JPH07277734A - Porous zirconium boride - Google Patents

Porous zirconium boride

Info

Publication number
JPH07277734A
JPH07277734A JP6093830A JP9383094A JPH07277734A JP H07277734 A JPH07277734 A JP H07277734A JP 6093830 A JP6093830 A JP 6093830A JP 9383094 A JP9383094 A JP 9383094A JP H07277734 A JPH07277734 A JP H07277734A
Authority
JP
Japan
Prior art keywords
amorphous
crystalline
zirconium boride
zrb2
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6093830A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mori
利之 森
Hidehiko Kobayashi
秀彦 小林
Takashi Mitamura
孝 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP6093830A priority Critical patent/JPH07277734A/en
Publication of JPH07277734A publication Critical patent/JPH07277734A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain porous zirconium boride which has excellent function of improving catalytic activity and high heat resistance by forming porous product from substantially crystalline ZrB2 and amorphous boron. CONSTITUTION:This porous zirconium boride is essentially composed only of crystalline ZrB2 and amorphous boron where the molar ratio of the amorphous boron/the crystalline ZrB2 is 0.4/1-4/1. It is produced, for example, by mixing powdery ZrO2, amorphous B powder and metallic Mg powder in a ZrO2/B/Mg molar proportion of 1/(2.4-6)/(2-3), baking the mixture in a non- oxidative atmosphere at 700-1,400 deg.C, then removing the formed Mg0 and excessive Mg with mineral acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒担体などとして有
用な多孔体に関するものである。
FIELD OF THE INVENTION The present invention relates to a porous material useful as a catalyst carrier and the like.

【0002】[0002]

【従来の技術】従来、触媒担体などとして用いられる多
孔体として、ZrO2−Na2O−B23−SiO2−R
O(R:アルカリ土金属またはZn)のZrO2系複合
ガラス、SiO2(55〜80wt%)−B23−Na2
OのSiO2系複合ガラス、SiO2−B23−CaO−
MgO−Al23−TiO2のTiO2系複合ガラスなど
が知られており、いずれも耐アルカリ性に優れている
(セラミックスvol28,No.7,674−678
(1993))。(ZrO2と非晶質BまたはB23
Mgとの混合粉末の焼成によるZrB2粉末の製造法が
Journal of Ceramic Societ
y of Japan100[2]172−177(1
992)に開示されている)。
2. Description of the Related Art Conventionally, ZrO 2 --Na 2 O--B 2 O 3 --SiO 2 --R has been used as a porous material used as a catalyst carrier.
O: ZrO 2 composite glass (R earth alkali metal or Zn), SiO 2 (55~80wt% ) - B 2 O 3 -Na 2
SiO 2 based composite glass of O, SiO 2 —B 2 O 3 —CaO—
TiO 2 -based composite glass of MgO-Al 2 O 3 -TiO 2 and the like are known, and all have excellent alkali resistance (ceramics vol28, No. 7, 674-678).
(1993)). (A method for producing a ZrB 2 powder by firing a mixed powder of ZrO 2 and amorphous B or B 2 O 3 and Mg is described in the Journal of Ceramic Society.
y of Japan 100 [2] 172-177 (1
992)).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の多孔質
ガラスは、いずれも化学的安定性は高いものの、触媒の
作用を高める機能が劣り、耐熱性などが低い。
However, all of the above-mentioned porous glasses have a high chemical stability, but have a poor function of enhancing the action of the catalyst and a low heat resistance.

【0004】本発明は、これらの欠点の解消された、す
なわち触媒の作用を向上させる機能に優れ、かつ耐熱性
の高い多孔体の提供を目的とするものである。
An object of the present invention is to provide a porous body which is free from these drawbacks, that is, which has an excellent function of improving the action of the catalyst and has a high heat resistance.

【0005】[0005]

【課題を解決するための手段】本発明は、実質的に結晶
質ZrB2および非晶質Bのみからなり、非晶質のB/
結晶質のZrB2のモル比が0.4/1〜4/1であ
る、ホウ化ジルコニウム系多孔体を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention consists essentially of crystalline ZrB 2 and amorphous B.
The present invention provides a zirconium boride-based porous body having a crystalline ZrB 2 molar ratio of 0.4 / 1 to 4/1.

【0006】上記の非晶質のB/結晶質のZrB2のモ
ル比を0.4/1〜4/1とするのは、下記の製造法上
の制約による。すなわち、その方法を、非晶質のB/結
晶質のZrB2のモル比が0.4/1に満たないものと
なる条件で実施すると多孔質のものがえられず、いっぽ
う、4/1をこえるものとなる条件で実施すると不純物
を含む製品がえられる。
The above-mentioned amorphous B / crystalline ZrB 2 molar ratio of 0.4 / 1 to 4/1 is due to the following manufacturing method restrictions. That is, when the method is carried out under the condition that the molar ratio of amorphous B / crystalline ZrB 2 is less than 0.4 / 1, a porous one cannot be obtained, and on the other hand, 4/1 Product containing impurities can be obtained by carrying out under conditions that exceed the above.

【0007】本発明のホウ化ジルコニウム系多孔体は、
ZrO2粉末と非晶質B粉末と金属Mg粉末とを、Zr
2/B/Mgモル比1/(2.4〜6)/(2〜3)
の割合で混合し、Ar,N2などの非酸化性雰囲気で7
00〜1400℃で焼成してZrO2+2B+2Mg→
ZrB2+2MgOで表される反応を行わせ、1Nの塩
酸などの鉱酸と接触させて生成したMgOおよび過剰の
Mgを溶解させて除去することにより製造することがで
きる。原料混合粉末中のB/ZrO2モル比が2.4/
1に満たないと、多孔質のものがえられない。それが6
/1をこえると、Bの一部がMgと反応して鉱酸で除去
されないMgB2、MgB4、MgB6などが副生し、製
品の純度を低下させる。Mg/ZrO2モル比が2に達
しないと、上記の式から明らかなように、製品中にZr
2が残存することになる。それが3をこえると、製品
が微粉化し、多孔質のものとならない。焼成温度が70
0℃に達しないと、反応が完結せず、製品中にZrO2
が残存することになる。それが1400℃をこえると、
結晶の粒成長が進み製品の多孔性が損なわれる。雰囲気
を酸化性のものとすると、それがMgと反応して、上記
の式による反応が十分に進まず、製品中にZrO2が残
存することになる。
The zirconium boride-based porous material of the present invention is
ZrO 2 powder, amorphous B powder and metallic Mg powder
O 2 / B / Mg molar ratio of 1 / (2.4 to 6) / (2-3)
And mixed in a non-oxidizing atmosphere such as Ar or N 2.
ZrO 2 + 2B + 2Mg by firing at 00 to 1400 ° C.
It can be produced by carrying out a reaction represented by ZrB 2 + 2MgO and dissolving and removing MgO and excess Mg produced by contacting with a mineral acid such as 1N hydrochloric acid. B / ZrO 2 molar ratio in the raw material mixed powder is 2.4 /
If it is less than 1, a porous material cannot be obtained. It is 6
When it exceeds / 1, a part of B reacts with Mg and MgB 2 , MgB 4 , MgB 6 and the like which are not removed by the mineral acid are by-produced and the purity of the product is lowered. If the Mg / ZrO 2 molar ratio does not reach 2, the Zr content in the product is
O 2 will remain. If it exceeds 3, the product is pulverized and does not become porous. Firing temperature is 70
If the temperature does not reach 0 ° C, the reaction will not be completed and ZrO 2 will be contained in the product.
Will remain. When it exceeds 1400 ℃,
Grain growth of crystals progresses and the porosity of the product is impaired. When the atmosphere is made oxidizing, it reacts with Mg, the reaction according to the above formula does not proceed sufficiently, and ZrO 2 remains in the product.

【0008】原料であるZrO2と非晶質Bと金属Mg
との混合方法には特に制限はなく、水またはエタノ−ル
中ボ−ルミル混合を行うかメノウ乳鉢を用いて混合すれ
ば十分に均一に混合することが可能である。
Raw materials ZrO 2 , amorphous B and metallic Mg
There is no particular limitation on the method of mixing with, and it is possible to achieve a sufficiently uniform mixing by performing ball mill mixing in water or ethanol or by mixing using an agate mortar.

【0009】焼成時間には特に制限はないが、あまり長
く焼成してもそれなりの効果が得られないので30分〜
1時間で十分である。
The firing time is not particularly limited, but if the firing time is too long, a certain effect cannot be obtained.
One hour is enough.

【0010】[0010]

【作用】本発明の多孔体は、上記の製造条件から明らか
なように1000℃以上で安定であり、多孔質であり、
かつ、成分のZrB2が高い電子伝導性を有する(Zr
2の電気抵抗は1.0×10-5であって、金属Zrに
くらべてもその4.1×10-5の約1/4にすぎない
(セラミックスvol24,No6,526−532
(1989)))ことから担持した触媒上に電子を供給
して触媒表面の触媒作用を向上させる可能であるので、
触媒担体などとして効果的に用いうるものと期待され
る。
The porous material of the present invention is stable and porous at 1000 ° C. or higher, as is clear from the above production conditions.
In addition, the component ZrB 2 has high electronic conductivity (Zr
The electrical resistance of B 2 is 1.0 × 10 −5 , which is only about 1/4 of 4.1 × 10 −5 of metal Zr (ceramics vol24, No6, 526-532).
(1989))), it is possible to improve the catalytic action of the catalyst surface by supplying electrons onto the supported catalyst.
It is expected that it can be effectively used as a catalyst carrier.

【0011】[0011]

【発明の効果】以上説明したように、本発明の多孔体
は、触媒の作用を向上させる機能に優れ、かつ耐熱性が
高いので、触媒担体などとして利用することにより高機
能が発揮されることが期待される。
As described above, the porous body of the present invention is excellent in the function of improving the action of the catalyst and has high heat resistance. Therefore, when it is used as a catalyst carrier or the like, a high function is exhibited. There is expected.

【0012】[0012]

【実施例】【Example】

実施例1〜6,比較例1〜5 ZrO2と非晶質Bと金属Mgとを、エタノ−ル中ボ−
ルミルを用いて12時間混合し、エバポレ−タ−を用い
て乾燥し、Ar雰囲気下において1時間焼成し、1規定
の塩酸水溶液中において洗浄した。
Examples 1 to 6 and Comparative Examples 1 to 5 ZrO 2 , amorphous B and metallic Mg were mixed in an ethanol medium ball.
The mixture was mixed for 12 hours using a rumill, dried using an evaporator, baked for 1 hour under an Ar atmosphere, and washed in a 1N aqueous hydrochloric acid solution.

【0013】えられた製品を、一点法BET測定による
比表面積,X線回折試験による結晶相の同定ならびに走
査電子顕微鏡による粒子形状の観察を行った。また、実
施例1〜6および比較例4では、Zr,BおよびMgの
元素分析を行ったが、Mgは検出されなかった。その分
析値から製品における非晶質のB/結晶質のZrB2
モル比を求めた。
The obtained product was observed for specific surface area by BET measurement by one-point method, identification of crystal phase by X-ray diffraction test, and observation of particle shape by scanning electron microscope. In Examples 1 to 6 and Comparative Example 4, Zr, B and Mg were subjected to elemental analysis, but Mg was not detected. From the analytical value, the molar ratio of amorphous B / crystalline ZrB 2 in the product was determined.

【0014】その他の条件および結果を表1に示す。Table 1 shows other conditions and results.

【0015】実施例の1および5の製品の走査電子顕微
鏡による観察結果は、図1および2にそれぞれ示す。
The observation results of the products of Examples 1 and 5 by a scanning electron microscope are shown in FIGS. 1 and 2, respectively.

【0016】[0016]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1でえられた製品の粒子構造を示す走査
電子顕微鏡の写真である。
FIG. 1 is a scanning electron microscope photograph showing the particle structure of the product obtained in Example 1.

【図2】実施例5でえられた製品の粒子構造を示す走査
電子顕微鏡の写真である。
FIG. 2 is a scanning electron microscope photograph showing the particle structure of the product obtained in Example 5.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】実質的に結晶質ZrB2および非晶質Bの
みからなり、非晶質のB/結晶質のZrB2のモル比が
0.4/1〜4/1である、ホウ化ジルコニウム系多孔
体。
1. Boration, which consists essentially of crystalline ZrB 2 and amorphous B, and has a molar ratio of amorphous B / crystalline ZrB 2 of 0.4 / 1 to 4/1. Zirconium based porous material.
JP6093830A 1994-04-08 1994-04-08 Porous zirconium boride Pending JPH07277734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6093830A JPH07277734A (en) 1994-04-08 1994-04-08 Porous zirconium boride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6093830A JPH07277734A (en) 1994-04-08 1994-04-08 Porous zirconium boride

Publications (1)

Publication Number Publication Date
JPH07277734A true JPH07277734A (en) 1995-10-24

Family

ID=14093317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6093830A Pending JPH07277734A (en) 1994-04-08 1994-04-08 Porous zirconium boride

Country Status (1)

Country Link
JP (1) JPH07277734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038406A1 (en) * 2004-10-07 2006-04-13 Nippon Mining & Metals Co., Ltd. HIGH PURITY ZrB2 POWDER AND METHOD FOR PRODUCTION THEREOF
WO2017131108A1 (en) 2016-01-27 2017-08-03 第一稀元素化学工業株式会社 Zirconium boride and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038406A1 (en) * 2004-10-07 2006-04-13 Nippon Mining & Metals Co., Ltd. HIGH PURITY ZrB2 POWDER AND METHOD FOR PRODUCTION THEREOF
JPWO2006038406A1 (en) * 2004-10-07 2008-05-15 日鉱金属株式会社 High purity ZrB2 powder and method for producing the same
JP2011088819A (en) * 2004-10-07 2011-05-06 Jx Nippon Mining & Metals Corp HIGH PURITY ZrB2 POWDER AND METHOD FOR PRODUCING THE SAME
JP4685023B2 (en) * 2004-10-07 2011-05-18 Jx日鉱日石金属株式会社 High purity ZrB2 powder and method for producing the same
WO2017131108A1 (en) 2016-01-27 2017-08-03 第一稀元素化学工業株式会社 Zirconium boride and method for producing same
US10974966B2 (en) 2016-01-27 2021-04-13 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconium boride and method of its manufacture

Similar Documents

Publication Publication Date Title
Nagano et al. Sintering behavior of Al2TiO5 base ceramics and their thermal properties
US4500643A (en) Shaped refractory metal boride articles and method of making them
US4506021A (en) 0'-Phase sialon ceramic product and a method of forming dense ceramic product
GB2163142A (en) A process for producing a composition which includes perovskite compound
EP0202899B1 (en) A silicon nitride sintered body and a method of producing the same
Patschger et al. Piezoelectric glass-ceramics produced via oriented growth of Sr 2 TiSi 2 O 8 fresnoite: thermal annealing of surface modified quenched glasses
JPH07277734A (en) Porous zirconium boride
US5094677A (en) Preparation of pollucite ceramics
JP3013372B2 (en) Zircon sintered body and method for producing the same
JP2777679B2 (en) Spinel ceramics and manufacturing method thereof
US4818733A (en) Silicon nitride sintered bodies and a method of producing the same
JPS6340711A (en) Production of beta-type silicon nitride
JPS6357383B2 (en)
JP2000044235A (en) Production of yttrium-aluminum multiple oxide
JP3087431B2 (en) Manufacturing method of aluminum oxide-zirconium oxide ceramic cutting tool with excellent toughness
JPH04280860A (en) Highly corrosion-resistant zircon porcelain and its production
JPS6256356A (en) Manufacture of mullite sintered body
JP2683397B2 (en) Method for manufacturing SiC whiskers
JP2003221272A (en) Machinable ceramics having high density and high heat resistance and manufacturing method therefor
JPS6146403B2 (en)
SU832608A1 (en) Ceramic material
JPH0774095B2 (en) Sintered body manufacturing method
JPH0648839A (en) Production of boron nitride sintered body
JPS6025384B2 (en) Manufacturing method of high-density magnesia sintered body
JPS58176109A (en) Production of alpha-type silicon nitride