270200B2 JP3270200B2 (en) 2002-04-02

Family

ID=15595284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15494193A Expired - Lifetime JP3270200B2 (en) 1993-06-25 1993-06-25 Reactor pressure vessel furnace bottom water quality measurement system

Country Status (1)

Country Link
JP (1) JP3270200B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227814A (en) * 2014-05-30 2015-12-17 株式会社東芝 Local power range neutron monitor and assembly method of the same
JP2019152618A (en) * 2018-03-06 2019-09-12 日立Geニュークリア・エナジー株式会社 Exposure reduction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5502824B2 (en) * 2011-09-13 2014-05-28 日立Geニュークリア・エナジー株式会社 Corrosion potential measuring device and corrosion potential measuring method for nuclear power plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179246A (en) * 1989-09-11 1991-08-05 Hitachi Ltd Operating condition monitoring system for plant and electrochemical electrode used therefor
JPH04178597A (en) * 1990-11-14 1992-06-25 Toshiba Corp Monitor for apparatus in nuclear reactor
JPH05100087A (en) * 1991-10-14 1993-04-23 Hitachi Ltd Boiling water reactor primary cooling system
JPH0634786A (en) * 1992-07-15 1994-02-10 Hitachi Ltd Method of estimating life expectancy of component constituting light water reactor and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179246A (en) * 1989-09-11 1991-08-05 Hitachi Ltd Operating condition monitoring system for plant and electrochemical electrode used therefor
JPH04178597A (en) * 1990-11-14 1992-06-25 Toshiba Corp Monitor for apparatus in nuclear reactor
JPH05100087A (en) * 1991-10-14 1993-04-23 Hitachi Ltd Boiling water reactor primary cooling system
JPH0634786A (en) * 1992-07-15 1994-02-10 Hitachi Ltd Method of estimating life expectancy of component constituting light water reactor and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227814A (en) * 2014-05-30 2015-12-17 株式会社東芝 Local power range neutron monitor and assembly method of the same
JP2019152618A (en) * 2018-03-06 2019-09-12 日立Geニュークリア・エナジー株式会社 Exposure reduction method

Also Published As

Publication number Publication date
JP3270200B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US5719911A (en) System for monitoring noble metal distribution in reactor circuit during plant application
GB2202359A (en) On-line monitoring and analysis of reactor vessel integrity
US10497482B2 (en) In-core instrumentation
US5465278A (en) Shroud electrochemical potential monitor
US5475720A (en) Non-condensable gas tolerant condensing chamber
JP2009036558A (en) Method of monitoring stress corrosion crack, and management method of plant
JP3270200B2 (en) Reactor pressure vessel furnace bottom water quality measurement system
JPH0694883A (en) Core environment measuring device for atomic power plant
EP0204212A2 (en) On-line monitoring and analysis of reactor vessel integrity
JPH06273310A (en) Corrosive environment measuring equipment for nuclear reactor
Rinckel Reactor pressure vessel integrity program
Doctor Measurement challenges associated with irradiated reactor components
Hazama Prototype reactor Monju
JP2654050B2 (en) Nuclear power plant
Ware et al. Age-related degradation of boiling water reactor vessel internals
Weeks Stress-corrosion cracking in BWR and PWR piping
JPH03251795A (en) Measuring device of water quality for boiling water nuclear reactor
Kozluk Fitness-for-service guidelines 10
Keller et al. In-core instrumentation
Gordon et al. | Nuclear Power
Kremser et al. Some aspects of sodium technology issued from the operating experience of Rapsodie and Phenix
Alley A regulatory analysis and perspective regarding degradation of materials in light water reactors
JP5502824B2 (en) Corrosion potential measuring device and corrosion potential measuring method for nuclear power plant
Lanning et al. Full-Length High-Temperature Severe Fuel Damage Test No. 5: Final safety analysis
Ranganath et al. Proactive approaches to assure the structural integrity of boiling water reactor components

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 12

EXPY Cancellation because of completion of term