JPH0727643A - Piezo resistance type semiconductor pressure sensor - Google Patents

Piezo resistance type semiconductor pressure sensor

Info

Publication number
JPH0727643A
JPH0727643A JP19187793A JP19187793A JPH0727643A JP H0727643 A JPH0727643 A JP H0727643A JP 19187793 A JP19187793 A JP 19187793A JP 19187793 A JP19187793 A JP 19187793A JP H0727643 A JPH0727643 A JP H0727643A
Authority
JP
Japan
Prior art keywords
diaphragm
oxide film
etching
pressure sensor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19187793A
Other languages
Japanese (ja)
Inventor
Kiyoto Aizawa
清人 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19187793A priority Critical patent/JPH0727643A/en
Publication of JPH0727643A publication Critical patent/JPH0727643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain an inexpensive and accurate pressure sensor by providing a recess having a flat bottom part on one main surface side of Si single-crystal substrate for forming a diaphragm with a rim and then forming a piezo resistor strain gauge in the bottom part. CONSTITUTION:Oxide film is formed on Si single-crystal substrate 21 by thermal oxidation and then a window is opened on its upper surface by etching. Further, etching is performed from the window and then a recess with a flat bottom part and a diaphragm 22 with a rim are formed on the substrate 21. After the surface of the diaphragm 22 is thermally oxidized, etched, and then cleaned, oxide film 23 is formed and then polycrystalline Si layer of impurity dope is formed on it. and then patterning is performed and a piezo resistor 24 is formed on the oxide film 23. Then, oxide film 28 is formed on the entire surface, a hole Is opened in the oxide film 28 on the resistor 24 by etching and a conductive material is deposited, and further an inner electrode 25, an outer electric wire 26, and a wiring 27 are formed by etching. Then, passivation film 29 is deposited on an entire surface and a lead wire is connected to an electrode 26, thus accurately manufacturing the sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工業計測や自動車等の
分野で用いられるピエゾ抵抗型半導体圧力センサー素子
の新規な構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel structure of a piezoresistive semiconductor pressure sensor element used in fields such as industrial measurement and automobiles.

【0002】[0002]

【従来の技術】従来のピエゾ抵抗型半導体圧力センサー
素子は図2に示すように、Si単結晶基板1の下面側に
平坦な底部を有するくぼみを設けることによりリム付き
ダイアフラム2が形成され、該基板1の上面側に酸化膜
3が設けられ、該酸化膜3の上部にノンドープ多結晶S
i層4を有し、該ノンドープ多結晶Si層4中に歪抵抗
体5が形成され、該歪抵抗体5の上部には電極6が設け
られると共に該電極6の配線部と多結晶Si層4の間
に、絶縁膜7が介在され、ピエゾ抵抗体歪ゲージは歪抵
抗体5と電極6により構成される構造となっている。こ
の素子構造はSi基板表面上に先ず歪ゲージを形成し、
最後に基板裏面を周縁部を残してエッチングしてくぼみ
を形成し、リム付きダイアフラム2を形成することによ
り得られる。該周縁部はダイアフラムのリムとなる。
2. Description of the Related Art In a conventional piezoresistive semiconductor pressure sensor element, as shown in FIG. 2, a rim-equipped diaphragm 2 is formed by forming an indentation having a flat bottom on the lower surface side of a Si single crystal substrate 1. An oxide film 3 is provided on the upper surface side of the substrate 1, and non-doped polycrystalline S is provided on the oxide film 3.
An i layer 4 is provided, a strain resistor 5 is formed in the non-doped polycrystalline Si layer 4, an electrode 6 is provided on the strain resistor 5, and a wiring portion of the electrode 6 and the polycrystalline Si layer are provided. An insulating film 7 is interposed between the piezoresistive strain gauges 4 and the piezoresistive strain gauges 4 and 4. In this device structure, a strain gauge is first formed on the Si substrate surface,
Finally, it is obtained by etching the rear surface of the substrate, leaving the peripheral edge portion, to form a recess, and forming the diaphragm 2 with a rim. The peripheral portion becomes the rim of the diaphragm.

【0003】このダイアフラム2は通常10〜100μ
m程度の厚さとされ、該ダイアフラム2に外部からの圧
力8または9がかかるとダイアフラム2が変形し、これ
に伴いダイアフラム2上方の歪抵抗体5の抵抗率がピエ
ゾ効果によって変化する。この抵抗率の変化量は基板の
結晶方位に依存し、加えられた力と関係のある電気信号
に変換して検出することができるので、これを圧力の検
出に用いることができる。図2において、左右2つの歪
ゲージが図示されているが、これらを横方向配列とし、
更に縦方向配列の2つの歪ゲージと合わせて4つの歪ゲ
ージでブリッジ回路を形成することにより、圧力変化を
ブリッジ出力として検出することができる。
The diaphragm 2 is usually 10 to 100 μm.
The thickness of the diaphragm 2 is about m, and when the external pressure 8 or 9 is applied to the diaphragm 2, the diaphragm 2 is deformed, and the resistivity of the strain resistor 5 above the diaphragm 2 is changed by the piezo effect. The amount of change in the resistivity depends on the crystal orientation of the substrate and can be detected by converting it into an electric signal related to the applied force, which can be used for detecting the pressure. In FIG. 2, two strain gauges on the left and right are shown, but these are arranged in the lateral direction,
Further, a pressure change can be detected as a bridge output by forming a bridge circuit with four strain gauges in combination with two strain gauges arranged in the vertical direction.

【0004】[0004]

【発明が解決しようとする課題】ところでこのような素
子構造は1枚のSi単結晶基板に多数形成し、最後にダ
イシングして各素子に切離すのが一般的であるが、上記
のように従来の素子は、Si単結晶基板の表面に作製さ
れた歪ゲージの位置に合わせてSi基板裏面にダイアフ
ラムを形成する必要があり、素子の小型化に伴い、表面
の歪ゲージと裏面ダイアフラムの位置合わせは十分な精
度が必要となっている。この精度を出すためには、一般
に使用されているマスクアライメント装置では不十分
で、高価な両面マスク合わせのできる装置が必要であ
り、コスト高になる欠点がある。また、両面の位置合わ
せは時間がかかり、生産効率の面でも不利である。さら
に、ダイアフラムを形成するためにレジストを基板に塗
布し、露光、現像、エッチングし、レジストを剥離する
という工程が必要であるが、この工程において既に形成
されている歪ゲージに損傷や汚染を与える恐れもある。
歪ゲージに損傷や汚染が入ると、素子性能は著しく劣化
する。
By the way, it is general that a large number of such element structures are formed on one Si single crystal substrate, and finally dicing is performed to separate the elements. In the conventional element, it is necessary to form a diaphragm on the back surface of the Si substrate in accordance with the position of the strain gauge manufactured on the front surface of the Si single crystal substrate. With the miniaturization of the element, the position of the front surface strain gauge and the back surface diaphragm The matching requires sufficient accuracy. In order to obtain this accuracy, a commonly used mask alignment apparatus is not sufficient, and an expensive apparatus capable of performing double-sided mask alignment is required, which has a drawback of high cost. In addition, alignment of both surfaces takes time, which is disadvantageous in terms of production efficiency. Furthermore, a process of applying resist to the substrate to form the diaphragm, exposing, developing, etching, and peeling the resist is necessary, but damages or contaminates the strain gauge already formed in this process. There is a fear.
If the strain gauge is damaged or contaminated, the device performance will be significantly deteriorated.

【0005】本発明の目的は、歪ゲージとダイアフラム
をSi基板の別々の面に形成するために生ずる歪ゲージ
への損傷、汚染を低減し、さらに、歪ゲージとダイアフ
ラムを高価なマスクアライメント装置を使用せずに精度
よく配置し、安価で高精度に作製し得るピエゾ抵抗型半
導体圧力センサーの構造を提供することにある。
An object of the present invention is to reduce damage and contamination of the strain gauge and the diaphragm which are caused by forming the diaphragm on different surfaces of the Si substrate, and further to provide an expensive mask alignment device for the strain gauge and the diaphragm. Another object of the present invention is to provide a structure of a piezoresistive semiconductor pressure sensor that can be accurately arranged without using and can be manufactured at low cost and with high accuracy.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明のセンサーは、Si単結晶基板の一方の主面側に
平坦な底部を有するくぼみが設けられてリム付きダイア
フラムが形成され、該くぼみ底部のダイアフラム上に少
なくとも1個のピエゾ抵抗体歪ゲージが形成されている
点に特徴がある。
In order to achieve the above object, the sensor of the present invention is provided with a rimed diaphragm in which a recess having a flat bottom is provided on one main surface side of a Si single crystal substrate. It is characterized in that at least one piezoresistor strain gauge is formed on the diaphragm at the bottom of the recess.

【0007】[0007]

【作用】本発明に用いるSi単結晶基板は半導体装置製
造用に市販されているもので良く、ダイアフラム、抵抗
体歪ゲージの製造には、公知の半導体製造技術をそのま
ま適用することができる。ピエゾ抵抗型半導体圧力セン
サーを上記構造としたためダイアフラム、抵抗体歪ゲー
ジの形成を基板の片面のみの処理でできることになり、
フォトリソグラフィーの工程において問題となっていた
ダイアフラム部とピエゾ抵抗体、電極等の歪ゲージ部と
のSi基板の表裏での位置合わせが不用となり、はるか
に簡単に素子を作製できる。また、使用するフォトリソ
グラフィー装置も片面の位置合わせでよいため標準品が
使用できる。さらに、ダイアフラム形成後に同一面に歪
ゲージを製作するため、従来ダイアフラム形成時に歪ゲ
ージが底面になるために起こっていた歪ゲージ部への汚
染や損傷の恐れがなくなった。
The Si single crystal substrate used in the present invention may be a commercially available one for manufacturing a semiconductor device, and a known semiconductor manufacturing technique can be applied as it is to manufacture a diaphragm and a resistor strain gauge. Since the piezoresistive semiconductor pressure sensor has the above structure, the diaphragm and the resistor strain gauge can be formed by processing only one side of the substrate.
Positioning of the diaphragm part and the strain gauge parts such as the piezoresistor and the electrodes on the front and back sides of the Si substrate, which has been a problem in the photolithography process, becomes unnecessary, and the device can be manufactured much more easily. Further, the photolithography apparatus to be used can also be a standard product because the alignment on one side is sufficient. Further, since the strain gauge is manufactured on the same surface after the diaphragm is formed, there is no fear of contamination or damage to the strain gauge portion which has been caused by the strain gauge becoming the bottom surface when the diaphragm is formed.

【0008】[0008]

【実施例】図1は本発明のピエゾ抵抗型半導体圧力セン
サーの構造の一例を概念的に示す断面図である。Si単
結晶基板21の上面側に平坦な底部を有するくぼみが設
けられてリム付きダイアフラム22が形成され、厚さ1
0〜100μmのダイアフラム22上に酸化膜23が形
成され、該酸化膜23上にピエゾ抵抗体となる不純物ド
ープ多結晶Si層24が形成されている。多結晶Si層
24上には内部電極25が設けられ、該内部電極25と
リム上に配置される外部電極26とは配線27によって
接続されている。多結晶Si層24、内部電極25、外
部電極26および配線27は、間にある絶縁膜28によ
り分離され、最上部はパッシベーション膜29で覆われ
ており、歪ゲージは、不純物ドープ多結晶Si層24、
内部電極25、外部電極26および電極をつなぐ配線2
7により構成される構造となっている。
FIG. 1 is a sectional view conceptually showing an example of the structure of a piezoresistive semiconductor pressure sensor of the present invention. The Si single crystal substrate 21 is provided with a recess having a flat bottom portion on the upper surface side to form a diaphragm 22 with a rim and a thickness of 1 mm.
An oxide film 23 is formed on the diaphragm 22 having a thickness of 0 to 100 μm, and an impurity-doped polycrystalline Si layer 24 serving as a piezoresistor is formed on the oxide film 23. An internal electrode 25 is provided on the polycrystalline Si layer 24, and the internal electrode 25 and the external electrode 26 arranged on the rim are connected by a wiring 27. The polycrystalline Si layer 24, the internal electrode 25, the external electrode 26, and the wiring 27 are separated by an insulating film 28 between them, and the uppermost portion is covered with a passivation film 29. The strain gauge is an impurity-doped polycrystalline Si layer. 24,
Wiring 2 connecting the internal electrode 25, the external electrode 26 and the electrodes
The structure is composed of 7.

【0009】図1において、左右2つの歪ゲージが図示
されているが、これらを横方向に感度を持つピエゾ抵抗
体とし、更に縦方向に感度を持つ2つの歪ゲージを配置
すれば、各方向のピエゾ抵抗体は、それぞれの方向に応
じた圧力の増減で抵抗率が増減し、これら2組の歪ゲー
ジでブリッジ回路を形成して圧力の検出を行うことがで
きる。
In FIG. 1, two strain gauges on the left and right are shown, but if these are made piezoresistors having sensitivity in the horizontal direction and two strain gauges having sensitivity in the vertical direction are arranged, the strain gauges can be arranged in each direction. The resistivity of the piezoresistor increases / decreases as the pressure increases / decreases in accordance with the respective directions, and the pressure can be detected by forming a bridge circuit with these two sets of strain gauges.

【0010】このようなピエゾ抵抗型半導体圧力センサ
ーの製作手順は、先ずSi単結晶基板21の熱酸化を行
って酸化膜を形成し、フォトリソグラフィーとエッチン
グにより基板21上面の酸化膜にくぼみ形成のための窓
を明ける。次にシリコンに対して異方性エッチングが可
能なエッチャントにより上記窓明けされた部分からエッ
チングを行い、Si基板21に平坦な底部を有するくぼ
みを形成し、同時にリム付きダイアフラム22を形成す
る。その後、ダイアフラム22表面のクリーニングのた
め更に一旦熱酸化し、形成された酸化膜をエッチングに
より全部除去する。以上の工程により表面清浄なSi製
リム付きダイアフラム22が形成される。
The procedure for manufacturing such a piezoresistive semiconductor pressure sensor is as follows. First, the Si single crystal substrate 21 is thermally oxidized to form an oxide film, and a recess is formed in the oxide film on the upper surface of the substrate 21 by photolithography and etching. Open the window for. Next, etching is performed from the above-mentioned windowed portion with an etchant capable of anisotropically etching silicon to form a recess having a flat bottom portion in the Si substrate 21, and at the same time, a diaphragm 22 with a rim is formed. Then, the surface of the diaphragm 22 is further thermally oxidized for cleaning, and the formed oxide film is completely removed by etching. Through the above steps, the diaphragm 22 having a clean surface and made of Si is formed.

【0011】次に、ダイアフラム22上に熱酸化により
酸化膜を形成し、該酸化膜上に不純物ドープの多結晶S
i層を堆積し、パターニングを行うことによりダイアフ
ラム21上にのみ酸化膜23を残し、該酸化膜23上に
独立のピエゾ抵抗体24を形成する。抵抗体パターン形
成後、素子分離のための酸化膜28を全面に形成し、フ
ォトリソグラフィーとエッチングにより抵抗体24上の
該酸化膜28に電極形成用の穴あけ50を行う。続いて
導電材料を堆積し、フォトリソグラフィーとエッチング
により内部電極25、外部電極26および配線27を形
成する。そして上面全面にパッシベーション膜29を堆
積し、最後に検出信号を外部に取り出すためのリード線
を外部電極26に接続してセンサーが完成する。
Next, an oxide film is formed on the diaphragm 22 by thermal oxidation, and the impurity-doped polycrystalline S is formed on the oxide film.
By depositing the i layer and performing patterning, the oxide film 23 is left only on the diaphragm 21, and an independent piezoresistor 24 is formed on the oxide film 23. After the resistor pattern is formed, an oxide film 28 for element isolation is formed on the entire surface, and a hole 50 for forming an electrode is formed in the oxide film 28 on the resistor 24 by photolithography and etching. Then, a conductive material is deposited, and the inner electrode 25, the outer electrode 26, and the wiring 27 are formed by photolithography and etching. Then, a passivation film 29 is deposited on the entire upper surface, and finally a lead wire for extracting a detection signal to the outside is connected to the external electrode 26 to complete the sensor.

【0012】本発明のピエゾ抵抗型半導体圧力センサー
によれば、従来の素子構造によるセンサーの特性とほぼ
同程度の感度が得られ、また、従来構造の素子に比べて
収率が大幅に向上する。
According to the piezoresistive semiconductor pressure sensor of the present invention, the sensitivity which is almost the same as the characteristic of the sensor by the conventional device structure can be obtained, and the yield is greatly improved as compared with the device having the conventional structure. .

【0013】[0013]

【発明の効果】本発明により、ピエゾ抵抗型半導体圧力
センサーを安価に且つ高精度に作製し得るようになり、
用途が一層拡大することが期待できる。
According to the present invention, a piezoresistive semiconductor pressure sensor can be manufactured inexpensively and with high precision,
It can be expected that the applications will be further expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のピエゾ抵抗型半導体圧力センサーの構
造の一例を概念的に示す断面図である。
FIG. 1 is a sectional view conceptually showing an example of the structure of a piezoresistive semiconductor pressure sensor of the present invention.

【図2】従来のピエゾ抵抗型半導体圧力センサーの構造
を概念的に示す断面図である。
FIG. 2 is a sectional view conceptually showing the structure of a conventional piezoresistive semiconductor pressure sensor.

【符号の説明】[Explanation of symbols]

21 Si単結晶基板 22 ダイアフラム 23 酸化膜 24 多結晶Si層 25 内部電極 26 外部電極 27 配線 28 絶縁膜 29 パッシベーション膜 21 Si Single Crystal Substrate 22 Diaphragm 23 Oxide Film 24 Polycrystalline Si Layer 25 Internal Electrode 26 External Electrode 27 Wiring 28 Insulating Film 29 Passivation Film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Si単結晶基板の一方の主面側に平坦な
底部を有するくぼみが設けられてリム付きダイアフラム
が形成され、該くぼみ底部のダイアフラム上に少なくと
も1個のピエゾ抵抗体歪ゲージが形成されてなるピエゾ
抵抗型半導体圧力センサー。
1. A Si single crystal substrate is provided with a recess having a flat bottom on one main surface side to form a diaphragm with a rim, and at least one piezoresistive strain gauge is provided on the diaphragm at the bottom of the recess. Piezoresistive semiconductor pressure sensor formed.
JP19187793A 1993-07-07 1993-07-07 Piezo resistance type semiconductor pressure sensor Pending JPH0727643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19187793A JPH0727643A (en) 1993-07-07 1993-07-07 Piezo resistance type semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19187793A JPH0727643A (en) 1993-07-07 1993-07-07 Piezo resistance type semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH0727643A true JPH0727643A (en) 1995-01-31

Family

ID=16281966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19187793A Pending JPH0727643A (en) 1993-07-07 1993-07-07 Piezo resistance type semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH0727643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829960B2 (en) 2007-12-10 2010-11-09 Seiko Epson Corporation Semiconductor pressure sensor, method for producing the same, semiconductor device, and electronic apparatus
US8356521B2 (en) 2008-10-31 2013-01-22 Seiko Epson Corporation Pressure sensor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829960B2 (en) 2007-12-10 2010-11-09 Seiko Epson Corporation Semiconductor pressure sensor, method for producing the same, semiconductor device, and electronic apparatus
US8356521B2 (en) 2008-10-31 2013-01-22 Seiko Epson Corporation Pressure sensor device

Similar Documents

Publication Publication Date Title
JP2729005B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JP2517467B2 (en) Capacitive pressure sensor
US6973836B2 (en) Semiconductor pressure sensor having diaphragm
KR101213895B1 (en) Semiconductor strain sensor for vehicle engine intake air pressure measurement
US6838303B2 (en) Silicon pressure sensor and the manufacturing method thereof
US20100218611A1 (en) Semiconductor pressure sensor and manufacturing method thereof
JP2000340805A (en) Electronic part and manufacture
CN113075726B (en) Hydrophone and method for manufacturing same
JP2822486B2 (en) Strain-sensitive sensor and method of manufacturing the same
JPH0727643A (en) Piezo resistance type semiconductor pressure sensor
KR100555650B1 (en) Micro electro mechanical system sensor capable of simultaneously sensing pressure, temperature and acceleration, fabrication method therefor, and tire pressure monitoring system using the same
JPH0554709B2 (en)
JPH08107219A (en) Semiconductor acceleration sensor and its manufacture
US6308575B1 (en) Manufacturing method for the miniaturization of silicon bulk-machined pressure sensors
JPH10256565A (en) Manufacture of semiconductor device having micromechanical structure
JPH04178533A (en) Semiconductor pressure sensor
EP0500945A1 (en) Pressure sensor
JPH0786619A (en) Strain gauge and manufacture thereof
JP2002090244A (en) Semiconductor pressure sensor and manufacturing method thereof
JPH07318445A (en) Capacitance type pressure sensor and manufacture thereof
JP2000315805A (en) Strain detecting element and manufacture of the same
JP2011102775A (en) Semiconductor pressure sensor and manufacturing method thereof
JPH10284737A (en) Manufacture of capacitive semiconductor sensor
JPH06163939A (en) Semiconductor pressure sensor and fabrication thereof
JPH0835982A (en) Manufacture of semiconductor acceleration sensor