JPH07278782A - Method for carburizing TiAl-based intermetallic compound - Google Patents
Method for carburizing TiAl-based intermetallic compoundInfo
- Publication number
- JPH07278782A JPH07278782A JP7617494A JP7617494A JPH07278782A JP H07278782 A JPH07278782 A JP H07278782A JP 7617494 A JP7617494 A JP 7617494A JP 7617494 A JP7617494 A JP 7617494A JP H07278782 A JPH07278782 A JP H07278782A
- Authority
- JP
- Japan
- Prior art keywords
- tial
- intermetallic compound
- carburizing
- based intermetallic
- hydrocarbon gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910010038 TiAl Inorganic materials 0.000 title claims abstract description 40
- 229910000765 intermetallic Inorganic materials 0.000 title claims abstract description 39
- 238000005255 carburizing Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 12
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 12
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 12
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000003763 carbonization Methods 0.000 claims abstract description 3
- 230000014759 maintenance of location Effects 0.000 claims description 5
- 238000004381 surface treatment Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000003779 heat-resistant material Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
(57)【要約】
【目的】 TiAl基金属間化合物に炭化水素ガスによ
る浸炭処理を行い、耐摩耗性、強度等の機能を付与した
TiAl金属間化合物を安価に製造する方法を提供す
る。
【構成】 TiAl基金属間化合物の表面酸化膜を除去
した後、950℃以上1300℃以下の条件下におい
て、炭化水素ガスと反応させ、表面からの炭化反応によ
り、チタンカーバイドを生成させることを特徴とする浸
炭処理方法。浸炭処理ガスとしての炭化水素ガスとして
C3 H8 を用いることを特徴とする浸炭処理方法。浸炭
処理の際、保持時間を1時間以上100時間以下の範囲
において、保持時間によってチタンカーバイド反応層厚
さを制御することを特徴とする浸炭処理方法。
【効果】 本発明によりTiAl基金属間化合物の表面
を浸炭により硬化させ、耐摩耗性に優れたTiAl基金
属間化合物を安価に、かつ大量に提供できる。本発明
は、TiAl金属間化合物の表面処理方法としても広く
応用できる。(57) [Abstract] [PROBLEMS] To provide a method for inexpensively producing a TiAl intermetallic compound in which a TiAl-based intermetallic compound is carburized with a hydrocarbon gas to impart functions such as wear resistance and strength. [Structure] After removing the surface oxide film of the TiAl-based intermetallic compound, it is reacted with a hydrocarbon gas under conditions of 950 ° C. or higher and 1300 ° C. or lower, and titanium carbide is generated by a carbonization reaction from the surface. Carburizing method. A carburizing method using C 3 H 8 as a hydrocarbon gas as a carburizing gas. In the carburizing treatment, the carburizing method is characterized in that the titanium carbide reaction layer thickness is controlled by the holding time within a holding time range of 1 hour or more and 100 hours or less. According to the present invention, the surface of a TiAl-based intermetallic compound is hardened by carburization, and a TiAl-based intermetallic compound having excellent wear resistance can be provided inexpensively and in a large amount. The present invention can be widely applied as a surface treatment method for TiAl intermetallic compounds.
Description
【0001】[0001]
【産業上の利用分野】本発明は耐熱材料として有望なT
iAl基金属間化合物に関するものである。TiAl基
金属間化合物は、比強度の高い高温耐熱材料として自動
車あるいは航空機用エンジン等に応用が検討されてい
る。さらに、その表面を硬化させることにより、ベアリ
ングあるいはエンジンバルブ等の摺動部材に使用でき
る。FIELD OF THE INVENTION The present invention is a promising T material as a heat resistant material.
The present invention relates to an iAl-based intermetallic compound. The TiAl-based intermetallic compound is being studied for application to automobiles, aircraft engines, etc. as a high temperature heat resistant material having high specific strength. Further, by hardening the surface, it can be used as a sliding member such as a bearing or an engine valve.
【0002】[0002]
【従来の技術】TiAl基金属間化合物は比重が約3.
9で、高温強度、耐クリープ特性に優れており、軽量耐
熱材料として航空機への応用を目指して研究開発がなさ
れている。しかしながら、TiAl基金属間化合物は常
温における変形能に乏しく、室温での延性改善について
多くの研究がなされてきた。最近、TiAl基金属間化
合物にMnを添加して、常温における延性を2〜3%に
改善した例が、辻本らによって報告された(特開昭61
−41740号公報)。その他、TiAl基金属間化合
物に第三元素、第四元素を添加して特性を改善した例が
報告されている(例えば、米国特許第4842819号
明細書(Cr添加)、同第4857268号明細書(V
添加))。2. Description of the Related Art A TiAl-based intermetallic compound has a specific gravity of about 3.
No. 9, excellent in high temperature strength and creep resistance, and research and development is being carried out aiming at application to aircraft as a lightweight heat resistant material. However, the TiAl-based intermetallic compound has poor deformability at room temperature, and many studies have been conducted on improving ductility at room temperature. Recently, Tsujimoto et al. Reported an example in which ductility at room temperature was improved to 2 to 3% by adding Mn to a TiAl-based intermetallic compound (JP-A-61).
No. 41740). In addition, examples in which a third element and a fourth element are added to a TiAl-based intermetallic compound to improve the characteristics have been reported (for example, U.S. Pat. No. 4,842,819 (Cr added) and U.S. Pat. No. 4,857,268). (V
Addition)).
【0003】TiAl基金属間化合物の製造方法として
は、プラズマアーク溶解法、高周波溶解法、急冷粉末
法、自己燃焼法等が知られている。合金設計した所望の
成分を調整した合金を急冷凝固によって粉末化し、その
後HIPで成型体にした例が報告されている(米国特許
第4842819号明細書)。さらに、複合化方法とし
て、反応焼結を行ってTiB2 とAlの複合粉末を形成
し、複合粉末をTiAl等金属間化合物に添加した製造
方法が提案されている(米国特許第4751048号明
細書)。As a method for producing a TiAl-based intermetallic compound, a plasma arc melting method, a high frequency melting method, a quenching powder method, a self-combustion method and the like are known. It has been reported that an alloy having desired alloy-designed components was powdered by rapid solidification and then formed into a molded body by HIP (US Pat. No. 4,842,819). Further, as a compounding method, there has been proposed a manufacturing method in which a compound powder of TiB 2 and Al is formed by performing reactive sintering, and the compound powder is added to an intermetallic compound such as TiAl (US Pat. No. 4,751,048). ).
【0004】TiAl基金属間化合物の製造方法におい
ては、TiとAlの素粉末を目標組成の割合で混合し、
その後反応焼結によってTiAl基金属間化合物を製造
する方法が広く行われている。TiAlバルク材をさら
に表面処理を行い、表面の機能を向上させる試みは耐酸
化性の改善を目指して行ったものがほとんどである。例
えば、低酸素分圧下において熱処理を行い、TiAl表
面にAl2 O3 被膜をつける方法(特開平2−2944
58号公報)。また、PVDあるいはCVDによってS
iC等の被膜を形成する方法が提案されている。In the method for producing a TiAl-based intermetallic compound, elementary powders of Ti and Al are mixed in a target composition ratio,
A method of producing a TiAl-based intermetallic compound by reactive sintering is widely performed thereafter. Most attempts to further improve the function of the surface by further subjecting the TiAl bulk material to surface treatment have been made with the aim of improving oxidation resistance. For example, a method of heat-treating under a low oxygen partial pressure to form an Al 2 O 3 coating on the TiAl surface (JP-A-2-2944).
No. 58). In addition, S by PVD or CVD
A method of forming a film such as iC has been proposed.
【0005】さらに、Ti−Al系ベアリング材料とし
て、酸化、窒化、浸炭等硬化処理した材料が提案されて
いる(特開平3−44436号公報)が、浸炭処理方法
はグラファイト微粉充填層中1000℃で行ったもので
あり、製造方法は詳しく述べられていない。Further, as a Ti-Al bearing material, a material that has been hardened by oxidation, nitriding, carburizing, etc. has been proposed (Japanese Patent Laid-Open No. 3-44436), but the carburizing method is 1000 ° C. in a fine graphite powder packed bed. The manufacturing method has not been described in detail.
【0006】[0006]
【発明が解決しようとする課題】本発明は、TiAl基
金属間化合物に取扱いが容易なガスによる浸炭処理を行
い、耐摩耗性、強度等の機能を付与したTiAl基金属
間化合物を安価に製造する方法を提供することを目的と
するものである。DISCLOSURE OF THE INVENTION According to the present invention, a TiAl-based intermetallic compound is produced at low cost by subjecting a TiAl-based intermetallic compound to carburizing treatment with a gas that is easy to handle, and imparting functions such as wear resistance and strength. The purpose is to provide a method of doing so.
【0007】[0007]
【課題を解決するための手段】本発明の要旨とするとこ
ろは、TiAl基金属間化合物の表面酸化膜を除去した
後、950℃以上1300℃以下の条件下において、炭
化水素ガスと反応させ、表面からの炭化反応により、チ
タンカーバイドを生成させることを特徴とするTiAl
基金属間化合物の浸炭処理方法にあり、さらに炭化水素
ガスとしてC3H8 を用いることを特徴とし、また浸炭
処理の際、炭化水素ガスとの反応保持時間を1時間以上
100時間以下の範囲において、保持時間によってチタ
ンカーバイド反応層厚さを制御することを特徴とする。The gist of the present invention is that after removing the surface oxide film of a TiAl-based intermetallic compound, it is reacted with a hydrocarbon gas under conditions of 950 ° C. or higher and 1300 ° C. or lower, TiAl characterized by producing titanium carbide by carbonization reaction from the surface
A method for carburizing a base intermetallic compound, further characterized by using C 3 H 8 as a hydrocarbon gas. Further, during the carburizing treatment, the reaction holding time with the hydrocarbon gas is in the range of 1 hour to 100 hours. In the above, the thickness of the titanium carbide reaction layer is controlled by the holding time.
【0008】[0008]
【作用】本発明では、TiAl基金属間化合物にチタン
カーバイド層を安価に生成させるという課題対して、ガ
ス浸炭処理方法により生成させることを基本とするもの
である。TiAl基金属間化合物は、通常アルミナ酸化
膜とチタン酸化膜によって覆われている。従って、浸炭
処理を行う際にこれらの酸化物を除去し、清浄な表面と
する必要がある。表面から酸化膜を除去する方法はAr
ガスによるスパッタ等が用いられるが、同一炉内で表面
酸化膜を除去するには、水素ガス雰囲気中で加熱するこ
とが有効である。The present invention is based on the problem of forming a titanium carbide layer on a TiAl-based intermetallic compound at a low cost by using a gas carburizing method. The TiAl-based intermetallic compound is usually covered with an alumina oxide film and a titanium oxide film. Therefore, it is necessary to remove these oxides during the carburizing process to obtain a clean surface. The method of removing the oxide film from the surface is Ar
Although gas sputtering or the like is used, heating in a hydrogen gas atmosphere is effective for removing the surface oxide film in the same furnace.
【0009】試料温度は950℃以上1300℃以下の
範囲に限定する。試料温度を950℃以上とする理由
は、950℃未満の場合、炭化物生成の反応が遅く、実
用的でないからである。従って、浸炭反応温度としては
950℃以上が必要である。一方、試料温度を1300
℃以下に限定する理由は、TiAl基金属間化合物を1
300℃超の温度に長時間保持すると、組織が粗大化し
て機械的特性の低下を招くからである。上記温度範囲
は、TiAl基金属間化合物の熱処理温度と同じ温度範
囲であり、熱処理による組織制御と浸炭処理を同時に行
うことが可能である。The sample temperature is limited to the range of 950 ° C. or higher and 1300 ° C. or lower. The reason why the sample temperature is set to 950 ° C. or higher is that when the temperature is lower than 950 ° C., the reaction of carbide formation is slow and it is not practical. Therefore, the carburization reaction temperature needs to be 950 ° C. or higher. On the other hand, set the sample temperature to 1300
The reason for limiting the temperature to below ℃ is 1 for the TiAl-based intermetallic compound.
This is because if the temperature is kept above 300 ° C. for a long time, the structure becomes coarse and the mechanical properties are deteriorated. The above temperature range is the same temperature range as the heat treatment temperature of the TiAl-based intermetallic compound, and it is possible to simultaneously carry out the structure control by the heat treatment and the carburizing treatment.
【0010】炭化水素ガスとしては、好ましくはC3 H
8 ガスが使用されるが、CH4 、C 2 H6 、C4 H10等
が使用できる。TiAl基金属間化合物表面において式
(1)に示す反応が継続して起こる必要がある。 C3 H8 +3Ti → 3TiC+4H2 …… (1) 炭化水素ガスは好ましくは1気圧でガス流量を制御する
方法が最も実用的であるが、1Torrまでの減圧雰囲
気下、あるいは1気圧以上の加圧雰囲気下においても式
(1)の反応は起こる。従って、浸炭は表面において炭
化水素が分解する式(1)の反応が律速ではなく、Ti
Al中の炭素の拡散あるいはTiおよびAlの拡散が浸
炭処理プロセスを律速している。The hydrocarbon gas is preferably C3H
8Gas is used, but CHFour, C 2H6, CFourHTenetc
Can be used. Formula on the surface of TiAl-based intermetallic compound
The reaction shown in (1) must continue to occur. C3H8+ 3Ti → 3TiC + 4H2 (1) The hydrocarbon gas preferably controls the gas flow rate at 1 atm.
The method is the most practical, but in a reduced pressure atmosphere up to 1 Torr
Formula under air or under pressure of 1 atm or more
The reaction (1) occurs. Therefore, carburizing is
The reaction of the formula (1) in which hydrogen fluoride decomposes is not rate-limiting
Diffusion of carbon in Al or diffusion of Ti and Al
The rate of the charcoal treatment process is limited.
【0011】浸炭処理の際、保持時間を1時間以上10
0時間以内に限定した理由は実用上の問題であり、1時
間未満の保持時間では反応が均質化しないからであり、
また100時間を超える保持時間は経済的でないからで
ある。一定温度で浸炭処理を行った場合、反応層厚さを
0.1μmから100μm程度までコントロールするこ
とができる。反応層厚さと保持時間の関係は、拡散方程
式から式(2)で示される。During the carburizing treatment, the holding time is 1 hour or more and 10
The reason for limiting to 0 hours or less is a practical problem, and the reaction is not homogenized at a holding time of less than 1 hour,
Also, holding time of more than 100 hours is not economical. When the carburizing treatment is performed at a constant temperature, the thickness of the reaction layer can be controlled from 0.1 μm to 100 μm. The relationship between the reaction layer thickness and the retention time is expressed by the equation (2) from the diffusion equation.
【0012】T∞√Dt …… (2) T:反応層厚さ D:TiAl中の炭素の拡散係数 t:保持時間 図1に1060℃における反応層厚さと保持時間の関係
を示す。保持時間によってTiCの反応層厚さを制御す
ることが可能である。TiAl基金属間化合物表面にT
iC膜を浸炭反応によって生成させた試料は高温部での
摺動部材として適応でき、TiC厚さは目的部位によっ
て異なる。本発明によりTiC反応層厚さを浸炭処理温
度保持時間で制御できることが明らかとなった。T ∞ √Dt (2) T: thickness of reaction layer D: diffusion coefficient of carbon in TiAl t: retention time FIG. 1 shows the relationship between the reaction layer thickness and the retention time at 1060 ° C. It is possible to control the reaction layer thickness of TiC by the holding time. T on the surface of TiAl-based intermetallic compound
The sample produced by the carburizing reaction of the iC film can be applied as a sliding member at a high temperature part, and the TiC thickness varies depending on the target site. According to the present invention, it was revealed that the TiC reaction layer thickness can be controlled by the carburizing temperature holding time.
【0013】[0013]
実施例1 Ti−48.1at%Al組成を持つ金属間化合物をプ
ラズマアーク溶解によって溶製し、インゴットを得た。
インゴットの酸素量は300wtppmであった。イン
ゴット材を1300℃、1500気圧、4時間のHIP
処理を行い、HIP処理材から25×25×5mmの板
状試験片を採取した。板状試験片はエメリー研磨を行
い、さらにアルミナ粒子によって研磨を行い、鏡面仕上
げを行った。Example 1 An ingot was obtained by melting an intermetallic compound having a Ti-48.1 at% Al composition by plasma arc melting.
The oxygen content of the ingot was 300 wtppm. HIP ingot material at 1300 ° C, 1500 atm for 4 hours
After the treatment, a plate-like test piece of 25 × 25 × 5 mm was taken from the HIP-treated material. The plate-shaped test piece was subjected to emery polishing, and further polished with alumina particles to be mirror-finished.
【0014】反応炉中に試料をセットし、N2 ガス雰囲
気中で昇温速度毎分20℃で1060℃まで昇温を行っ
た。表面に形成された酸化物を取り除くために、H2 ガ
ス雰囲気(1Torr)にし、高電圧をかけてグロー放
電を起こさせた。次に、雰囲気をC3 H8 に置換し、C
3 H8 を1気圧で毎分10ccの流量で保持した。保持
時間は30時間とした。30時間経過後、炉内をArガ
ス(1Torr)に置換し、高電圧を印可した。Arイ
オンによるスパッタリング効果によって表面に生成した
浸炭層の最表面部分を取り除き、TiCが最表面になる
ように表面処理を行った。The sample was set in a reaction furnace and heated up to 1060 ° C. at a heating rate of 20 ° C./min in an N 2 gas atmosphere. In order to remove the oxide formed on the surface, a H 2 gas atmosphere (1 Torr) was applied, and a high voltage was applied to cause glow discharge. Next, the atmosphere is replaced with C 3 H 8 and C
3 H 8 was held at 1 atmosphere at a flow rate of 10 cc / min. The holding time was 30 hours. After 30 hours, the inside of the furnace was replaced with Ar gas (1 Torr), and a high voltage was applied. The outermost surface portion of the carburized layer formed on the surface by the sputtering effect of Ar ions was removed, and surface treatment was performed so that TiC became the outermost surface.
【0015】この結果、TiAl基金属間化合物板材表
面にTiC層12μmを浸炭処理によって生成させるこ
とができた。図2に試料断面の組織写真を示す。 実施例2 実施例1と同一組成を持つTiAl基金属間化合物を実
施例1と同様な試験方法で前処理を行い、1060℃、
10時間、C3 H8 ガス中にて浸炭処理を行った。その
結果、7μmのTiC層が生成した。As a result, a TiC layer of 12 μm could be formed on the surface of the TiAl-based intermetallic compound plate by carburizing. FIG. 2 shows a structural photograph of the cross section of the sample. Example 2 A TiAl-based intermetallic compound having the same composition as in Example 1 was pretreated by the same test method as in Example 1, and 1060 ° C.
Carburizing was performed in C 3 H 8 gas for 10 hours. As a result, a 7 μm TiC layer was formed.
【0016】比較例1 実施例1と同一組成を持つTiAl基金属間化合物を実
施例1と同様な試験方法で前処理を行い、900℃、2
時間、C3 H8 ガス中にて浸炭処理を行った。その結
果、光学顕微鏡による断面観察では反応層の生成が認め
られなかった。実施例および比較例の結果を表1にまと
めて示す。Comparative Example 1 A TiAl-based intermetallic compound having the same composition as in Example 1 was pretreated by the same test method as in Example 1, and 900 ° C., 2
Carburizing was performed in C 3 H 8 gas for a period of time. As a result, the formation of the reaction layer was not observed in the cross-section observation with the optical microscope. The results of Examples and Comparative Examples are summarized in Table 1.
【0017】[0017]
【表1】 [Table 1]
【0018】[0018]
【発明の効果】本発明に従い、TiAl基金属間化合物
の表面に炭化水素ガスを用いて浸炭処理してTiCを生
成させ、表面を硬化させることにより、耐摩耗性に優れ
たTiAl基金属間化合物を安価にかつ大量に提供する
ことができる。なお、本発明はTiAl基金属間化合物
の表面処理方法としても広く応用できる。INDUSTRIAL APPLICABILITY According to the present invention, the surface of a TiAl-based intermetallic compound is carburized with a hydrocarbon gas to produce TiC, and the surface is hardened to obtain a TiAl-based intermetallic compound having excellent wear resistance. Can be provided inexpensively and in large quantities. The present invention can be widely applied as a surface treatment method for TiAl-based intermetallic compounds.
【図面の簡単な説明】[Brief description of drawings]
【図1】1060℃における反応層厚さと保持時間の関
係を示す図である。FIG. 1 is a diagram showing a relationship between a reaction layer thickness and a holding time at 1060 ° C.
【図2】1060℃×30時間浸炭処理したTiAl金
属間化合物の断面組織写真である。FIG. 2 is a photograph of a cross-section structure of a TiAl intermetallic compound which has been carburized at 1060 ° C. for 30 hours.
Claims (3)
除去した後、950℃以上1300℃以下の条件下にお
いて、炭化水素ガスと反応させ、表面からの炭化反応に
より、チタンカーバイドを生成させることを特徴とする
TiAl基金属間化合物の浸炭処理方法。1. After removing the surface oxide film of a TiAl-based intermetallic compound, it is reacted with a hydrocarbon gas under conditions of 950 ° C. or higher and 1300 ° C. or lower to generate titanium carbide by a carbonization reaction from the surface. A method for carburizing a TiAl-based intermetallic compound, comprising:
とを特徴とする請求項1記載のTiAl基金属間化合物
の浸炭処理方法。2. The method for carburizing a TiAl-based intermetallic compound according to claim 1, wherein C 3 H 8 is used as the hydrocarbon gas.
以上100時間以下の範囲において、保持時間によって
チタンカーバイド反応層厚さを制御することを特徴とす
る請求項1または2記載のTiAl基金属間化合物の浸
炭処理方法。3. The TiAl group according to claim 1, wherein the titanium carbide reaction layer thickness is controlled by the retention time within a reaction retention time with a hydrocarbon gas of 1 hour or more and 100 hours or less. Carburizing method for intermetallic compounds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7617494A JPH07278782A (en) | 1994-04-14 | 1994-04-14 | Method for carburizing TiAl-based intermetallic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7617494A JPH07278782A (en) | 1994-04-14 | 1994-04-14 | Method for carburizing TiAl-based intermetallic compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07278782A true JPH07278782A (en) | 1995-10-24 |
Family
ID=13597741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7617494A Withdrawn JPH07278782A (en) | 1994-04-14 | 1994-04-14 | Method for carburizing TiAl-based intermetallic compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07278782A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005075698A1 (en) * | 2004-02-03 | 2005-08-18 | Exxonmobil Research And Engineering Company | Metal dusting resistant stable-carbide forming alloy surfaces |
WO2007138914A1 (en) * | 2006-05-26 | 2007-12-06 | Sumitomo Metal Industries, Ltd. | Process for producing seamless stainless-steel pipe |
US20140352848A1 (en) * | 2011-12-28 | 2014-12-04 | Intermet Technologies Chengdu Co., Ltd. | Method for adjusting pore size of porous metal material and pore structure of porous metal material |
-
1994
- 1994-04-14 JP JP7617494A patent/JPH07278782A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005075698A1 (en) * | 2004-02-03 | 2005-08-18 | Exxonmobil Research And Engineering Company | Metal dusting resistant stable-carbide forming alloy surfaces |
US7422804B2 (en) | 2004-02-03 | 2008-09-09 | Exxonmobil Research And Engineering Company | Metal dusting resistant stable-carbide forming alloy surfaces |
WO2007138914A1 (en) * | 2006-05-26 | 2007-12-06 | Sumitomo Metal Industries, Ltd. | Process for producing seamless stainless-steel pipe |
JP4935812B2 (en) * | 2006-05-26 | 2012-05-23 | 住友金属工業株式会社 | Manufacturing method of seamless stainless steel pipe |
US8307688B2 (en) | 2006-05-26 | 2012-11-13 | Sumitomo Metal Industries, Ltd. | Process for producing seamless stainless steel pipe |
US20140352848A1 (en) * | 2011-12-28 | 2014-12-04 | Intermet Technologies Chengdu Co., Ltd. | Method for adjusting pore size of porous metal material and pore structure of porous metal material |
JP2015503674A (en) * | 2011-12-28 | 2015-02-02 | 成都易態科技有限公司 | Method for adjusting pore size of porous metal material and pore structure of porous metal material |
US9644254B2 (en) * | 2011-12-28 | 2017-05-09 | Intermet Technologies Chengdu Co., Ltd. | Method for adjusting pore size of porous metal material and pore structure of porous metal material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0266149B1 (en) | High wear-resistant member, method of producing the same, and valve gear using the same for use in internal combustion engine | |
JPH07103468B2 (en) | Coated cemented carbide and method for producing the same | |
JP2500272B2 (en) | Method for manufacturing heat resistant alloy | |
KR20200025803A (en) | High-strength and heat-resistant precipitates/dispersion strengthened high entropy super-alloys and method of manufacturing the same | |
MXPA00007460A (en) | Iron-graphite composite powders and sintered articles produced therefrom. | |
JP2001511106A (en) | 312 Surface treatment of ternary ceramic material and its product | |
US6309699B2 (en) | Method of producing a metallic part exhibiting excellent oxidation resistance | |
JP4731645B2 (en) | Cemented carbide and coated cemented carbide and method for producing the same | |
JPH09268072A (en) | Production of silicon nitride sintered compact | |
JPH07278782A (en) | Method for carburizing TiAl-based intermetallic compound | |
CN118048570B (en) | TiAlNbTaV high-entropy alloy target material and preparation method and application thereof | |
JP2008525639A (en) | Compositions and methods for enhancing the properties of components containing iron | |
JPH02282436A (en) | Manufacturing powder metallurgy of metal member | |
Fawey et al. | Effect of triple treatment on the surface structure and hardness of 304 austenitic stainless steel | |
JP3005371B2 (en) | Surface treatment method for ferritic stainless steel | |
Kawaura et al. | New surface treatment using shot blast for improving oxidation resistance of TiAl-base alloys | |
KR100245398B1 (en) | Manufacturing method of abrasive grit using steel particles | |
JP2002371383A (en) | Heat resistant coated member | |
JP2792379B2 (en) | Ti alloy member excellent in wear resistance and method of manufacturing the same | |
JPH059703A (en) | Surface hardening treatment of titanium material | |
JP2885061B2 (en) | Method for producing nitrided steel member excellent in fatigue characteristics | |
JP2814452B2 (en) | Surface-finished sintered alloy, method for producing the same, and coated surface-finished sintered alloy obtained by coating the alloy with a hard film | |
Pohrelyuk et al. | Forming carbonitride coatings on titanium by thermochemical treatment with CNO-containing media | |
JP2767972B2 (en) | Method for producing TiAl-based intermetallic compound layer | |
JP2511694B2 (en) | Surface-tempered sintered alloy, method for producing the same, and coated surface-tempered sintered alloy obtained by coating the alloy with a hard film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010703 |