JPH07275894A - Wastewater treatment - Google Patents

Wastewater treatment

Info

Publication number
JPH07275894A
JPH07275894A JP6103483A JP10348394A JPH07275894A JP H07275894 A JPH07275894 A JP H07275894A JP 6103483 A JP6103483 A JP 6103483A JP 10348394 A JP10348394 A JP 10348394A JP H07275894 A JPH07275894 A JP H07275894A
Authority
JP
Japan
Prior art keywords
liquid
filtrate
solid
substances
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6103483A
Other languages
Japanese (ja)
Inventor
Yoshio Gomi
吉男 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6103483A priority Critical patent/JPH07275894A/en
Publication of JPH07275894A publication Critical patent/JPH07275894A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To oxidize, reduce and efficiently remove harmful substances by heating wastewater containing a large amount of organic substances and having high salt concentration to evaporate the wastewater after solid-liquid separation, condensing the vapor to extract fine suspended substances and salts from the condensate, and radiating ozone to the filtered liquid. CONSTITUTION:After solid-liquid separation of wastewater from a water tank 1 into solid matter and a separated liquid by solid-liquid separating apparatuses 3, 7, the separated liquid (filtered liquid) is heated by a preheating apparatus 25 and a heater 26 and then boiled by a steam heating apparatus 28 after the liquid passes an evaporating can 27. Then, the concentrated filtered liquid obtained in the crystallizing can 29 is separated into a filtered liquid and crystalline substances by a cyclone 30 and the crystallized substances are collected by a crystalline substance separating apparatus 31. Meanwhile, the evaporated filtered liquid is gas-liquid separated by a mist separator 32, led to the steam heating apparatus 28, the heater 26, and the preheating apparatus 25 to stepwise lower the temperature, and after the temperature is lowered, the liquid is stored in a relay tank 34. The resultant filtered liquid is introduced into a reaction tower 35, sprayed in superfine particle state, and irradiated with ultraviolet rays 36 to oxidoreduce suspended substances and malodorous substances and remove them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水処理設備に関するも
のであり、有機性物質を多量に含有し、かつ塩濃度の高
い廃水の処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment facility, and relates to a method for treating wastewater containing a large amount of organic substances and having a high salt concentration.

【0002】[0002]

【従来の技術】有機性物質を多量に含有し、塩濃度の高
い廃水は、人間と家畜類のし尿及び食品加工廃水であ
る。し尿は他の廃水と共に公共下水処理場において処理
・処分されるべきものであるが、肥料還元、海洋投棄、
し尿処理施設(家庭浄化槽を含む)やその他の方法で処
理されている。このし尿処理施設(嫌気的或いは好気的
処理)以外は、衛生的に諸問題があり、海洋への流入
は、赤潮の発生原因ともなりトラブルの発生につなが
る。地方自治体で幅広く実施されている嫌気的消化法等
によるし尿処理は、搬入されたし尿をスクリーンで粗大
夾雑物を除去した後、消化槽で30〜37℃に保ち約3
0日間消化し、脱離液のBOD(生物化学的酸素要求
量)を適当に稀釈調整し、散布ろ床で好気的処理をして
塩素滅菌後放流する。このとき発生するメタンガスは燃
料とし、消化汚泥は肥料として利用されている。また、
下水や各種廃水においても処理過程は、若干異なっても
処理水を稀釈調整する処理方法を採用しているのが現況
であり、この処理によって発生する汚泥量は増加の一途
を辿り、このものの処理・処分が非常に困難、かつ重要
な問題となっている。従来は、埋立用に、また脱水乾燥
後、農地改良や肥料として一部が利用されてきたが、発
生量の増加に加え汚泥そのものの性状や地理的な事情等
を考えたとき必ずしも適正な方法とはいいがたい。
2. Description of the Related Art Wastewater containing a large amount of organic substances and having a high salt concentration is human waste and livestock waste and food processing wastewater. Human waste should be treated and disposed of in a public sewage treatment plant along with other wastewater, but returns to fertilizer, ocean dumping,
It is treated in human waste treatment facilities (including household septic tanks) and other methods. Other than this human waste treatment facility (anaerobic or aerobic treatment), there are various hygienic problems, and the inflow to the ocean also causes red tides, which leads to troubles. The human waste treatment by anaerobic digestion method, etc., which is widely practiced in local governments, removes coarse impurities from the introduced human waste with a screen and then keeps it at 30 to 37 ° C in the digestion tank for about 3
Digest for 0 days, adjust the BOD (biochemical oxygen demand) of the desorbed solution to an appropriate dilution, perform aerobic treatment with a spray filter bed, sterilize with chlorine, and then discharge. Methane gas generated at this time is used as fuel, and digested sludge is used as fertilizer. Also,
The present situation is that the treatment process for sewage and various wastewater is also adjusted even if the treatment process is slightly different, and the amount of sludge generated by this treatment continues to increase. -Disposal is extremely difficult and has become an important issue. In the past, part of it was used for landfill and after dehydration and drying as agricultural land improvement and fertilizer, but it is not always the proper method when considering the characteristics of the sludge itself and geographical conditions, etc. Is hard to say.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来の有機
性物質を多量に含有し、かつまた塩濃度の高い廃水の廃
水処理方法で発生する汚泥量を減量し、簡単、安全、経
済的、かつ衛生的で無害な最終産物に転化するためと、
従来の廃水処理施設の膨大な設備費と維持管理費を軽減
する。
DISCLOSURE OF THE INVENTION The present invention reduces the amount of sludge generated in a wastewater treatment method of wastewater containing a large amount of conventional organic substances and having a high salt concentration, and is simple, safe and economical. And to convert it into a sanitary and harmless end product,
Reduce the huge equipment costs and maintenance costs of conventional wastewater treatment facilities.

【0004】[0004]

【課題を解決するための手段】本発明は、有機性物質を
多量に含有する廃水の処理方法に係る特許第12272
42号、同第1534061号、同第1594104
号、同第1618609号を基にオゾン(O)及び酸
素原子(O)を前処理(以下、固液分離という。)によ
って発生した脱離液(以下、ろ液という。)と反応させ
酸化還元せしめ無害化による処理で解決する。固液分離
過程で固形物とろ液に分離し、前者を燃料化して自燃に
よって焼却処理をする。この際に発生する燃焼排ガスの
持つ熱エネルギーで排熱ボイラーを稼働して飽和水蒸気
を発生せしめ、後者のろ液はpH調整した後、発生した
水蒸気を使用して加熱し気化したものを凝縮せしめ、こ
のろ液中に含まれている微細な固形物(懸濁物質と塩)
を結晶物として分離し取り出す。その後に残った凝縮ろ
液は、オゾン(O)と事前に混合して、反応槽内に超
微粒子状に噴霧した上で紫外線を照射することにより、
該ろ液中に含まれている懸濁物質と臭気を速やかに酸化
還元して除去し、更に酸素原子(O)と反応させること
により、残存する懸濁物質と臭気を速やかに酸化還元し
除去するとともに、固液分離過程で発生する臭気を帯び
た空気を集めてオゾンと混合せしめ、酸化還元によって
除去し無害化を図る処理方法を効率よく、かつ安価に提
供せんとするものである。固液分離の処理方法は、固液
分離過程の原廃水槽内で凝集剤を添加した上でエアーレ
ーションして速やかにフロックを形成した後、特殊なネ
ットコンベアを設けた分離機を二段階に設けて原廃水を
自然落下により、固形物とろ液を容易に分離できるた
め、ろ液中に含有する懸濁物質の負荷が軽減される、従
って後段の処理が非常に容易にできる。オゾンと混合し
た上で紫外線を照射せしめ速やかに酸化還元することに
より該ろ液中に含まれている公害質の負荷を激減した
後、更に触媒と次亜塩素酸ソーダあるいはオゾンと反応
させ、酸素原子を発生させ速やかに該ろ液と反応せし
め、残存している公害質を酸化還元して除去するととも
に、固液分離過程中で発生する臭気を帯びた空気を集め
てオゾンと混合することによって、酸化還元して除去す
る。
DISCLOSURE OF THE INVENTION The present invention relates to a method for treating wastewater containing a large amount of organic substances.
No. 42, No. 1534061, No. 1594104
No. 1618609, ozone (O 3 ) and oxygen atoms (O) are reacted with a desorbed liquid (hereinafter, referred to as a filtrate) generated by pretreatment (hereinafter, referred to as solid-liquid separation) and oxidized. It is solved by the process of detoxification and detoxification. In the solid-liquid separation process, it is separated into a solid matter and a filtrate, and the former is made into fuel and incinerated by self-combustion. The exhaust heat boiler is operated by the heat energy of the combustion exhaust gas generated at this time to generate saturated steam, and the latter filtrate is adjusted in pH and then the generated steam is used to condense the vaporized material. , Fine solids (suspended substances and salts) contained in this filtrate
Is separated and taken out as a crystalline substance. The condensed filtrate remaining thereafter is premixed with ozone (O 3 ), sprayed in the reaction tank in the form of ultrafine particles, and then irradiated with ultraviolet rays,
The suspended matter and odor contained in the filtrate are quickly redox-removed and removed, and the remaining suspended matter and odor are promptly redox-removed by reacting with oxygen atoms (O). In addition, the odorous air generated in the solid-liquid separation process is collected, mixed with ozone, and removed by oxidation reduction to make it harmless, thereby providing an efficient and inexpensive treatment method. The solid-liquid separation treatment method involves adding flocculant in the raw wastewater tank during the solid-liquid separation process, and then quickly forming flocs by aeration, and then using a separator equipped with a special net conveyor in two stages. Since the solid waste and the filtrate can be easily separated by providing the raw wastewater by gravity fall, the load of suspended substances contained in the filtrate can be reduced, and therefore the subsequent treatment can be performed very easily. After the mixture is mixed with ozone, the load of pollutants contained in the filtrate is drastically reduced by irradiating it with ultraviolet rays and rapidly oxidizing and reducing it, and further reacting it with a catalyst and sodium hypochlorite or ozone to obtain oxygen. By generating atoms and rapidly reacting with the filtrate, redox and removing the remaining pollutants, and collecting odorous air generated during the solid-liquid separation process and mixing it with ozone. , Redox and remove.

【0005】[0005]

【作 用】有機性物質を多量に含有し、かつまた塩濃度
の高い廃水を固液分離した後、加熱し蒸発させ気化した
ものを凝縮せしめ、この中に含まれている微細な懸濁物
質と塩を抽出し、ろ液をオゾンと混合、反応させること
で残存している公害質を酸化還元して除去する。
[Operation] Waste liquid that contains a large amount of organic substances and also has a high salt concentration is subjected to solid-liquid separation, then heated and evaporated to vaporize and condense, and fine suspended substances contained in this And salt are extracted, and the filtrate is mixed with ozone and reacted to remove the remaining pollutants by redox.

【0006】[0006]

【実施例】本発明の処理方法に関する一実施例を第1図
により説明する。有機物質を多量に含有し、かつまた塩
濃度の高い廃水の処理方法に関する概念を示す系統図で
あって、先ず原廃水aを原廃水槽1に流入するが、該槽
1底部に空気散気管2を設け空気bで原廃水aを適度に
撹拌しながら、凝集剤cを適宜に添加して該槽1内でフ
ロックを形成せしめ、No.1固液分離機3に設けた特
殊No.1ネットコンベア4に移送する。該コンベア4
は、原廃水aのフロック形成の状況に合わせた特殊メッ
シュのものを選定するとともにコンベア速度もフロック
形成状況によって調整できる構造(図示せず)を有して
いる。ここで固形物(以下汚泥という。)dと脱離液
(以下、ろ液という。)eに自然状態で重力落下によっ
て分離し、汚泥dは、No.1中継槽5の底部に設けた
散気管2に空気bを送気し、汚泥dを適度に撹拌しなが
ら凝集剤cを添加してフロック形成した後No.2固液
分離機6に設けた特殊No.2ネットコンベア7に移送
する。ここでNo.1固液分離機3と同様の操作が繰り
返され、汚泥dとろ液eに分離される。分離された汚泥
dは、脱水機8に移送された後、強力な説水によって含
水率70%以下の汚泥にするとともにろ液eに分離され
る。上記した三個所で発生したろ液eは、ろ液貯留槽2
4に移送しpH調整液kで中和されて貯留する。一方の
汚泥dは、搬送機(図示せず)によって汚泥貯留槽9に
貯留するが、該槽9の底部に設けた定量切り出し機10
で定量搬出し、搬送機(図示せず)で定量フィダー11
に移送して、特許第1227242号の旋回流動層式焼
却装置12に挿入する。この焼却装置12は、硅砂を熱
媒体として、予め汚泥dの自燃を可能にするためにN
o.1押込送風機15で空気予熱器14に空気bを送気
し予熱(300〜350℃)した熱風b’で充填してあ
る硅砂を流動させながら所定温度(550〜600℃)
に旋回流動層を形成させるとともに燃焼用空気bをN
o.2押込送風機16で該焼却装置12内に送気し、挿
入された汚泥dを瞬時に乾燥、燃焼を完了させ汚泥dの
減量化を図る。該焼却装置12に汚泥dとともに挿入さ
れた不燃物iは、該装置12底部に設けた搬出口から流
動媒体である硅砂の一部とともに搬出され不燃物分離機
(図示せず)及び搬送機(図示せず)で分離した後、硅
砂は順次該装置12内に戻される。なお該装置12の温
度場設定に必要な立上げは、オイルfを燃料にオイルバ
ーナーの燃焼によって行う。汚泥dの自燃によって発生
した排ガスは、該装置12の排ガス出口を経由して冷却
洗煙塔13に誘引され、ここで該ガス中のばいじん、硫
黄酸化物および塩化水素等の公害の恐れのある物質を除
去するためにアルカリ液(中和剤)gを処理水e”’と
共に該塔13内に噴霧して公害質の処理をするとともに
該ガス温度を450℃程度まで降下させる。この排ガス
は、該塔13の排ガス出口を経由して空気予熱器14に
誘引される。ここで、No.1押入送風機15によって
空気bを該予熱器14に送気して熱交換せしめ各々の熱
風b’使用個所に供給される。該排ガスは、空気bとの
熱交換によって300℃程度に降下して該予熱器14出
口を経由し電気集塵機17に誘引され、ここで、ばいじ
んを捕集して底部に設けてある排出機で該機17外に搬
出する。また該塔13該予熱器14と該機17の各々の
底部からばいじんを集め搬送機18で灰ホッパー19に
搬送して貯留し灰搬送機20で場外に灰jを搬出する。
該機17の出口を経由した該排ガスは、廃熱ボイラ21
に誘引され、ここで、該排ガスの持つ熱エネルギーで該
ボイラ21に給水した水hと熱交換して飽和水蒸気h’
を発生せしめ、発生した水蒸気を使用してNo.1スチ
ーム加熱器28、No.2スチーム加熱器33を加熱す
る。該ボイラ21出口を経由した該排ガスは誘引送風機
22を経由して煙突23より大気に放出する。また、ろ
液貯留槽24に貯留されているろ液eは、pH調整液k
でpH調整を行った後、予熱器25、加熱器26、蒸発
缶27、及びNo.1スチーム加熱器28、を経由して
結晶缶29に設けたフロートスイッチ(図示せず)の上
限設定位置まで注入する。次に廃熱ボイラ21で発生せ
しめた飽和水蒸気h’を蒸気バルブ(図示せず)を開い
て蒸発缶27及び結晶缶29に注入し、該各缶27、2
9内を該水蒸気h’の潜熱で加熱沸騰さる。やがて、先
に注入してあったろ液eは、沸騰し蒸気を発生しながら
気化が始まる。結晶缶29に設けられた該フロートスイ
ッチの上限作動位置で該スイッチが作動した時点で該水
蒸気h’の供給を止めるとともにろ液e送水用の全ての
ポンプ(図示せず)が起動して連続運転が開始する。ろ
液貯留槽24のろ液eは予熱器25を通過する、気化後
凝縮したろ液e’(90℃前後)と逆方向に供給され、
ここで熱交換し70℃前後まで昇温される。一方、該ろ
液e’は、40〜30℃に降温してNo.2中継槽34
に貯留される。昇温されたろ液e(70℃前後)と蒸発
缶27の底部から蒸発状態のろ液eの一部を引き抜き合
流せしめたろ液eは、加熱器26を通過する気化後の凝
縮したろ液e’(100℃前後)と逆方向に供給される
が沸騰寸前までの状況を保持するために該器26で加熱
し、蒸発缶27に供給し、瞬時に沸騰、気化せしめ該缶
27内のろ液eは濃縮される。濃縮されたろ液e”は、
結晶缶29の底部から濃縮されたろ液e”とサイクロン
30で分離された濃縮ろ液e”及び結晶物分離器31で
分離された濃縮ろ液e”と合流せしめNo.1スチーム
加熱器28で該水蒸気h’を利用した間接加熱により所
定のろ液e”の温度を保持しながら結晶缶29に供給す
る。ここで該缶29内の濃縮ろ液e”は、更に沸謄・気
化を促進して含有成分が飽和濃度に達し結晶を始める。
この結晶分離水m’をサイクロン30に供給し、該結晶
分離水m’の微粒子(結晶物)を分離するために回転運
動を与えそれとともに回転する粒子の遠心力を利用して
結晶物mとろ液結晶分離水m’に分離する。前者は、サ
イクロン30下部に設けた出口から結晶物分離器31で
捕集し該器31底部に設けた取出口より外部に搬出す
る。後者は、該サイクロン30上部出口及び該器31に
設けた結晶分離水m’出口及び結晶缶29の底部から濃
縮、結晶化された濃縮ろ液e”の一部と蒸発缶27で濃
縮された濃縮ろ液e”を合流した上でNo.1スチーム
加熱器28を経由して、上述した如く該缶29に供給す
る。一方、蒸発缶27及び結晶缶29で蒸発したろ液
e’は、ミストセパレーター32で気水分離され、この
凝縮ろ液eをNo.2スチーム加熱器33で飽和水蒸気
h’により間接加熱して所定の温度を保持しながら上述
したように加熱器26と予熱器25で熱交換をせしめ凝
縮ろ液e’は40〜30℃に降温されてNo.2中継槽
34に貯溜される。なお、失熱する熱量を補うために設
定温度指示(図示せず)により適宜に発熱ボイラ21で
発生せしめた飽和水蒸気h’を蒸発缶27及び結晶缶2
9に直接補給して、その潜熱で失熱量を補うとともに予
熱器25、加熱器26、No.1スチーム加熱器28及
びNo.2スチーム加熱器33に飽和水蒸気h’を循環
し、所定温度を保持しながら以上の過程を自動的に連続
運転操作する。オゾン発生装置(図示せず)で発生され
たオゾン(O)pを該凝縮ろ液e’と混合した上で反
応槽35に超微粒子状にして噴霧し、ここで紫外線36
を照射せしめ懸濁物質と臭気を速やかに酸化還元ならし
め除去する。更に酸化触媒塔37で次亜塩素酸(NaO
Cl)q或いは該オゾンpを該塔37内に充填した触媒
rと反応させ酸素原子oを発生せしめて該凝縮ろ液e’
と反応させることで懸濁物質と臭気を速やかに酸化還元
除去して、処理水貯溜槽38に貯溜した後、適宜放流す
るか再利用水に供する。また固液分離過程中で発生する
臭気を帯びた空気を集めてオゾンpと混合することによ
って酸化還元して除去する。なお、処理水e”’で酸化
触媒塔37に充填した触媒rを洗浄するが、洗浄に使用
した逆洗廃水nはろ液貯溜槽24に送水し再処理する。
また該処理方法の固液分離過程中で発生する臭気を帯び
た空気を集めてオゾンpと混合して酸化還元除去する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the processing method of the present invention will be described with reference to FIG. 1 is a system diagram showing the concept of a method for treating wastewater containing a large amount of organic substances and having a high salt concentration. First, raw wastewater a flows into a raw wastewater tank 1, and an air diffusion pipe is provided at the bottom of the tank 1. No. 2 is provided, while the raw wastewater a is moderately stirred by the air b, the flocculant c is appropriately added to form flocs in the tank 1, and No. Special No. 1 provided in the solid-liquid separator 3. 1 Transfer to the net conveyor 4. The conveyor 4
Has a structure (not shown) capable of selecting a special mesh according to the flock formation condition of the raw wastewater a and adjusting the conveyor speed according to the flock formation condition. Here, the solid matter (hereinafter referred to as "sludge") d and the desorbed liquid (hereinafter referred to as "filtrate") e are separated by gravity falling in a natural state. No. 1 after air b was sent to the air diffuser 2 provided at the bottom of the relay tank 5 and the floc was formed by adding the flocculant c while appropriately stirring the sludge d. 2 Special No. provided on the solid-liquid separator 6 2 Transfer to the net conveyor 7. Here, No. 1 The same operation as the solid-liquid separator 3 is repeated to separate the sludge d and the filtrate e. The separated sludge d is transferred to the dehydrator 8 and then is made into sludge having a water content of 70% or less by a powerful demineralization and separated into a filtrate e. The filtrate e generated at the above-mentioned three places is the filtrate storage tank 2
4 and neutralized with the pH adjusting solution k and stored. One sludge d is stored in the sludge storage tank 9 by a carrier (not shown), and a fixed amount cutting machine 10 provided at the bottom of the tank 9
Quantitative carry-out with a fixed quantity feeder 11 with a carrier (not shown)
And is inserted into the swirling fluidized bed incinerator 12 of Japanese Patent No. 1227242. The incinerator 12 uses silica sand as a heat medium in order to enable the self-combustion of the sludge d in advance.
o. 1 A forced air blower 15 blows air b to the air preheater 14 and preheats (300 to 350 ° C.) hot air b ′ while filling the silica sand to a predetermined temperature (550 to 600 ° C.)
A swirling fluidized bed is formed on the
o. 2 The forced air is blown into the incinerator 12 by the forced air blower 16, and the sludge d inserted is instantly dried and burned to reduce the amount of the sludge d. The incombustible material i inserted into the incinerator 12 together with the sludge d is carried out together with a part of silica sand, which is a fluid medium, from a carry-out port provided at the bottom of the apparatus 12 and an incombustible material separator (not shown) and a carrier ( After separation (not shown), the silica sand is successively returned into the device 12. The start-up required for setting the temperature field of the device 12 is performed by burning the oil burner with oil f as fuel. Exhaust gas generated by the self-combustion of the sludge d is attracted to the cooling smoke washing tower 13 via the exhaust gas outlet of the device 12, where there is a risk of pollution such as dust, sulfur oxides and hydrogen chloride in the gas. In order to remove the substance, an alkaline liquid (neutralizing agent) g is sprayed into the tower 13 together with the treated water e ″ ′ to treat pollutants and reduce the gas temperature to about 450 ° C. This exhaust gas , Is attracted to the air preheater 14 via the exhaust gas outlet of the tower 13. Here, the No. 1 forced draft blower 15 sends the air b to the preheater 14 for heat exchange so that each hot air b '. The exhaust gas drops to about 300 ° C. by heat exchange with the air b and is attracted to the electrostatic precipitator 17 through the outlet of the preheater 14 where the dust is collected and the bottom part is collected. The discharge machine provided in Unloaded to. The tower 13 is transported to the ash hopper 19 to the reservoir in the preheater 14 and 該機 respective bottom conveyor 18 collects dust from the 17 unloading the curb to ashes j ash conveyor 20.
The exhaust gas passing through the outlet of the machine 17 is discharged to the waste heat boiler 21.
Is saturated with water vapor h ′ by heat exchange with the water h supplied to the boiler 21 by the thermal energy of the exhaust gas.
No. was generated and the generated steam was used. 1 steam heater 28, No. 1 2 Heat the steam heater 33. The exhaust gas passing through the outlet of the boiler 21 is discharged to the atmosphere through the chimney 23 through the induced air blower 22. Further, the filtrate e stored in the filtrate storage tank 24 is the pH adjusting liquid k.
After adjusting the pH with the preheater 25, the heater 26, the evaporator 27, and the No. It injects to the upper limit setting position of the float switch (not shown) provided in the crystal can 29 via 1 steam heater 28. Next, saturated steam h'generated in the waste heat boiler 21 is injected into the evaporator 27 and the crystal can 29 by opening a steam valve (not shown), and the respective cans 27, 2
The inside of 9 is heated and boiled by the latent heat of the water vapor h '. Eventually, the previously injected filtrate e boils and vaporizes while generating steam. When the switch is operated at the upper limit operation position of the float switch provided in the crystal can 29, the supply of the water vapor h ′ is stopped and all pumps (not shown) for sending filtrate e are continuously activated. Driving starts. The filtrate e in the filtrate storage tank 24 passes through the preheater 25 and is supplied in the opposite direction to the evaporated filtrate e ′ (around 90 ° C.),
Here, heat is exchanged and the temperature is raised to around 70 ° C. On the other hand, the filtrate e ′ was cooled to 40 to 30 ° C. 2 relay tank 34
Stored in. The filtrate e (about 70 ° C.) whose temperature has been raised and a part of the filtrate e in an evaporated state are extracted from the bottom of the evaporator 27 and merged into the filtrate e, which passes through the heater 26 and is the condensed filtrate e after vaporization. It is supplied in the direction opposite to that of '(around 100 ° C.), but in order to maintain the condition just before boiling, it is heated by the vessel 26, supplied to the evaporation can 27, and instantaneously boiled and vaporized, and the filter in the can 27 is evaporated. Liquid e is concentrated. The concentrated filtrate e ″ is
From the bottom of the crystal can 29, the concentrated filtrate e ″, the concentrated filtrate e ″ separated by the cyclone 30 and the concentrated filtrate e ″ separated by the crystal separator 31 are brought together to form No. 1 steam heater 28. It is supplied to the crystal can 29 while maintaining a predetermined temperature of the filtrate e ″ by indirect heating using the water vapor h ′. Here, the concentrated filtrate e ″ in the can 29 further promotes boiling and vaporization, reaches the saturated concentration of the contained components, and begins to crystallize.
The crystal separation water m ′ is supplied to the cyclone 30, and a rotational movement is given to separate the fine particles (crystals) of the crystal separation water m ′ to utilize the centrifugal force of the rotating particles to melt the crystal m. Liquid crystal separation water m'is separated. The former is collected by a crystal substance separator 31 from an outlet provided at the bottom of the cyclone 30 and carried out to the outside from an outlet provided at the bottom of the cyclone 30. The latter is concentrated from the cyclone 30 upper outlet, the crystal separation water m ′ outlet provided in the vessel 31 and the bottom of the crystal can 29 and a part of the crystallized concentrated filtrate e ″ and the evaporator 27. After concentrating the concentrated filtrate e ″, No. It is fed to the can 29 as described above via the 1 steam heater 28. On the other hand, the filtrate e ′ evaporated in the evaporator 27 and the crystal can 29 is separated into steam and water by the mist separator 32. 2 The steam heater 33 indirectly heats the saturated steam h ′ to maintain a predetermined temperature, and the heat exchange is performed by the heater 26 and the preheater 25 as described above, and the condensed filtrate e ′ is cooled to 40 to 30 ° C. No. 2 Stored in the relay tank 34. In order to compensate for the amount of heat to be lost, saturated steam h'generated in the heat generating boiler 21 is appropriately supplied by a set temperature instruction (not shown) to the evaporation can 27 and the crystal can 2.
9 is directly supplied to supplement the amount of heat loss with the latent heat, and the preheater 25, the heater 26, No. 1 steam heater 28 and No. 1 The saturated steam h'is circulated in the 2 steam heater 33, and the above process is automatically continuously operated while maintaining a predetermined temperature. Ozone (O 3 ) p generated by an ozone generator (not shown) is mixed with the condensed filtrate e ′ and then sprayed in the form of ultrafine particles in the reaction tank 35.
The suspended solids and odors are rapidly removed by redox. Further, in the oxidation catalyst tower 37, hypochlorous acid (NaO
Cl) q or the ozone p is reacted with the catalyst r packed in the tower 37 to generate oxygen atoms o, and the condensed filtrate e ′
The suspended solids and odor are promptly redox-removed by reacting with and stored in the treated water storage tank 38, and then appropriately discharged or provided for reused water. Further, odorous air generated during the solid-liquid separation process is collected and mixed with ozone p to be redox-removed. Although the catalyst r packed in the oxidation catalyst tower 37 is washed with the treated water e ″ ′, the backwash wastewater n used for the washing is sent to the filtrate storage tank 24 for reprocessing.
Further, odorous air generated during the solid-liquid separation process of the treatment method is collected and mixed with ozone p for redox removal.

【0007】[0007]

【発明の効果】本発明は、固形物と脱離液に分離し、燃
料化し、燃焼効率の優れた旋回流動層焼却装置で自燃な
らしめ焼却処理する、他からの補助燃料を全く必要とし
ない完全燃焼処理が可能であり、この際に発生する排ガ
スの持つ熱エネルギーで排熱ボイラーを稼働して飽和水
蒸気を発生せしめ、その飽和水蒸気で脱離液を加熱し蒸
発させ気化したものを凝縮せしめ、塩を結晶物として抽
出する。また汚泥の発生量を激減させることが出来ると
ともに、処理水の水質の安定化、無害化が達成でき処理
水による自然破壊を完全に防止出来、また、従来の水処
理法に比べて極めて効率よく、処理設備の建設費が大幅
に軽減できる上に、ランニングコスト面でも同様の結果
が得られ、人件費も従来の処理方法と比較しても他の処
理法に望めない極めて優れたものである。
INDUSTRIAL APPLICABILITY The present invention separates solid matter and desorbed liquid into fuel, and uses a swirling fluidized bed incinerator having excellent combustion efficiency for self-combustion and incineration treatment, and does not require any auxiliary fuel from others. Complete combustion processing is possible, and the exhaust heat boiler operates with the heat energy of the exhaust gas generated at this time to generate saturated steam, and the saturated steam heats the desorbed liquid to evaporate and condense the evaporated gas. , The salt is extracted as crystals. In addition, the amount of sludge generated can be drastically reduced, the quality of treated water can be stabilized and harmless, and the natural destruction of treated water can be completely prevented, and it is extremely efficient compared to conventional water treatment methods. The construction cost of the processing equipment can be greatly reduced, the same result can be obtained in terms of running cost, and the labor cost is extremely superior to other processing methods compared to conventional processing methods. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関する一実施例による廃水の処理方法
を示す概念系統図。
FIG. 1 is a conceptual system diagram showing a wastewater treatment method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…原廃水槽、2…空気散気管、3…No.1固液分離
機、4…No.1ネットコンベア 5…No.1中継
槽、6…No.2固液分離機、7…No.2ネットコン
ベア、8…脱水機、9…汚泥貯留槽、10…定量切り出
し機、11…定量フィダー、12…旋回流動層式焼却装
置、13…冷却洗煙塔、14…空気予熱器、15…N
o.1押込送風機、16…No.2押込送風機、17…
電気集塵機、18…搬送機、19…灰ホッパ、20…灰
搬送機、21…廃熱ボイラ、22…誘引送風機、23…
煙突、24…ろ液貯留槽、25…予熱器、26…加熱
器、27…蒸発缶、28…No.1スチーム加熱器、2
9…結晶缶、30…サイクロン、31…結晶物分離器、
32…ミストセパレータ、33…No.2スチーム加熱
器、34…No.2中継槽、35…反応塔、36…紫外
線、37…酸化触媒塔、38…処理水槽、a…原廃水、
b…空気、b’…熱風、c…凝集剤、d…汚泥、e…ろ
液、e’…凝縮ろ液、e”…濃縮ろ液、e”’…処理
水、f…オイル、g…アルカリ液(中和剤)、h…水、
h’…飽和水蒸気、i…不燃物、j…灰、k…pH調整
液、m…結晶物、m’…結晶分離水、n…逆洗廃水、o
…酸素原子、p…オゾン、q…次亜塩素酸ソーダ、r…
触媒
1 ... Raw waste water tank, 2 ... Air diffuser, 3 ... No. 1 solid-liquid separator, 4 ... No. 1 Net conveyor 5 ... No. 1 relay tank, 6 ... No. 2 solid-liquid separator, 7 ... No. 2 Net conveyor, 8 ... Dehydrator, 9 ... Sludge storage tank, 10 ... Fixed quantity cutting machine, 11 ... Fixed quantity feeder, 12 ... Swirling fluidized bed type incinerator, 13 ... Cooling and washing tower, 14 ... Air preheater, 15 ... N
o. 1 push fan, 16 ... No. 2 push blower, 17 ...
Electric dust collector, 18 ... Carrier, 19 ... Ash hopper, 20 ... Ash carrier, 21 ... Waste heat boiler, 22 ... Induction blower, 23 ...
Chimney, 24 ... Filtrate storage tank, 25 ... Preheater, 26 ... Heater, 27 ... Evaporator, 28 ... No. 1 steam heater, 2
9 ... Crystal can, 30 ... Cyclone, 31 ... Crystal separator,
32 ... Mist separator, 33 ... No. 2 steam heater, 34 ... No. 2 relay tank, 35 ... reaction tower, 36 ... ultraviolet ray, 37 ... oxidation catalyst tower, 38 ... treated water tank, a ... raw wastewater,
b ... air, b '... hot air, c ... flocculant, d ... sludge, e ... filtrate, e' ... condensed filtrate, e "... concentrated filtrate, e"'... treated water, f ... oil, g ... Alkaline liquid (neutralizer), h ... water,
h '... saturated steam, i ... incombustibles, j ... ash, k ... pH adjusting liquid, m ... crystals, m' ... crystal separation water, n ... backwashing wastewater, o
... oxygen atom, p ... ozone, q ... sodium hypochlorite, r ...
catalyst

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 Z ZAB 503 C 504 B B01D 53/34 ZAB 53/38 53/74 C01B 13/10 D C02F 1/00 ZAB F 1/04 ZAB D 1/26 ZAB A 1/32 ZAB 1/58 ZAB G 1/76 ZAB Z 1/78 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 9/00 Z ZAB 503 C 504 B B01D 53/34 ZAB 53/38 53/74 C01B 13/10 D C02F 1/00 ZAB F 1/04 ZAB D 1/26 ZAB A 1/32 ZAB 1/58 ZAB G 1/76 ZAB Z 1/78 ZAB

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 有機性物質を多量に含有し、かつまた塩
濃度の高い廃水を前処理(以下、固液分離という。)に
よって固形物(以下、汚泥という。)と脱離液(以下、
ろ液という。)に分離した後、該固形物(以下、汚泥と
いう)を燃料化し焼却処理するが、これに伴って発生す
る熱エネルギーで排熱ボイラーを稼働して飽和水蒸気を
発生せしめ、その飽和水蒸気で脱離液を加熱し蒸発させ
気化したものを凝縮せしめ、この中に含まれている微細
な固形物(懸濁物質と塩)を結晶物として抽出する。脱
離液(ろ液)は、ろ液貯留槽に貯留した後、順次、予熱
器及び加熱器で加熱され蒸発缶を経由し、スチーム加熱
器を経て、結晶缶でさらに沸騰・気化させた濃縮ろ液は
サイクロンによってろ液と結晶物に分離し、結晶物は結
晶分離器で捕集する。気化したろ液はミストセパレータ
ーで気水分離され、この凝縮ろ液をスチーム加熱器で所
定の温度を保持し加熱器及び予熱器を通過させ、熱交換
により降温させ、中継槽にろ液を貯留する。中継槽に貯
留した凝縮ろ液は、空気から酸素製造装置によって酸素
(O)を発生させ、この酸素でオゾン発生装置によっ
てオゾン(O)を発生せしめこのオゾンを該凝縮ろ液
に混合した上で反応槽内に超微粒子状にして噴霧し、紫
外線を照射することによって懸濁物質と臭気を速やかに
酸化還元ならしめ除去する。更に酸化触媒塔で次亜塩素
酸ソーダ(NaOCl)或いはオゾンを該塔内に充填し
た触媒に接触反応させ酸素原子(O)を発生せしめ、該
凝縮ろ液と反応させることで、残存する懸濁物質と臭気
を速やかに酸化還元して除去するとともに、固液分離過
程中で発生する臭気を帯びた空気を集めてオゾンと混合
することによって、酸化還元して除去することを特徴と
する廃水処理方法。
1. A wastewater containing a large amount of organic substances and having a high salt concentration is subjected to a pretreatment (hereinafter referred to as solid-liquid separation) to obtain a solid matter (hereinafter referred to as sludge) and a desorbed liquid (hereinafter referred to as sludge).
It is called filtrate. ), The solid matter (hereinafter referred to as “sludge”) is converted to fuel and incinerated. The heat energy generated by the solid waste is used to operate the exhaust heat boiler to generate saturated steam, which is then desorbed. The separated liquid is heated to evaporate and the vaporized substance is condensed to extract fine solid matter (suspended substance and salt) contained therein as a crystalline substance. After the desorbed liquid (filtrate) is stored in the filtrate storage tank, it is sequentially heated by a preheater and a heater, passes through an evaporator, a steam heater, and is further boiled and vaporized in a crystallization can. The filtrate is separated into a filtrate and a crystal substance by a cyclone, and the crystal substance is collected by a crystal separator. The vaporized filtrate is separated into water and water by a mist separator, and the condensed filtrate is kept at a predetermined temperature with a steam heater and passed through a heater and a preheater to lower the temperature by heat exchange and store the filtrate in a relay tank. To do. The condensed filtrate stored in the relay tank generates oxygen (O 2 ) from air by an oxygen production device, and ozone (O 3 ) is generated by this oxygen by an ozone generator, and this ozone is mixed with the condensed filtrate. Ultrafine particles are atomized and sprayed in the reaction vessel above, and the suspended matter and odor are rapidly removed by redox treatment by irradiating with ultraviolet rays. Further, in the oxidation catalyst tower, sodium hypochlorite (NaOCl) or ozone is contact-reacted with the catalyst packed in the tower to generate oxygen atoms (O), and the residual suspension is reacted with the condensed filtrate. Wastewater treatment characterized by rapid redox removal of substances and odors, and redox removal by collecting odorous air generated during solid-liquid separation process and mixing with ozone Method.
JP6103483A 1994-04-07 1994-04-07 Wastewater treatment Pending JPH07275894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6103483A JPH07275894A (en) 1994-04-07 1994-04-07 Wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6103483A JPH07275894A (en) 1994-04-07 1994-04-07 Wastewater treatment

Publications (1)

Publication Number Publication Date
JPH07275894A true JPH07275894A (en) 1995-10-24

Family

ID=14355262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6103483A Pending JPH07275894A (en) 1994-04-07 1994-04-07 Wastewater treatment

Country Status (1)

Country Link
JP (1) JPH07275894A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074695A1 (en) * 2001-03-16 2002-09-26 Environmental Vision 21 Ltd. Plant and process for the gas treatment and thickening of wastewater by evaporation enhancing
KR100416959B1 (en) * 2001-10-29 2004-02-05 (주)서광플랜트 Waste water treatment plant
KR100847067B1 (en) * 2008-01-16 2008-07-17 백덕수 Livestock wastewater treating system
JP2010536560A (en) * 2007-08-23 2010-12-02 ダウ グローバル テクノロジーズ インコーポレイティド Purification method and apparatus for industrial brine
CN104016530A (en) * 2014-06-05 2014-09-03 中国科学院过程工程研究所 Method for deeply treating, desalting and recycling industrial wastewater with high salt content
CN106007134A (en) * 2016-05-27 2016-10-12 北京国电富通科技发展有限责任公司 Purifying salt production system and method for synchronous removal of organic matters through evaporative crystallization of high-salinity organic wastewater
CN111187742A (en) * 2020-02-26 2020-05-22 上海淳渊环境科技有限公司 Composite biological agent and method and system for treating salt-containing organic matter wastewater
CN113562918A (en) * 2021-08-09 2021-10-29 天俱时工程科技集团有限公司 Method for treating high-concentration organic wastewater containing manganese

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074695A1 (en) * 2001-03-16 2002-09-26 Environmental Vision 21 Ltd. Plant and process for the gas treatment and thickening of wastewater by evaporation enhancing
KR100416959B1 (en) * 2001-10-29 2004-02-05 (주)서광플랜트 Waste water treatment plant
JP2010536560A (en) * 2007-08-23 2010-12-02 ダウ グローバル テクノロジーズ インコーポレイティド Purification method and apparatus for industrial brine
KR100847067B1 (en) * 2008-01-16 2008-07-17 백덕수 Livestock wastewater treating system
CN104016530A (en) * 2014-06-05 2014-09-03 中国科学院过程工程研究所 Method for deeply treating, desalting and recycling industrial wastewater with high salt content
CN104016530B (en) * 2014-06-05 2016-08-24 中国科学院过程工程研究所 A kind of high saliferous advanced treatment of industrial waste water and the method for desalination reuse
CN106007134A (en) * 2016-05-27 2016-10-12 北京国电富通科技发展有限责任公司 Purifying salt production system and method for synchronous removal of organic matters through evaporative crystallization of high-salinity organic wastewater
CN111187742A (en) * 2020-02-26 2020-05-22 上海淳渊环境科技有限公司 Composite biological agent and method and system for treating salt-containing organic matter wastewater
CN113562918A (en) * 2021-08-09 2021-10-29 天俱时工程科技集团有限公司 Method for treating high-concentration organic wastewater containing manganese

Similar Documents

Publication Publication Date Title
US3741890A (en) Solid waste disposal and water purification method and apparatus
KR101243605B1 (en) Waste to energy by way of hydrothermal decomposition and resource recycling
US4441437A (en) Process for thermic treatment of sludges, particularly treatment of clarification sludges
JPS6338240B2 (en)
WO2008128465A1 (en) System and progress for treating wet sludge by drying and incinerating
WO2006117934A1 (en) Organic waste disposal facility and method of disposal
CN103090396A (en) Two-stage drying and incineration method for sludge
CN103539332A (en) Integrated system and method for generating electricity employing drying and burning of sludge
JPS6038611B2 (en) Method and device for evaporating and concentrating waste sludge using exhaust gas from an incinerator
NO855052L (en) PROCEDURE FOR THE TREATMENT OF Sewage sludge from a biological wastewater treatment plant.
JPH07275894A (en) Wastewater treatment
JPH09257234A (en) Supplying method of waste into boiler
US11000777B1 (en) Apparatus and process for treating water
JPH07275895A (en) Wastewater-treatment without dilution
CN111115933A (en) Flameless torch type ultra-clean discharge process for high-ammonia nitrogen wastewater containing VOCs
JP2004290862A (en) Method and apparatus for recovering nitrogen and phosphorus
EP3990393A1 (en) Ammonia stripper apparatus and method
JPS6351997A (en) System for mixing and treating night soil and garbage
JP4465786B2 (en) Method and apparatus for treating human waste and / or septic tank sludge
KR101720048B1 (en) Sludge treatment system
KR100332923B1 (en) A treatment method of landfill leachates using landfill gases
JPH07119948A (en) Integrated processing system for discharged water and waste material
JP3501702B2 (en) Wastewater treatment from waste disposal site
KR102330066B1 (en) Energy self-sufficient complex waste processing system linked sewage processing facilities
JPS58153600A (en) Treatment of night soil without dilution nor releasing