JPH07278671A - Manufacture of mirror surface oriented silicon steel sheet with low iron loss - Google Patents
Manufacture of mirror surface oriented silicon steel sheet with low iron lossInfo
- Publication number
- JPH07278671A JPH07278671A JP6832994A JP6832994A JPH07278671A JP H07278671 A JPH07278671 A JP H07278671A JP 6832994 A JP6832994 A JP 6832994A JP 6832994 A JP6832994 A JP 6832994A JP H07278671 A JPH07278671 A JP H07278671A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- iron loss
- silicon steel
- decarburization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、鉄損が極めて低い方向
性電磁鋼板の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having extremely low iron loss.
【0002】[0002]
【従来の技術】一方向性電磁鋼板は、磁気鉄心として多
くの電気機器に用いられている。一方向性珪素鋼板は、
Siを0.8〜4.8%含有し製品の結晶粒を{11
0}〈001〉方位に高度に集積させた鋼板である。そ
の磁気特性として磁束密度が高く、鉄損が低いことが要
求される。特に、最近では省エネルギーの観点から鉄損
の低減に対する要求が高まっている。この要求に応える
ため、一方向性珪素鋼板の鉄損低減の手段として、磁区
を細分化する技術が開発された。2. Description of the Related Art Unidirectional electrical steel sheets are used as magnetic iron cores in many electric devices. Unidirectional silicon steel sheet,
Si is contained in 0.8 to 4.8% and the crystal grain of the product is {11
It is a steel plate highly integrated in the 0} <001> direction. The magnetic properties are required to be high in magnetic flux density and low in iron loss. In particular, recently, there is an increasing demand for reduction of iron loss from the viewpoint of energy saving. In order to meet this demand, a technique for subdividing magnetic domains has been developed as a means for reducing iron loss in unidirectional silicon steel sheets.
【0003】積み鉄心の場合、仕上げ焼鈍後の鋼板にレ
ーザービームを照射して局部的な微小歪みを加えること
により磁区を細分化して鉄損を低減する方法が、例えば
特開昭58−26405号公報に開示されている。ま
た、巻き鉄心の場合には、鉄心に加工した後、歪取り焼
鈍(Stress Release Annealing:応力除去焼鈍)を施し
ても磁区細分効果の消失しない方法も、例えば特開昭6
2−8617号公報に開示されている。これらの技術的
手段により磁区を細分化することにより鉄損は大きく低
減されるようになってきている。しかしながら、これら
の磁区の動きを観察すると動かない磁区も存在している
ことが分かっている。そのため、方向性電磁鋼板の鉄損
値を更に低減させるためには、磁区細分化と合わせて磁
区の動きを阻害する、鋼板表面のグラス被膜及び表面直
下の介在物によるピン止め効果をなくすことが重要であ
ることが分かった。In the case of a laminated iron core, a method of irradiating the steel sheet after finish annealing with a laser beam to apply a local minute strain to subdivide magnetic domains to reduce iron loss is disclosed in, for example, Japanese Patent Laid-Open No. 58-265405. It is disclosed in the official gazette. Further, in the case of a wound core, there is also a method in which the magnetic domain subdivision effect does not disappear even if stress relief annealing (Stress Release Annealing) is performed after processing the core.
No. 2-8617. By subdividing the magnetic domains by these technical means, iron loss has been greatly reduced. However, observing the movement of these magnetic domains has revealed that some magnetic domains do not move. Therefore, in order to further reduce the iron loss value of the grain-oriented electrical steel sheet, it is necessary to eliminate the pinning effect of the glass coating on the surface of the steel sheet and the inclusions immediately below the surface, which inhibits the movement of the magnetic domain together with the subdivision of the magnetic domain. It turned out to be important.
【0004】そのためには、磁区の動きを阻害する鋼板
表面のグラス被膜を形成させないことが有効である。そ
の手段として、焼鈍分離剤として粗大高純度アルミナを
用いることによりグラス被膜を形成させない方法が、例
えばU.S.Patent3785882に開示されて
いる。しかしながらこの方法では表面直下の介在物をな
くすことができず、鉄損の向上代はW15/60 で高々2%
に過ぎない。For that purpose, it is effective not to form a glass coating on the surface of the steel sheet which hinders the movement of magnetic domains. As a means for this, a method of not forming a glass coating by using coarse high-purity alumina as an annealing separator is disclosed in U.S. Pat. S. Patent 3785882. However, with this method, it is not possible to eliminate the inclusions directly under the surface, and the iron loss improvement rate is W 15/60 at most 2%.
Nothing more than.
【0005】この表面直下の介在物を制御し、かつ表面
の鏡面化を達成する方法として、仕上げ焼鈍後に化学研
磨或は機械研磨を行う方法がある。しかしながら、これ
らの方法は研究室レベルでの少試料の材料を加工するこ
とは可能であるが、工業的規模で行うには、化学研磨に
おいては薬剤濃度管理、排水処理等が難しく、また機械
研磨では広い面積を持つ表面を同一基準で平滑化するこ
とに困難がある。As a method of controlling the inclusions immediately below the surface and achieving a mirror surface of the surface, there is a method of performing chemical polishing or mechanical polishing after finish annealing. However, although these methods are capable of processing a small amount of materials at the laboratory level, chemical concentration control, wastewater treatment, etc. are difficult to perform in chemical polishing, and mechanical polishing is difficult to perform on an industrial scale. However, it is difficult to smooth a surface having a large area with the same standard.
【0006】[0006]
【発明が解決しようとする課題】本発明は、従来法より
も更に表面を平滑にすることにより、鉄損の低い材料を
製造するための工業的手段を提供することを目的とし、
脱炭焼鈍時に形成される酸化被膜を極力抑えて、仕上げ
焼鈍時に表面鏡面化を達成する方法を提供するものであ
る。特にその表面にフォルステライト(以下、グラスと
呼ぶ)被膜を形成させずに二次再結晶工程(仕上げ焼鈍
工程)を完了させ、その後、磁区細分化、張力コーティ
ング等の処理を行い、鉄損特性の改善を図ろうとするも
のである。SUMMARY OF THE INVENTION It is an object of the present invention to provide an industrial means for producing a material having a low iron loss by further smoothing the surface as compared with the conventional method,
It is intended to provide a method for suppressing the oxide film formed during decarburization annealing as much as possible to achieve a mirror finish on the surface during finish annealing. Especially, the secondary recrystallization process (finish annealing process) is completed without forming a forsterite (hereinafter referred to as glass) film on the surface, and then magnetic domain subdivision, tension coating, etc. are applied to the iron loss characteristics. It is intended to improve.
【0007】[0007]
【課題を解決するための手段】本発明者等は、脱炭焼鈍
の雰囲気での酸化度において酸化しない金属を、脱炭焼
鈍以前の工程でめっきすることにより脱炭板の酸化被膜
を抑えることに成功した。以下、詳細に説明する。本発
明者等は、仕上げ焼鈍中に二次再結晶と表面鏡面化を同
時に行う手段である鏡面二次再結晶法により低鉄損材を
実現する際に、脱炭焼鈍時に形成される酸化被膜が仕上
げ焼鈍板の磁気特性に大きく影響を及ぼすことを確認し
た。脱炭焼鈍板を酸洗することにより酸化被膜を減らし
ていくと、仕上げ焼鈍板の表面は、脱炭焼鈍直後の酸素
量が少ないほど鏡面度(表面平滑度)が良好であった。
また、表面酸化層と製品板の鉄損値の関係は、図1に示
すように酸化層が薄いほど鉄損が低くなる傾向があるこ
とが分かる。以上より、製品板の鉄損を低減するために
は、脱炭焼鈍時に形成される酸化被膜を極力抑えなけれ
ばならないことが分かる。[Means for Solving the Problems] The present inventors suppress the oxide film on a decarburized plate by plating a metal that does not oxidize in the degree of oxidation in a decarburization annealing atmosphere in a step before decarburization annealing. succeeded in. The details will be described below. The present inventors, when realizing a low iron loss material by the mirror secondary recrystallization method, which is a means for simultaneously performing secondary recrystallization and surface mirroring during finish annealing, an oxide film formed during decarburization annealing. It was confirmed that has a great influence on the magnetic properties of the finish annealed sheet. When the oxide film was reduced by pickling the decarburized annealed plate, the surface of the finish annealed plate had better specularity (surface smoothness) as the amount of oxygen immediately after decarburization annealing was smaller.
Further, as for the relationship between the surface oxide layer and the iron loss value of the product plate, it can be seen that the thinner the oxide layer, the lower the iron loss tends to be, as shown in FIG. From the above, it is understood that the oxide film formed during decarburization annealing should be suppressed as much as possible in order to reduce the iron loss of the product sheet.
【0008】脱炭焼鈍は、通常800〜850℃の温度
領域で、酸化度はP H2 O /P H2=0.01〜1.0
の範囲内で行う(図2の斜線領域)。この領域は、図2
に示すように、SiO2 形成の曲線よりも上にあり、更
にFe2 SiO4 形成の曲線を横切っているため、脱炭
焼鈍後の鋼板表面には、SiO2 あるいは、SiO2と
Fe2 SiO4 が形成されている。これらの酸化物の量
を極力抑えるために、本発明者等は、脱炭焼鈍中の雰囲
気で酸化しない金属、つまり、図2の傾斜領域よりも上
側にある酸化反応平衡曲線で示される金属を、鋼板表面
にめっきすることを考えた。Decarburization annealing is usually carried out in the temperature range of 800 to 850 ° C., and the degree of oxidation is PH 2 O / PH 2 = 0.01 to 1.0.
Within the range (hatched area in FIG. 2). This area is
As shown in Fig. 2 , since it is above the curve for forming SiO 2 and crosses the curve for forming Fe 2 SiO 4 , the surface of the steel sheet after decarburization annealing is SiO 2 or SiO 2 and Fe 2 SiO 4. 4 are formed. In order to suppress the amount of these oxides as much as possible, the present inventors have selected a metal that does not oxidize in the atmosphere during decarburization annealing, that is, a metal shown in the oxidation reaction equilibrium curve above the sloped region in FIG. , I thought about plating on the surface of the steel sheet.
【0009】本発明ではめっきする金属として、Co,
Ni,Cuを挙げた。これらの金属は、(1)脱炭焼鈍
雰囲気中で酸化しないことに加えて、(2)めっき可能
であること、そして(3)融点が脱炭焼鈍温度(800
〜850℃)よりも高いことである。(3)の融点が脱
炭焼鈍温度より高いことの理由は、めっき金属が焼鈍中
に液体となってしまっては、鋼板上でめっき厚さに不均
一な部分が多くなり、鋼板の部分によって酸化量が変わ
ってきてしまうと考えるからである。In the present invention, Co,
Ni and Cu are listed. These metals (1) do not oxidize in a decarburization annealing atmosphere, (2) can be plated, and (3) have a melting point of a decarburization annealing temperature (800).
˜850 ° C.). The reason that the melting point of (3) is higher than the decarburization annealing temperature is that if the plating metal becomes a liquid during annealing, there will be many non-uniform plating thicknesses on the steel sheet, and This is because the amount of oxidation will change.
【0010】実際に、金属を鋼板表面にめっきすること
の効果を確かめるために実験を行った。目的は脱炭焼鈍
中に脱炭を行いつつ酸素量を抑えることである。重量で
Si:3.3%、Mn:0.14%、C:0.05%、
S:0.007%、酸可溶性Al:0.028%、N:
0.008%の珪素鋼スラブを1150℃で加熱した
後、板厚1.6mmに熱延した。この熱延板を1100℃
で2分間焼鈍した後最終板厚0.15mmに冷延した。こ
の冷延板に、上で挙げた金属のめっきを行い、そして8
30℃で脱炭焼鈍を酸化度P H2 O /P H2 =0.32
にて行った。その結果を図3に示す。めっき厚さが薄い
と、脱炭は十分だが酸化量が増えてしまい、逆にめっき
厚さを増やしていくと、予想通り酸化量は低く抑えられ
るが、脱炭が不十分となる。このため、めっきの厚さに
は適正値があり、それが本発明の特徴とする、最終冷延
板での厚さで0.1〜2.0μmである。Experiments were conducted to confirm the effect of actually plating the surface of the steel sheet with metal. The purpose is to suppress oxygen content while performing decarburization during decarburization annealing. By weight, Si: 3.3%, Mn: 0.14%, C: 0.05%,
S: 0.007%, acid-soluble Al: 0.028%, N:
A 0.008% silicon steel slab was heated at 1150 ° C. and then hot-rolled to a plate thickness of 1.6 mm. This hot rolled sheet is 1100 ° C
After annealing for 2 minutes, it was cold rolled to a final plate thickness of 0.15 mm. The cold-rolled sheet is plated with the metals listed above, and 8
Decarburization annealing at 30 ° C. degree of oxidation PH 2 O / PH 2 = 0.32
I went there. The result is shown in FIG. If the plating thickness is thin, decarburization is sufficient, but the amount of oxidation increases, and conversely, if the plating thickness is increased, the amount of oxidation will be suppressed to a low level as expected, but decarburization will be insufficient. Therefore, the plating thickness has an appropriate value, which is a feature of the present invention, and is 0.1 to 2.0 μm in the final cold-rolled sheet.
【0011】その後、本実験の場合にはインヒビターを
強化するため、脱炭板をアンモニア窒化によって窒素量
を0.02%まで高めた。本実験の場合よりもスラブ中
に窒素が多く添加されていれば、窒化を行う必要はな
い。そして、水スラリー塗布を行っても水和せず、Si
O2 との反応性の低いアルミナを焼鈍分離剤として鋼板
に塗布、乾燥した。仕上げ焼鈍は、1200℃まではN
2 :100%(昇温速度15℃/h)で行い、1200
℃からはH2 :100%に切り替え20時間の純化焼鈍
を行った。その結果、最終冷延板でのめっき厚さ0.1
〜2.0μmで、仕上げ焼鈍後に表面の鏡面化が実現で
きた。以上の結果より、冷延板に金属めっきを施すこと
により仕上げ焼鈍後に表面の鏡面化が実現できることが
わかる。Thereafter, in the case of this experiment, in order to strengthen the inhibitor, the nitrogen content of the decarburized plate was increased to 0.02% by ammonia nitriding. If more nitrogen is added to the slab than in this experiment, nitriding is not necessary. And, even if the water slurry is applied, it does not hydrate, and Si
Alumina, which has low reactivity with O 2 , was applied to a steel sheet as an annealing separator and dried. Finish annealing is N up to 1200 ℃
2 : Performed at 100% (heating rate 15 ° C / h), 1200
From ° C. H 2: was purification annealing switching 20 hours 100%. As a result, the plating thickness on the final cold-rolled sheet was 0.1.
With a thickness of up to 2.0 μm, a mirror finish on the surface could be achieved after finish annealing. From the above results, it is understood that the surface of the cold-rolled sheet can be mirror-finished after finish annealing by applying metal plating to the cold-rolled sheet.
【0012】以下、実施形態を説明する。基本的な製造
法としては、田口・坂倉等によるAlNとMnSをイン
ヒビターとして用いる製造法(例えば特公昭40−15
644)、または小松等による(Al,Si)Nを主イ
ンヒビターとして用いる製造法(例えば特公昭62−4
5285号公報)を適用すればよい。Embodiments will be described below. As a basic manufacturing method, a manufacturing method using AlN and MnS as inhibitors by Taguchi and Sakakura et al.
644), or a production method using (Al, Si) N as a main inhibitor by Komatsu et al.
No. 5285) may be applied.
【0013】Siは電気抵抗を高め、鉄損を下げるうえ
で重要な元素である。含有量が4.8%を超えると、冷
延圧延時に材料が割れ易くなり、圧延不可能となる。一
方、Si量を下げると仕上げ焼鈍時にα→γ変態を生
じ、結晶の方向性が損なわれるので、実質的に結晶の方
向性に影響を及ぼさない0.8%を下限とする。Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.8%, the material is likely to crack during cold rolling, making rolling impossible. On the other hand, if the amount of Si is reduced, α → γ transformation occurs during finish annealing, and the crystal orientation is impaired. Therefore, the lower limit is 0.8%, which does not substantially affect the crystal orientation.
【0014】酸可溶性AlはNと結合してAlNまたは
(Al,Si)Nとしてインヒビターとして機能するた
めに必須の元素である。磁束密度が高くなる0.012
〜0.050%を限定範囲とする。Nは製鋼時に0.0
1%以上添加すると、ブリスターと呼ばれる鋼板中の空
孔を生じるので0.01%を上限とする。他のインヒビ
ター構成元素として、B,Bi,Se,Pb,Sn,T
i等を添加することもできる。Acid-soluble Al is an essential element for binding N and functioning as AlN or (Al, Si) N as an inhibitor. Higher magnetic flux density 0.012
˜0.050% is the limited range. N is 0.0 during steelmaking
If it is added in an amount of 1% or more, vacancies in the steel sheet called blister are generated, so the upper limit is 0.01%. As other inhibitor constituent elements, B, Bi, Se, Pb, Sn, T
i, etc. can also be added.
【0015】上記成分の溶鋼は、通常の工程により熱延
板とされるか、もしくは溶鋼を連続鋳造して薄帯とす
る。この熱延板または連続鋳造帯は直ちに、もしくは短
時間焼鈍を経て冷間圧延される。この焼鈍は製品の磁気
特性を高めるために有効であり、750〜1200℃の
温度域で30秒〜30分間行われる。望む製品の特性レ
ベルとコストを勘案して採否を決めるとよい。The molten steel having the above components is formed into a hot-rolled sheet by a usual process, or the molten steel is continuously cast into a ribbon. This hot-rolled sheet or continuous casting strip is cold-rolled immediately or after a short time annealing. This annealing is effective to enhance the magnetic properties of the product, and is performed in the temperature range of 750 to 1200 ° C. for 30 seconds to 30 minutes. It is advisable to decide whether to accept or reject the product considering the characteristic level and cost of the desired product.
【0016】冷間圧延は、基本的には特公昭40−15
644号公報に開示されているように最終冷延圧下率8
0%以上とすればよい。Cold rolling is basically carried out in Japanese Examined Patent Publication No. 40-15.
As disclosed in Japanese Patent No. 644, the final cold rolling reduction rate is 8
It may be 0% or more.
【0017】この冷延板に、Co,Ni,Cuの何れ
か、あるいは2種類以上のめっきを施し、最終冷延板で
のめっき厚さで0.1〜2.0μmにすることが本発明
のポイントである。脱炭焼鈍は、800〜850℃の温
度領域で数十秒間行い一次再結晶させると同時に、酸化
度をP H2 O /P H2 =0.01〜1.0の範囲に調整
することによって、鋼中の炭素を酸化してCOとするこ
とで低減する。It is preferable that the cold-rolled sheet is plated with any one of Co, Ni, and Cu, or two or more kinds, so that the final cold-rolled sheet has a plating thickness of 0.1 to 2.0 μm. Is the point. Decarburization annealing is performed in the temperature range of 800 to 850 ° C. for several tens of seconds for primary recrystallization, and at the same time, the degree of oxidation is adjusted to a range of PH 2 O / PH 2 = 0.01 to 1.0. , It reduces by oxidizing carbon in steel to CO.
【0018】この脱炭焼鈍板に、(Al,Si)Nを主
インヒビターとして用いる製造法(例えば特公昭62−
45285号公報)においては、窒化処理を施す。この
窒化処理の方法は特に限定するものではなく、アンモニ
ア等の窒化能のある雰囲気ガス中で行う方法等がある。
量的には0.005%以上、望ましくは全窒素量として
鋼中のAl当量以上窒化すればよい。これらの脱炭焼鈍
板を積層する際に、焼鈍分離剤としてアルミナを水スラ
リーもしくは静電塗布法等によりドライ・コートする。A manufacturing method using (Al, Si) N as a main inhibitor for this decarburized annealed sheet (see, for example, Japanese Examined Patent Publication No. 62-
No. 45285), a nitriding treatment is performed. The method of this nitriding treatment is not particularly limited, and there is a method of performing it in an atmosphere gas having a nitriding ability such as ammonia.
Quantitatively, 0.005% or more, preferably, the total nitrogen content may be nitrided by Al equivalent or more in the steel. When laminating these decarburized annealed plates, alumina is dry-coated as an annealing separator by a water slurry or an electrostatic coating method.
【0019】この積層した板を仕上げ焼鈍して、二次再
結晶と窒化物の純化を行う。二次再結晶を特開平2−2
58929号公報に開示されるように、一定の温度で保
持する等の手段により所定の温度域で行うことは磁束密
度を上げるうえで有効である。二次再結晶完了後、窒化
物の純化と表面の平滑化を行うために、100%水素で
1100℃以上の温度で焼鈍する。仕上げ焼鈍後、表面
は既に平滑化されているので、張力コーティング処理を
行い、必要に応じてレーザー照射等の磁区細分化処理を
施せばよい。This laminated plate is finish annealed to carry out secondary recrystallization and purification of nitride. Secondary recrystallization is described in JP-A-2-2.
As disclosed in Japanese Patent No. 58929, it is effective to increase the magnetic flux density by carrying out in a predetermined temperature range by means such as holding at a constant temperature. After the completion of the secondary recrystallization, annealing is performed with 100% hydrogen at a temperature of 1100 ° C. or higher in order to purify the nitride and smooth the surface. Since the surface has already been smoothed after the finish annealing, tension coating treatment may be performed, and magnetic domain subdivision treatment such as laser irradiation may be performed as necessary.
【0020】[0020]
実施例1 重量で、Si:3.3%、Mn:0.1%、C:0.0
5%、S:0.007%、酸可溶性Al:0.03%、
N:0.008%、Sn:0.05%の板厚1.8mm珪
素鋼熱延板を1.4mmに冷延した。次いで、1100℃
で2分間焼鈍した後最終板厚0.14mmに冷延した。こ
の冷延板に、めっき厚さを変えてNiめっきを施した。
そして、このめっきした冷延板を、窒素と水素の混合ガ
ス中において酸化度0.18、830℃で70秒間脱炭
焼鈍を行った。次いで、アンモニア雰囲気中で焼鈍する
ことにより、窒素量を0.025%程度に増加してイン
ヒビターの強化を行った。Example 1 By weight, Si: 3.3%, Mn: 0.1%, C: 0.0
5%, S: 0.007%, acid-soluble Al: 0.03%,
A 1.8 mm thick silicon steel hot rolled sheet having N: 0.008% and Sn: 0.05% was cold rolled to 1.4 mm. Then 1100 ° C
After annealing for 2 minutes, it was cold rolled to a final plate thickness of 0.14 mm. The cold-rolled sheet was plated with Ni while changing the plating thickness.
Then, the plated cold-rolled sheet was decarburized and annealed in a mixed gas of nitrogen and hydrogen at an oxidation degree of 0.18 and 830 ° C. for 70 seconds. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to about 0.025% to strengthen the inhibitor.
【0021】そしてこれらの鋼板に、アルミナの水スラ
リーを塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍
は、1200℃まではN2 :100%の雰囲気ガス中で
10℃/hの昇温速度で行い、1200℃でH2 :10
0%に切り替え20時間焼鈍を行った。これらの試料を
張力コーティング処理した後、レーザー照射して磁区細
分化した。得られた製品の磁気特性を表1に示す。Then, after applying a water slurry of alumina to these steel sheets, finish annealing was performed. The finish annealing is performed at a temperature rising rate of 10 ° C./h in an atmosphere gas of N 2 : 100% up to 1200 ° C., and H 2 : 10 at 1200 ° C.
It switched to 0% and annealed for 20 hours. These samples were subjected to tension coating treatment, and then irradiated with laser to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 1.
【0022】[0022]
【表1】 [Table 1]
【0023】実施例2 重量で、Si:3.3%、Mn:0.07%、C:0.
07%、S:0.025%、酸可溶性Al:0.026
%、N:0.008%、Sn:0.1%の板厚2.0mm
珪素鋼熱延板を1200℃で2分間焼鈍した後最終板厚
0.23mmに冷延した。この冷延板に、めっき厚さを変
えてCoめっきを施した。そして、このめっきした冷延
板を、窒素と水素の混合ガス中において酸化度0.3
2、850℃で90秒間脱炭焼鈍を行った。そしてこれ
らの鋼板を、アルミナの水スラリーを塗布した後、仕上
げ焼鈍を施した。仕上げ焼鈍は、1200℃までは
N2 :15%+H2 :85%の雰囲気ガス中で15℃/
hの昇温速度で行い、1200℃でH2 :100%に切
り替え20時間焼鈍を行った。これらの試料を張力コー
ティング処理した後、レーザー照射して磁区細分化し
た。得られた製品の磁気特性を表2に示す。Example 2 By weight, Si: 3.3%, Mn: 0.07%, C: 0.
07%, S: 0.025%, acid-soluble Al: 0.026
%, N: 0.008%, Sn: 0.1%, plate thickness 2.0 mm
The hot-rolled silicon steel sheet was annealed at 1200 ° C. for 2 minutes and then cold-rolled to a final sheet thickness of 0.23 mm. Co plating was performed on the cold rolled sheet by changing the plating thickness. Then, the plated cold-rolled sheet was subjected to an oxidation degree of 0.3 in a mixed gas of nitrogen and hydrogen.
Decarburization annealing was performed at 2,850 ° C. for 90 seconds. Then, these steel sheets were subjected to finish annealing after applying a water slurry of alumina. The finish annealing is up to 1200 ° C. in an atmosphere gas of N 2 : 15% + H 2 : 85% at 15 ° C. /
The heating was performed at a heating rate of h, and the temperature was changed to H 2 : 100% at 1200 ° C. and annealing was performed for 20 hours. These samples were subjected to tension coating treatment, and then irradiated with laser to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 2.
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【発明の効果】本発明により、脱炭焼鈍時に形成される
酸化被膜を極力抑えて、仕上げ焼鈍時に表面鏡面化を達
成し低鉄損材を実現することができる。According to the present invention, the oxide film formed during decarburization annealing can be suppressed as much as possible, and the surface can be mirror-finished during finish annealing to realize a low iron loss material.
【図面の簡単な説明】[Brief description of drawings]
【図1】脱炭板の酸化量と鉄損(W13/50 )の関係の図
表。FIG. 1 is a diagram showing the relationship between the oxidation amount of a decarburized plate and iron loss (W 13/50 ).
【図2】H2 Oによる酸化反応平衡を示した図表。FIG. 2 is a diagram showing the equilibrium of oxidation reaction by H 2 O.
【図3】金属をめっきした冷延板を脱炭焼鈍した際の元
素分析結果の図表。FIG. 3 is a chart of elemental analysis results when decarburizing and annealing a cold-rolled sheet plated with metal.
Claims (2)
する珪素鋼スラブを熱延し、必要に応じて焼鈍を施し、
1回の冷延または中間焼鈍を挟む2回以上の冷延を行
い、次いで脱炭焼鈍を行った後、該鋼板を積層する際の
板間の焼鈍分離剤を塗布し、仕上げ焼鈍後に表面を鏡面
にすることを特徴とする鏡面方向性電磁鋼板の製造方法
において、脱炭焼鈍以前の工程において、Co,Ni,
Cuの1種または2種以上をめっきすること、また焼鈍
分離剤としてアルミナを用いることを特徴とする低鉄損
鏡面方向性電磁鋼板の製造方法。1. A silicon steel slab containing Si: 0.8 to 4.8% by weight is hot-rolled and, if necessary, annealed,
One cold rolling or two or more cold rollings sandwiching an intermediate annealing is performed, and then decarburization annealing is performed, and then an inter-plate annealing separator for laminating the steel sheets is applied, and the surface is finished after finishing annealing. In a method for producing a mirror-oriented grain-oriented electrical steel sheet characterized by having a mirror surface, Co, Ni,
A method for producing a low iron loss mirror-oriented grain-oriented electrical steel sheet, which comprises plating one or more types of Cu and using alumina as an annealing separator.
1〜2.0μmとすることを特徴とする請求項1記載の
低鉄損鏡面方向性電磁鋼板の製造方法。2. The thickness of the plated metal during decarburization annealing is set to 0.
The method for producing a low iron loss specular grain-oriented electrical steel sheet according to claim 1, wherein the thickness is 1 to 2.0 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6832994A JPH07278671A (en) | 1994-04-06 | 1994-04-06 | Manufacture of mirror surface oriented silicon steel sheet with low iron loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6832994A JPH07278671A (en) | 1994-04-06 | 1994-04-06 | Manufacture of mirror surface oriented silicon steel sheet with low iron loss |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07278671A true JPH07278671A (en) | 1995-10-24 |
Family
ID=13370690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6832994A Pending JPH07278671A (en) | 1994-04-06 | 1994-04-06 | Manufacture of mirror surface oriented silicon steel sheet with low iron loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07278671A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001506702A (en) * | 1996-12-24 | 2001-05-22 | アッキアイ スペシャリ テルニ エス.ピー.エー. | Method for manufacturing oriented grain electrical steel sheet with high magnetic properties |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55138022A (en) * | 1979-04-13 | 1980-10-28 | Nippon Steel Corp | Method of annealing directional silicon steel plate for decarburization |
JPS5893823A (en) * | 1981-12-01 | 1983-06-03 | Kawasaki Steel Corp | Production of unidirectional silicon steel which permits easy finishing to specular surface |
-
1994
- 1994-04-06 JP JP6832994A patent/JPH07278671A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55138022A (en) * | 1979-04-13 | 1980-10-28 | Nippon Steel Corp | Method of annealing directional silicon steel plate for decarburization |
JPS5893823A (en) * | 1981-12-01 | 1983-06-03 | Kawasaki Steel Corp | Production of unidirectional silicon steel which permits easy finishing to specular surface |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001506702A (en) * | 1996-12-24 | 2001-05-22 | アッキアイ スペシャリ テルニ エス.ピー.エー. | Method for manufacturing oriented grain electrical steel sheet with high magnetic properties |
JP4651755B2 (en) * | 1996-12-24 | 2011-03-16 | アッキアイ スペシャリ テルニ エス.ピー.エー. | Method for producing oriented grain electrical steel sheet with high magnetic properties |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05112827A (en) | Manufacture of grain-oriented silicon steel sheet excellent in magnetic property and coating film pr0perty | |
JP2679944B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JP3496067B2 (en) | Method for manufacturing mirror-oriented unidirectional electrical steel sheet | |
JP2653638B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with low iron loss | |
JP3474837B2 (en) | Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more | |
JP3489945B2 (en) | Method for manufacturing mirror-oriented unidirectional electrical steel sheet | |
JP2680987B2 (en) | Method for producing grain-oriented silicon steel sheet with low iron loss | |
JP4119635B2 (en) | Method for producing mirror-oriented electrical steel sheet with good decarburization | |
JP4331886B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JP4119634B2 (en) | Method for producing mirror-oriented electrical steel sheet with good iron loss | |
JP3148092B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JP3182666B2 (en) | Method for producing ultra-low iron loss unidirectional silicon steel sheet | |
JP2678855B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
JP2706020B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JPH07278669A (en) | Manufacture of mirror surface oriented silicon steel sheet with low iron loss | |
JPH07278671A (en) | Manufacture of mirror surface oriented silicon steel sheet with low iron loss | |
JP3148096B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JP2680532B2 (en) | Method for producing grain-oriented electrical steel sheet with low iron loss | |
JP2678850B2 (en) | Method for manufacturing ultra low iron loss unidirectional silicon steel sheet | |
JP3154935B2 (en) | Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density | |
JP4585141B2 (en) | Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace | |
JP2719266B2 (en) | Method for producing ultra-low iron loss unidirectional silicon steel sheet | |
JP3148094B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JP3148093B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss | |
JP3148095B2 (en) | Method for manufacturing mirror-oriented electrical steel sheet with low iron loss |