JPH0727451A - Pressure controlling method in recovering and gas extracting device and pressure controlling mechanism - Google Patents

Pressure controlling method in recovering and gas extracting device and pressure controlling mechanism

Info

Publication number
JPH0727451A
JPH0727451A JP17551593A JP17551593A JPH0727451A JP H0727451 A JPH0727451 A JP H0727451A JP 17551593 A JP17551593 A JP 17551593A JP 17551593 A JP17551593 A JP 17551593A JP H0727451 A JPH0727451 A JP H0727451A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
refrigerator
gas
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17551593A
Other languages
Japanese (ja)
Inventor
Susumu Ishii
進 石井
Akira Kabeta
昭 壁田
Michio Kumaki
美智雄 熊木
Teruyoshi Miyatake
輝佳 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Engineering Co Ltd
Original Assignee
Hitachi Building Systems Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Engineering Co Ltd filed Critical Hitachi Building Systems Engineering Co Ltd
Priority to JP17551593A priority Critical patent/JPH0727451A/en
Publication of JPH0727451A publication Critical patent/JPH0727451A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To prevent a poor returning of a refrigerant liquid by a method wherein a technology for recovering a refrigerant for a freezer and a technology for extracting a non-condensed gas mixed in a refrigerant gas are improved and a pressure balance within a recovering device and a gas extracting device is controlled. CONSTITUTION:There is provided a small-sized freezer 22. There is also provided a pressure sensor P for use in sensing a pressure within a gas-liquid separator 4 which is a closed container forcedly cooled by the small-sized freezer. In the case that a pressure within the gas-liquid separator 4 is lower than a predetermined pressure, a solenoid switch 42 is turned OFF through a solenoid switch controlling device 43 so as to stop an operation of the small- sized freezer 22. In addition, there is provided a level sensor L so as to stop an operation of the small-sized freezer 22 when a level of refrigerant liquid within the gas-liquid separator 4 is higher than a predetermined position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば冷凍機のように
冷媒流体を封入して冷凍サイクルを行わせる設備装置を
分解点検,整備する場合、分解に先立って冷凍機内の冷
媒を冷媒タンク内に移す(回収する)装置および同方
法、並びに、上記冷凍機内に漏入した非凝縮性ガスを冷
凍機外に排出する(抽気する)装置および同方法に係
り、特に、回収操作や抽気操作が妨げられないように圧
力を制御する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant tank in which a refrigerant in a refrigerating tank is stored prior to disassembling, when disassembling, inspecting or maintaining an equipment device such as a refrigerator for enclosing a refrigerant fluid for performing a refrigerating cycle. And a method for discharging (recovering) the non-condensable gas leaking into the refrigerator to the outside of the refrigerator (bleeding) and a method therefor. It relates to a technique for controlling pressure so as not to be disturbed.

【0002】[0002]

【従来の技術】冷凍機は一般に、常温近くに沸点を有す
る冷媒物質(例えばフロン・R11)を封入密閉して、
蒸発→圧縮→凝縮→減圧→(蒸発)の冷凍サイクルを行
わせる。この冷凍機を点検,整備するために分解(部分
分解を含む)すると冷媒が大気中に放散されるので、こ
れを防止するため予め冷凍機の冷凍系から冷媒を抜き取
って冷媒タンク内に回収,一時保管しておき、点検,整
備を終えた後、冷媒タンク内の冷媒を冷凍機に戻すこと
が行われている。冷凍機内には、冷媒ガスや冷媒液と共
に、漏入した空気などの非凝縮性ガスや水蒸気が混在し
ているのが一般的である。冷媒液は比較的容易に冷媒タ
ンクなどの容器に回収することができ、冷媒ガスの回収
に先立って冷媒液の抜き取りが行われるが、この冷媒液
抜取作業は一般に広く行われているので説明を省略す
る。冷媒ガスは液化して回収し、非凝縮性ガスや水蒸気
は冷媒から分離する必要が有る。図3は従来例の冷媒ガ
スの回収装置を示す系統図である。冷凍機1は凝縮器1
aと蒸発器1bと圧縮機1cとによって冷凍系を構成
し、冷媒(例えばフロン・R11)を封入,密閉してい
る。上記の冷凍系から冷媒タンク5に冷媒ガスを回収す
るため、冷凍機1内の冷媒ガスを圧縮機2によって吸
入,圧送し、凝縮器3で冷却して液化させる。前記の冷
媒ガスの中には空気などの非凝縮性ガスが混入してお
り、さらに該空気は多少の水蒸気を含んでいる。そこ
で、前記の凝縮器3で液化した冷媒等を気液分離器4に
導いて冷媒液のみをフロート弁4aから冷媒タンク5に
回収し、凝縮しない気体成分は放出弁4bから大気中に
放出する。この気体成分中には、凝縮しなかった冷媒ガ
スが含まれている。Wは液化した水分の溜まり具合を観
察するための覗き窓、vは排水用の弁である。
2. Description of the Related Art In general, a refrigerator has a refrigerant substance (for example, CFC / R11) having a boiling point near room temperature sealed and sealed,
A refrigeration cycle of evaporation → compression → condensation → decompression → (evaporation) is performed. When disassembling (including partial disassembling) to inspect and maintain this refrigerator, the refrigerant is diffused into the atmosphere. To prevent this, the refrigerant is previously drawn from the refrigeration system of the refrigerator and collected in the refrigerant tank. After the temporary storage, the inspection and maintenance are completed, the refrigerant in the refrigerant tank is returned to the refrigerator. In a refrigerator, a non-condensable gas such as leaked air and water vapor are generally mixed together with a refrigerant gas and a refrigerant liquid. Refrigerant liquid can be relatively easily recovered in a container such as a refrigerant tank, and the refrigerant liquid is extracted prior to the recovery of the refrigerant gas. Omit it. The refrigerant gas needs to be liquefied and recovered, and the non-condensable gas and water vapor need to be separated from the refrigerant. FIG. 3 is a system diagram showing a conventional refrigerant gas recovery device. Refrigerator 1 is condenser 1
A, the evaporator 1b, and the compressor 1c constitute a refrigeration system, and a refrigerant (for example, Freon R11) is enclosed and hermetically sealed. In order to recover the refrigerant gas from the refrigeration system to the refrigerant tank 5, the refrigerant gas in the refrigerator 1 is sucked and pumped by the compressor 2 and cooled in the condenser 3 to be liquefied. A non-condensable gas such as air is mixed in the refrigerant gas, and the air also contains some water vapor. Therefore, the refrigerant or the like liquefied in the condenser 3 is guided to the gas-liquid separator 4 so that only the refrigerant liquid is recovered from the float valve 4a to the refrigerant tank 5, and the non-condensing gas component is discharged into the atmosphere from the discharge valve 4b. . This gas component contains the refrigerant gas that has not condensed. W is a viewing window for observing the accumulation state of liquefied water, and v is a drain valve.

【0003】往時(例えば昭和30年代の高度経済成長
以前)においては冷媒が高価であったため、これを放散
させることなく回収しようというのが経済・技術の思潮
であった。このため、図3に示した従来例のようにして
冷媒の回収が図られたのであるが、この考え方に立つ限
りにおいては、回収する冷媒よりも高い費用を費してま
で徹底回収するという努力は為されなかった。昭和40
年代に入って各種の公害が社会問題化し、さらに昭和6
0年代になると、フロンなどの冷媒や溶剤によるオゾン
層破壊という地球規模の環境問題が国際的に論じられる
ようになり、回収フロンの金銭的価値以上の費用をかけ
てでも極限までフロンを回収し、フロンを大気中に放散
させてはならないという時代になった。こうした観点か
ら図3の従来技術を見ると、圧縮機2によって冷凍機1
内の冷媒ガスを精一杯排出しても、機内ガス圧は一般的
には−650mmHg程度にしか下がらない。この−65
0mmHgの冷媒ガスは分解整備に際して大気中に放散さ
れてしまう。この機内残留ガス圧を−750〜約760
mmHgまで下げるため、図4に示すように真空ポンプ9
を用いる技術も公知である。しかしながら、図4の従来
例では機内残留ガス圧を−760mmHg近くまで下げ得
る代りに、該真空ポンプ9の吐出圧が低いので、前記気
液分離器4内上部空間の非凝縮性ガス圧力が0.3Kgf
/cm2g程度までしか上がらない。この非凝縮性ガスの
中には、凝縮器3内の凝縮温度に相当する分圧の未凝縮
冷媒ガスが混在しており、その冷媒ガス濃度は気液分離
器4内の圧力に反比例し、圧力が低いと冷媒ガスの分圧
が相対的に高くなり、未凝縮冷媒ガス濃度が高くなる。
従って、放出弁4bから大気中に放出される非凝縮性ガ
スに随伴して高濃度の未凝縮冷媒ガスが放散される。図
3および図4について説明した従来例の不具合を解消す
るため、図5に示すように真空ポンプ9の下流側に圧縮
機2を直列に介挿接続する構成が有効である。この構成
は本発明者らが創作して本出願人によって別途出願中
(特願平4−156912号)の未公知の先願に係る発
明である。上記先願の発明によれば、冷凍機1内の残留
冷媒ガス圧を理想的に低くし、(約−760mmHg)、
しかも、気液分離器4内の非凝縮性ガス圧力を高く(例
えば5Kgf/cm2g)することができ、従って、冷凍機
内に残留して大気中に放散される冷媒の量と、放出弁か
ら非凝縮性ガスに随伴して放散される冷媒の量との合計
量を、実用上零と見なし得る程度に減少せしめることが
できる。
Since the refrigerant was expensive in the past (for example, before the high economic growth in the 1955's), it was an economic and technical idea to recover the refrigerant without dissipating it. Therefore, the refrigerant was recovered as in the conventional example shown in FIG. 3, but as far as this idea is concerned, an effort to thoroughly collect the refrigerant even at a higher cost than the refrigerant to be recovered. Was not done. Showa 40
Various pollution became a social problem in the 1960s,
In the 1980s, global environmental issues such as ozone layer destruction caused by refrigerants and solvents such as CFCs were discussed internationally, and CFCs were recovered to the limit even at a cost higher than the monetary value of CFCs recovered. , The time has come when fluorocarbons must not be released into the atmosphere. From this point of view, looking at the conventional technique of FIG.
Even if the refrigerant gas in the inside is exhausted to the utmost, the gas pressure inside the machine generally falls only to about -650 mmHg. This -65
Refrigerant gas of 0 mmHg is released into the atmosphere during disassembly and maintenance. The residual gas pressure inside this machine is -750 to about 760
In order to lower the pressure to mmHg, as shown in FIG.
The technique of using is also known. However, in the conventional example of FIG. 4, the residual gas pressure in the machine can be lowered to about −760 mmHg, but the discharge pressure of the vacuum pump 9 is low, so that the non-condensable gas pressure in the upper space in the gas-liquid separator 4 is 0. .3 Kgf
/ Cm 2 g only up to about. In the non-condensable gas, a partial pressure of uncondensed refrigerant gas corresponding to the condensation temperature in the condenser 3 is mixed, and the refrigerant gas concentration is inversely proportional to the pressure in the gas-liquid separator 4, When the pressure is low, the partial pressure of the refrigerant gas is relatively high, and the uncondensed refrigerant gas concentration is high.
Therefore, the high-concentration uncondensed refrigerant gas is emitted along with the non-condensable gas released from the release valve 4b into the atmosphere. In order to solve the problems of the conventional example described with reference to FIGS. 3 and 4, a configuration in which the compressor 2 is connected in series on the downstream side of the vacuum pump 9 as shown in FIG. 5 is effective. This configuration is an invention relating to an unknown prior application that was created by the present inventors and is being separately applied by the present applicant (Japanese Patent Application No. 4-156912). According to the invention of the above-mentioned prior application, the residual refrigerant gas pressure in the refrigerator 1 is ideally lowered (about -760 mmHg),
Moreover, the pressure of the non-condensable gas in the gas-liquid separator 4 can be increased (for example, 5 Kgf / cm 2 g), so that the amount of the refrigerant remaining in the refrigerator and diffused into the atmosphere, and the discharge valve. Therefore, the total amount of the non-condensable gas and the amount of the refrigerant that is diffused along with the non-condensable gas can be reduced to a level that can be regarded as zero in practice.

【0004】以上に図3〜図5を参照して説明したの
は、冷凍機における冷媒の回収に関する先行技術であっ
て、その技術的なポイントは、冷凍機内に封入されてい
る冷媒を大気中に放散させることなく、冷媒ガス中に漏
入した非凝縮性ガスを大気中に放出することであった。
What has been described above with reference to FIGS. 3 to 5 is the prior art relating to the recovery of the refrigerant in the refrigerator, and the technical point is that the refrigerant enclosed in the refrigerator is in the atmosphere. The non-condensable gas leaked into the refrigerant gas was released into the atmosphere without being diffused into the atmosphere.

【0005】一方、冷凍機のメンティナンスに関して、
前述の回収と並んで重要な抽気という操作が有る。この
抽気について次に述べると、冷凍機に封入された冷媒
が、前述のごとく蒸発→圧縮→凝縮→減圧→(蒸発)の
冷凍サイクルわ繰り返す途中で、大気圧に比して負圧に
なる状態を経過する。このため、冷媒ガス中に非凝縮性
ガス(空気など)が混入する虞れが有る。冷媒ガス中に
非凝縮性ガスが混入すると、冷凍機の能力や効率を低下
させたり、冷凍機内の発錆を誘発したりするので、混入
した非凝縮性ガスを分離して大気中に放出する操作(抽
気)が必要となる。この抽気操作における技術的ポイン
トも、大気中に放出する非凝縮性ガスに随伴して大気中
に放散される冷媒ガスの含有率を如何にして減少させる
か、ということである。このように、抽気操作と回収操
作とは技術的に共通する部分が少なくない。図3に示し
た従来例の回収装置において、気液分離器4の底部に溜
まった冷媒液を冷媒タンク5に注入する代りに、該冷媒
液を冷凍機1の蒸発器1bに還流せしめるように配管を
改造すると図6のごとくになる。図6において、冷凍機
1内に漏入した非凝縮性ガスは冷媒ガスよりも軽いの
で、凝縮器1a内に集まり、冷媒ガスと混合して混合ガ
スとなる。この混合ガスを圧縮機2で吸入,圧送し、凝
縮器3で冷却して気液分離器4に導く。このとき、該気
液分離器4内に流入する流体は、主として冷媒ガスと非
凝縮性ガスと冷媒液との気液混合流であり、これに若干
の水蒸気および微細な水滴などが含まれている。この気
液混合流は気液分離器4で分離され、冷媒液はフロート
弁4aを経て冷凍機1の蒸発器1bに還流せしめられ
る。水分は排水弁vから排出され、非凝縮ガスおよび未
凝縮の冷媒ガスは放出弁4bから大気中に放出される。
On the other hand, regarding the maintenance of the refrigerator,
There is an important bleeding operation as well as the aforementioned recovery. Regarding this extraction air, the refrigerant enclosed in the refrigerator becomes a negative pressure compared to the atmospheric pressure while repeating the refrigeration cycle of evaporation → compression → condensation → decompression → (evaporation) as described above. To pass. Therefore, there is a possibility that non-condensable gas (such as air) may be mixed in the refrigerant gas. If non-condensable gas is mixed in the refrigerant gas, it will reduce the capacity and efficiency of the refrigerator, or induce rusting in the refrigerator, so the mixed non-condensable gas is separated and released into the atmosphere. Operation (bleeding) is required. The technical point in this bleeding operation is also how to reduce the content rate of the refrigerant gas released into the atmosphere with the non-condensable gas released into the atmosphere. As described above, there are many technically common parts between the extraction operation and the collection operation. In the conventional recovery device shown in FIG. 3, instead of injecting the refrigerant liquid accumulated at the bottom of the gas-liquid separator 4 into the refrigerant tank 5, the refrigerant liquid is returned to the evaporator 1b of the refrigerator 1. If the piping is modified, it will look like Figure 6. In FIG. 6, since the non-condensable gas leaking into the refrigerator 1 is lighter than the refrigerant gas, it collects in the condenser 1a and is mixed with the refrigerant gas to form a mixed gas. The mixed gas is sucked by the compressor 2 and sent under pressure, cooled by the condenser 3 and guided to the gas-liquid separator 4. At this time, the fluid flowing into the gas-liquid separator 4 is mainly a gas-liquid mixed flow of a refrigerant gas, a non-condensable gas, and a refrigerant liquid, which contains some water vapor and fine water droplets. There is. The gas-liquid mixed flow is separated by the gas-liquid separator 4, and the refrigerant liquid is returned to the evaporator 1b of the refrigerator 1 via the float valve 4a. The water is discharged from the drain valve v, and the non-condensed gas and the uncondensed refrigerant gas are discharged to the atmosphere from the discharge valve 4b.

【0006】図5に示した回収装置および図6に示した
抽気装置において、気液分離器4の上部空間に溜まった
非凝縮性ガスを放出弁4bから大気中に放出する場合、
若干の冷媒ガスが随伴して一緒に放出される。その随伴
冷媒ガスの含有率を低下せしめるには、該気液分離器4
内の混合ガス(非凝縮性ガスと冷媒ガスが主成分)を強
冷することが有効である。図7は、図5に示した回収装
置における気液分離器内の混合ガスを強冷するように改
良した1例であって、先願の発明(特願平4−1569
12号に提案された未公知の先行技術に係る回収装置の
系統図である。この構成を概要的に述べれば、図5の従
来例における気液分離器4に小形冷凍機22を併設した
ものである。本発明において小形冷凍機とは、冷媒回収
操作の対象である冷凍機1よりも小形,小容量の冷凍機
をいう。本例の気液分離器4′は、その内部に冷却管4
cを設けてある。一方、小形冷凍機22は圧縮機22
a,凝縮器22bおよび膨張弁22cを備えていて、冷
却流体22dを前記の冷却管4cに供給して循環させ
る。本例によれば気液分離器4′内で冷媒ガスが強冷さ
れてその蒸気圧が低くなるので、放出弁4bから放出さ
れる非凝縮性ガスに随伴する冷媒ガス濃度がいっそう低
くなる。上述のごとく冷媒ガスが強冷されるので、この
冷却温度が水の氷結点以下である場合は、上記冷媒ガス
に水蒸気が含まれていると気液分離器4′内に霜を生
じ、また氷結して弁類の作動を阻害する虞れ無しとしな
い。このため、仮想線で示したように気液分離器4′の
流入側にドライヤ23を設けて水蒸気を除去することが
望ましい。図7の従来例から容易に理解できるように、
気液分離器4′内の冷却管4c内を循環して冷媒ガスを
強冷する冷却流体は、小形冷凍機22の併設によらず、
他の冷却装置から供給される冷水,冷媒等の低温流体を
利用することも可能である。
In the recovery device shown in FIG. 5 and the extraction device shown in FIG. 6, when the non-condensable gas accumulated in the upper space of the gas-liquid separator 4 is released from the release valve 4b into the atmosphere,
Some refrigerant gas is entrained and emitted together. To reduce the content rate of the accompanying refrigerant gas, the gas-liquid separator 4 is used.
It is effective to strongly cool the mixed gas therein (mainly composed of non-condensable gas and refrigerant gas). FIG. 7 shows an example in which the mixed gas in the gas-liquid separator in the recovery apparatus shown in FIG. 5 is improved so as to be strongly cooled, and the invention of the prior application (Japanese Patent Application No. 4-1569).
FIG. 12 is a system diagram of a recovery device according to an unknown prior art proposed in No. 12; To briefly describe this configuration, the gas-liquid separator 4 in the conventional example of FIG. 5 is provided with a small refrigerator 22. In the present invention, the small refrigerator refers to a refrigerator having a smaller capacity and a smaller capacity than the refrigerator 1 which is the target of the refrigerant recovery operation. The gas-liquid separator 4'of this example has a cooling pipe 4 inside.
c is provided. On the other hand, the small refrigerator 22 is the compressor 22
a, a condenser 22b and an expansion valve 22c are provided, and a cooling fluid 22d is supplied to the cooling pipe 4c for circulation. According to this example, the refrigerant gas is strongly cooled in the gas-liquid separator 4'and its vapor pressure is lowered, so that the concentration of the refrigerant gas accompanying the non-condensable gas released from the release valve 4b is further lowered. Since the refrigerant gas is strongly cooled as described above, if the cooling temperature is lower than the freezing point of water, if the refrigerant gas contains water vapor, frost is generated in the gas-liquid separator 4 ', and There is a risk of freezing and obstructing the operation of valves. Therefore, it is desirable to remove the water vapor by providing the dryer 23 on the inflow side of the gas-liquid separator 4'as shown by the phantom line. As can be easily understood from the conventional example of FIG.
The cooling fluid that circulates in the cooling pipe 4c in the gas-liquid separator 4'and strongly cools the refrigerant gas is independent of the small refrigerator 22 installed.
It is also possible to use cold fluid such as cold water or a refrigerant supplied from another cooling device.

【0007】図8は、小形冷凍機22を併設して冷媒ガ
スを強冷するように構成された未公知の先願(特願平4
−181035号)に係る抽気装置の1例を示し、模式
的な系統図である。本図8に示した気液分離器4は冷却
ジャケット8を備えており、冷凍機1の凝縮器1aから
オリフィス21を介して低温の冷媒を供給されて該気液
分離器4内の混合ガス(冷媒ガス+非凝縮性ガス)が冷
却され、効率良く非凝縮性ガスと冷媒液との分離が行な
われる。しかし、この気液分離器4内に溜まったガスを
そのまま大気中に放出せしめることなく、電磁弁14,
15を操作して精溜器9に導入し、小形冷凍機22から
供給される低温流体を冷却管9aに循環流通させて強冷
する。精溜器9内に導入された混合ガスが強冷される
と、冷媒ガスの分圧が顕著に低下し、飽和を越えた冷媒
ガスは凝縮し、冷凍機1の蒸発器1bに還流せしめられ
る。上記精溜器9内の上部空間に溜まったガス(ほとん
ど純粋の非凝縮性ガス)の圧力は圧力センサ9bによっ
て検出し、所定値に達すると放出ユニット9cから大気
中に放出される。
[0007] FIG. 8 shows an unknown prior application (Japanese Patent Application No. Hei 4) in which a small refrigerator 22 is provided to cool the refrigerant gas strongly.
-181035) shows an example of an extraction device and is a schematic system diagram. The gas-liquid separator 4 shown in FIG. 8 is provided with a cooling jacket 8, and a low-temperature refrigerant is supplied from the condenser 1a of the refrigerator 1 via the orifice 21 to mix the mixed gas in the gas-liquid separator 4. The (refrigerant gas + non-condensable gas) is cooled, and the non-condensable gas and the refrigerant liquid are efficiently separated. However, without releasing the gas accumulated in the gas-liquid separator 4 into the atmosphere as it is, the electromagnetic valve 14,
15 is operated to be introduced into the rectifier 9, and the low temperature fluid supplied from the small refrigerator 22 is circulated and circulated through the cooling pipe 9a for strong cooling. When the mixed gas introduced into the rectifier 9 is strongly cooled, the partial pressure of the refrigerant gas is remarkably reduced, and the refrigerant gas that exceeds saturation is condensed and is returned to the evaporator 1b of the refrigerator 1. . The pressure of the gas (almost pure non-condensable gas) accumulated in the upper space of the rectifier 9 is detected by the pressure sensor 9b, and when it reaches a predetermined value, it is discharged from the discharge unit 9c to the atmosphere.

【0008】上記精溜器9内に導入される混合ガス中に
多量の水蒸気が含まれていると、冷却管9aに結霜して
熱伝導を妨げたりするので、ドライヤ23を設けて除湿
されるようになっている。
If the mixed gas introduced into the rectifier 9 contains a large amount of water vapor, the cooling pipe 9a is frosted and the heat conduction is hindered. It has become so.

【0009】[0009]

【発明が解決しようとする課題】図7に示した先願の発
明に係る回収装置における気液分離器4′と、図8に示
した精溜器9とは、いずれも小形冷凍機22によって強
冷される密閉室である。そして、これらの密閉室内の混
合ガス(冷媒ガス+非凝縮性ガス)が強冷されて冷媒ガ
ス分圧が減少し、随伴放出される冷媒ガス含有率が低下
するという効果も共通している。ところが、強冷し過ぎ
ると不具合を生じるという問題が有る。不具合の様相
は、回収装置と抽気装置とによって異なるので、順次に
説明する。
The gas-liquid separator 4'in the recovery apparatus according to the invention of the prior application shown in FIG. 7 and the rectifier 9 shown in FIG. It is a closed room that is strongly cooled. The mixed gas (refrigerant gas + non-condensable gas) in these closed chambers is strongly cooled, the partial pressure of the refrigerant gas is reduced, and the content ratio of the refrigerant gas released along with the refrigerant is also reduced. However, there is a problem that a problem will occur if it is cooled too hard. The aspect of the failure differs depending on the recovery device and the extraction device, and will be described in order.

【0010】図7において、回収装置を長期間停止させ
ておくと気液分離器4′内の圧力は放出弁4などからの
微小漏れにより0Kgf/cm2g(≒1Kgf/cm2abs)
に近い値となる。一方、冷媒タンク5内の圧力は、周囲
温度が高く例えば40℃の場合、約1.78Kgf/cm2
abs(冷媒の蒸気圧)となっている。このため、気液
分離器4′内の圧力が冷媒タンク5内の圧力よりも低
く、このような状態のときに回収操作を行なうと気液分
離器4′内の冷媒液が冷媒タンク5に流入しない場合が
起こり得る。こうした状態になると、気液分離器4′の
底部に冷媒液が溜まってゆき、回収作業は渋滞してしま
う。このようなとき、該気液分離器4′内の冷媒液レベ
ルが上昇して、装置を非常停止させる事態を招く。図8
に示した抽気装置は常に運転されるものではなく、定期
的に若しくは随時に、数時間運転される。そして、運転
再開時における精溜器9内の状態は、前回の抽気作業を
終了した時の情況によって異なる。いま、例えば運転再
開直後に−20℃に強冷されて0.16Kgf/cm2ab
s(−0.84Kgf/cm2g)になったとする。一方、
冷凍機1の蒸発器1b内の圧力は、0℃のとき0.41
Kgf/cm2absであり、10℃のとき0.62Kgf/c
m2absである。従って、精溜器9の底部に溜まった冷
媒液が冷凍機1の蒸発器1bに還流することができず、
該精溜器9内の冷媒液量が増加してゆき、抽気は有効に
行なわれない。このような場合も、精溜器9内の冷媒液
レベルが上昇して、装置の非常停止という事態に至る。
本発明は上述の事情に鑑みて為されたものであって、回
収装置および抽気装置における圧力バランスの狂いを無
くし、回収作業時の冷媒タンク内への注入不能および抽
気作業時の冷媒液の還流不能を防止する技術を提供する
ことを目的とする。
In FIG. 7, when the recovery device is stopped for a long period of time, the pressure in the gas-liquid separator 4'is 0 kgf / cm 2 g (≈1 kgf / cm 2 abs) due to minute leakage from the discharge valve 4 or the like.
It is a value close to. On the other hand, the pressure in the refrigerant tank 5 is about 1.78 Kgf / cm 2 when the ambient temperature is high, for example, 40 ° C.
It is abs (vapor pressure of the refrigerant). Therefore, the pressure in the gas-liquid separator 4'is lower than the pressure in the refrigerant tank 5, and if the recovery operation is performed in such a state, the refrigerant liquid in the gas-liquid separator 4'will enter the refrigerant tank 5. It may happen that there is no inflow. In such a state, the refrigerant liquid accumulates on the bottom of the gas-liquid separator 4 ', and the collection work becomes congested. In such a case, the refrigerant liquid level in the gas-liquid separator 4'increases, causing an emergency stop of the device. Figure 8
The bleeding device shown in (1) is not always operated, but is operated for several hours regularly or at any time. The state of the inside of the rectifier 9 when the operation is restarted depends on the situation at the time when the previous extraction work is completed. Now, for example, immediately after the operation is restarted, it is strongly cooled to −20 ° C. and 0.16 Kgf / cm 2 ab.
s (-0.84 Kgf / cm 2 g). on the other hand,
The pressure inside the evaporator 1b of the refrigerator 1 is 0.41 at 0 ° C.
Kgf / cm 2 abs, 0.62 Kgf / c at 10 ° C
m 2 abs. Therefore, the refrigerant liquid accumulated at the bottom of the rectifier 9 cannot flow back to the evaporator 1b of the refrigerator 1,
The amount of the refrigerant liquid in the rectifier 9 increases, and the bleeding is not performed effectively. Even in such a case, the refrigerant liquid level in the rectifier 9 rises, leading to an emergency stop of the device.
The present invention has been made in view of the above circumstances, eliminates the imbalance of the pressure balance in the recovery device and the bleeding device, cannot inject into the refrigerant tank during the recovery work, and recirculates the refrigerant liquid during the bleeding work. The purpose is to provide a technology for preventing the disability.

【0011】[0011]

【課題を解決するための手段】次に、本発明の基本的原
理を略述すると、小形冷凍機を備えた密閉容器(例えば
図7における気液分離器4′や図8における精溜器9)
が(密閉容器内に非凝縮性ガスが少ない状態で)過冷さ
れると、該密閉容器内の圧力が過度に低下して、その中
に溜まる冷媒液を送り出せなくなる。過冷を防止するこ
とは有効であるが、そもそも小形冷凍機を備えた先願に
係る発明の回収装置および抽気装置は、温度を下げる
(深冷する)ことによって冷媒ガスの随伴放出を少なく
することが主たる目的なのであるから、こうした事情に
鑑みて本発明は上記密閉容器内の温度を検出して温度制
御することをせず、圧力を検出して小形冷凍機の運転を
制御する。その理由は次のごとくである。 イ.冷媒液の注入不能もしくは還流不能を惹起する直接
的な原因は、前記密閉容器内の圧力が、注入し若しくは
還流せしむべき相手容器内の圧力に比して相対的に低す
ぎることである。 ロ.仮りに、前記密閉容器内の気体が単一種類であり、
もしくは理想気体であるならば、温度を検知すれば圧力
を算出することができる。しかし、該密閉容器内の気体
は冷媒ガスと非凝縮性ガスとの混合ガスであり、しかも
混合比が不定であるから、温度と圧力とが一義的に対応
しない。以上が本発明の基本であるが、本発明を実施す
る場合、さらに安全装置として前記密閉容器内の冷媒液
面レベルを検出して、規定値よりもレベルが上昇すると
小形冷凍機を停止することが望ましい。その理由は、前
記密閉容器内の冷媒液面が異常上昇するということは、
冷媒液の注入不能もしくは冷媒液の還流不能が発生して
くることを意味しているからである。
Next, the basic principle of the present invention will be briefly described. A closed container equipped with a small refrigerator (for example, a gas-liquid separator 4'in FIG. 7 or a rectifier 9 in FIG. 8). )
Is supercooled (with a small amount of non-condensable gas in the airtight container), the pressure in the airtight container is excessively lowered, and the refrigerant liquid accumulated therein cannot be delivered. It is effective to prevent overcooling, but in the first place, the recovery device and the bleeding device of the invention of the prior application, which are equipped with a small refrigerator, reduce the temperature (deep cooling) to reduce the accompanying release of the refrigerant gas. In view of such circumstances, the present invention does not detect the temperature in the closed container to control the temperature, but detects the pressure to control the operation of the small refrigerator. The reason is as follows. I. The direct cause of the inability to inject or reflux the refrigerant liquid is that the pressure in the closed container is relatively low as compared with the pressure in the mating container to be infused or refluxed. B. If the gas in the closed container is of a single type,
Alternatively, if it is an ideal gas, the pressure can be calculated by detecting the temperature. However, since the gas in the closed container is a mixed gas of a refrigerant gas and a non-condensable gas, and the mixing ratio is indefinite, the temperature and the pressure do not uniquely correspond to each other. The above is the basics of the present invention, but in the case of implementing the present invention, further detecting the liquid level of the refrigerant in the closed container as a safety device, and stopping the small refrigerator when the level rises above a specified value. Is desirable. The reason is that the liquid level of the refrigerant in the closed container rises abnormally,
This is because it means that the refrigerant liquid cannot be injected or the refrigerant liquid cannot be recirculated.

【0012】上述の原理に基づいて冷媒液の戻り不能を
防止するため本発明の回収装置における圧力制御方法
は、冷凍機内に漏入した非凝縮性ガスと冷媒ガスとの混
合ガスを、冷却管を備えた密閉容器内に導き、上記冷凍
機と別体の小形冷凍機から供給されて上記冷却管を流通
する低温流体によって強冷し、前記冷媒ガスが凝縮した
冷媒液を冷媒タンクに導いて回収する装置において、前
記の冷却管を備えた密閉容器内の圧力が所定圧力以下と
ならないように、前記別体の小形冷凍機の作動を制御す
ることを特徴とする。また、上記発明方法を実施するた
めに創作した本発明の圧力制御機構の構成は、冷凍機内
に漏入した非凝縮性ガスと冷媒ガスとの混合ガスを、冷
却管を備えた密閉容器内に導き、上記冷凍機と別体の小
形冷凍機から供給されて上記冷却管を流通する低温流体
によって強冷し、前記冷媒ガスが凝縮した冷媒液を冷媒
タンクに導いて回収する冷媒の回収装置において、前記
密閉容器内の圧力が所定圧力以下とならないように前記
別体の小形冷凍機の作動を制御する手段が設けられてい
ることを特徴とする。
In order to prevent the refrigerant liquid from being unable to return on the basis of the above-mentioned principle, the pressure control method in the recovery device of the present invention is such that the mixed gas of the non-condensable gas and the refrigerant gas leaking into the refrigerator is cooled by the cooling pipe. Introduced into a closed container equipped with, refrigerated by a low-temperature fluid that flows through the cooling pipe supplied from a small refrigerator separate from the refrigerator, and introduces a refrigerant liquid in which the refrigerant gas is condensed into a refrigerant tank. In the device for collecting, the operation of the separate small refrigerator is controlled so that the pressure in the closed container equipped with the cooling pipe does not fall below a predetermined pressure. Further, the configuration of the pressure control mechanism of the present invention created to carry out the method of the invention, the mixed gas of the non-condensable gas and the refrigerant gas leaked into the refrigerator, in a closed container equipped with a cooling pipe. In a refrigerant recovery device for guiding and recovering a refrigerant liquid condensed by the refrigerant gas, which is strongly cooled by a low-temperature fluid that flows through the cooling pipe and is supplied from a small refrigerator separate from the refrigerator. A means for controlling the operation of the separate small refrigerator is provided so that the pressure in the closed container does not fall below a predetermined pressure.

【0013】さらに、前述の原理に基づいて冷媒液の還
流不能を防止するため本発明に係る抽気装置の圧力制御
方法は、冷凍機内に漏入した非凝縮性ガスと冷媒ガスと
の混合ガスを、冷却管を備えた密閉容器内に導き、上記
冷凍機と別体の小形冷凍機から供給されて上記冷却管を
流通する低温流体によって強冷し、前記冷媒ガスが凝縮
した冷媒液を冷凍機の蒸発器に還流せしめる抽気装置に
おいて、前記の冷却管を備えた密閉容器内の圧力が所定
圧力以下とならないように、前記別体の小形冷凍機の作
動を制御することを特徴とする。また、上記発明方法を
実施するための本発明の圧力制御機構の構成は、冷凍機
内に漏入した非凝縮性ガスと冷媒ガスとの混合ガスを、
冷却管を備えた密閉容器内に導き、上記冷凍機と別体の
小形冷凍機から供給されて上記冷却管を流通する低温流
体によって強冷し、前記冷媒ガスが凝縮した冷媒液を冷
凍機の蒸発器に還流せしめる抽気装置において、前記密
閉容器内の圧力が所定圧力以下とならないように前記別
体の小形冷凍機の作動を制御する機構が設けられている
ことを特徴とする。
Further, based on the above-mentioned principle, in order to prevent the refrigerant liquid from being unable to recirculate, the pressure control method of the extraction device according to the present invention is designed to remove the mixed gas of the non-condensable gas and the refrigerant gas leaking into the refrigerator. , Guided into an airtight container provided with a cooling pipe, strongly cooled by a low temperature fluid supplied from a small refrigerator separate from the refrigerator and flowing through the cooling pipe, and a refrigerant liquid in which the refrigerant gas is condensed is a refrigerator. In the bleeding device that recirculates to the evaporator, the operation of the separate small refrigerator is controlled so that the pressure in the closed container equipped with the cooling pipe does not fall below a predetermined pressure. Further, the configuration of the pressure control mechanism of the present invention for carrying out the method of the invention, the mixed gas of the non-condensable gas and the refrigerant gas leaked into the refrigerator,
Guided in a closed container equipped with a cooling pipe, is strongly cooled by a low-temperature fluid that flows through the cooling pipe supplied from a small refrigerator separate from the refrigerator, and the refrigerant gas condensed refrigerant liquid of the refrigerator The bleeding device that recirculates to the evaporator is characterized by being provided with a mechanism for controlling the operation of the separate small refrigerator so that the pressure in the closed container does not fall below a predetermined pressure.

【0014】[0014]

【作用】前記の構成によると、小形冷凍機によって強冷
される密閉容器内の圧力が検出され、該密閉容器内の温
度いかんに拘らず、検出圧力値が所定圧力以下であると
上記小形冷凍機の作動を停止させる。このため、該密閉
容器内の混合ガス(冷媒ガス+非凝縮性ガス)の圧力が
低いときは強冷されず、戻り不能の状態が未然に防止さ
れる。こうした機能は、回収装置や抽気装置が作動を開
始する場合には、前記密閉容器内の圧力が所定値に達す
るまでの間、小形冷凍機の運転開始を遅らせるという形
に作用し、冷媒液の戻り(回収装置においては冷媒タン
ク内への流入、抽気装置においては蒸発器への還流)が
不能にならないよう、未然防止の効果を奏する。さら
に、前記密閉容器内の冷媒液面を検出するレベルセンサ
を設けておくと、万一、何らかの事情によって本発明に
係る装置が正常に機能せずに冷媒液の戻り不能ないし戻
り不充分となって、密閉容器内の液面レベルが上昇した
とき、その異常を検知して小形冷凍機の作動を停止させ
るといった安全装置としての機能を果たさせることがで
きる。
According to the above construction, the pressure in the closed container that is strongly cooled by the small refrigerator is detected, and regardless of the temperature in the closed container, if the detected pressure value is equal to or lower than the predetermined pressure, the small refrigerator is Stop the machine operation. For this reason, when the pressure of the mixed gas (refrigerant gas + non-condensable gas) in the closed container is low, it is not cooled strongly, and the non-returnable state is prevented. Such a function, when the recovery device or the bleeding device starts to operate, acts to delay the start of operation of the small refrigerator until the pressure in the closed container reaches a predetermined value. This has an effect of preventing the return (inflow into the refrigerant tank in the recovery device and return to the evaporator in the extraction device) from being disabled. Furthermore, if a level sensor for detecting the liquid level of the refrigerant in the closed container is provided, the device according to the present invention will not function normally due to some circumstances and the refrigerant liquid cannot be returned or is insufficiently returned. As a result, when the liquid level in the closed container rises, the abnormality can be detected and the operation of the small refrigerator can be stopped to function as a safety device.

【0015】[0015]

【実施例】図1は本発明に係る回収装置の圧力制御機構
を示す系統図であって、図7に示した未公知の先願発明
に係る回収装置に本発明を適用して改良した実施例の要
部を描いてある。次に、図7の構成に比して異なる点、
すなわち本発明を適用して改良した事項について説明す
る。小形冷凍機22を備え、混合ガス(冷媒ガス+非凝
縮性ガス)を導入される密閉容器である気液分離器4の
内部圧力を検出する圧力センサP、および該密閉容器内
に溜まっている冷媒液の液面レベルを検出するレベルセ
ンサLを設けるとともに、上記双方のセンサの検出信号
出力は、それぞれ電磁スイッチ制御器43に入力され
る。一方、前記小形冷凍機22と、該小形冷凍機用電源
41とを接続している電源回路中に電磁スイッチ42が
介装接続されている。上記小形冷凍機22の圧縮機22
a、および、凝縮器22b用のファンモータは、上記の
電源41から供給される電力によって駆動され、電源を
断たれると作動を停止する。前記圧力センサが所定の値
1以上を検出したとき、その出力信号を入力された電
磁スイッチ制御器43は電磁スイッチ42をONさせ
る。また、上記と異なる所定の値P2以下を検出したと
き、上記電磁スイッチ42をOFFさせて小形冷凍機2
2の冷却機能を停止させる。上記の値P1,P2について
は、任意に設定することができるが、本発明者の研究結
果によれば、所定圧力P1を2〜5Kgf/cm2gとするこ
とが望ましい。この数値範囲の幅は、回収装置の特性お
よび環境温度や冷媒の種類の変動を考慮したものである
が、本邦における気候条件や使用されている冷媒物質の
性状の範囲内において条件が変化しても、この圧力範囲
よりも低い圧力で小形冷凍機を作動させると冷媒の戻り
不良を発生する虞れが有り、また、この圧力範囲よりも
高い圧力では冷媒の戻り不良を発生しないので小形冷凍
機の作動を停止させることは無益,かつ有害である。ま
た、前記の所定圧力P2は、圧力センサの作動特性など
を勘案して適宜に設定し得るが、本発明者の研究結果に
よれば、該所定圧力P2を前記所定圧力P1に比して0.
3〜1.5Kgf/cm2gだけ低く設定すると良好な作
用,効果が得られる。また、前記のレベルセンサLは、
密閉容器内の冷媒液面が上昇すると、電磁スイッチ制御
器43に対して液面高の信号を出力する。この信号を入
力されると該電磁スイッチ制御器43は電磁スイッチを
OFFさせる。前記の圧力センサPの出力信号によって
小形冷凍機22の運転を制御しているにも拘らず液面高
の信号が出力された場合は、何れかの機器に異常が発生
しているものと推定されるので、その原因を探求し、原
因を解消した後に運転を再開する。上述の実施例におい
ては、圧力センサPおよびレベルセンサLにより、電磁
スイッチ制御器43を介して電源回路を開閉する構造で
あるが、前述の構造機能から容易に理解し得るごとく、
圧力センサに代えて圧力スイッチを用い、レベルセンサ
に代えてレベルスイッチを用いて、直接的に小形冷凍機
の電源回路を開閉制御することもでき、本発明の技術的
範囲に属するものである。また、本実施例におけるがご
とく、小形冷凍機の電源回路を開閉することに限らず、
該小形冷凍機のサーモスタットを介して冷凍機能を制御
することも可能であり、本発明の技術的範囲に属するも
のである。図1について以上に説明した構成に成る圧力
制御機構においては、密閉容器である気液分離器4内の
圧力が所定値P2以下であると小形冷凍機22の作動が
停止せしめられるので、該密閉容器内が過冷されて冷媒
液の戻り不良を生じる虞れが無い。
FIG. 1 is a system diagram showing a pressure control mechanism of a recovery device according to the present invention, in which the present invention is applied to the recovery device according to the previously unknown invention shown in FIG. The main part of the example is drawn. Next, different points from the configuration of FIG.
That is, matters improved by applying the present invention will be described. A pressure sensor P for detecting the internal pressure of the gas-liquid separator 4 which is a closed container into which the mixed gas (refrigerant gas + non-condensable gas) is provided, which includes the small refrigerator 22, and is accumulated in the closed container. A level sensor L for detecting the liquid level of the refrigerant liquid is provided, and the detection signal outputs of both sensors are input to the electromagnetic switch controller 43. On the other hand, an electromagnetic switch 42 is interposed and connected in a power supply circuit connecting the small refrigerator 22 and the small refrigerator power source 41. Compressor 22 of the small refrigerator 22
The fan motors for a and the condenser 22b are driven by the electric power supplied from the power supply 41, and stop operating when the power is cut off. When the pressure sensor detects a predetermined value P 1 or more, the electromagnetic switch controller 43 to which the output signal is input turns on the electromagnetic switch 42. When a predetermined value P 2 or less different from the above is detected, the electromagnetic switch 42 is turned off to turn the small refrigerator 2
2. Stop the cooling function of 2. The above values P 1 and P 2 can be set arbitrarily, but according to the research results of the present inventor, it is desirable that the predetermined pressure P 1 be 2 to 5 kgf / cm 2 g. The width of this numerical range takes into consideration the characteristics of the recovery device, the environmental temperature, and changes in the type of refrigerant, but conditions may change within the range of climatic conditions and properties of the refrigerant substance used in Japan. Also, if the small refrigerator is operated at a pressure lower than this pressure range, there is a risk that defective refrigerant return may occur, and if the pressure is higher than this pressure range, refrigerant return failure does not occur, so the small refrigerator Stopping the operation of is useless and harmful. Further, the predetermined pressure P 2 can be appropriately set in consideration of the operating characteristics of the pressure sensor, etc., but according to the research results of the present inventor, the predetermined pressure P 2 is compared with the predetermined pressure P 1 . Then 0.
If it is set low by 3 to 1.5 Kgf / cm 2 g, good action and effect can be obtained. Further, the level sensor L is
When the liquid level of the refrigerant in the closed container rises, a liquid level signal is output to the electromagnetic switch controller 43. When this signal is input, the electromagnetic switch controller 43 turns off the electromagnetic switch. If the liquid level signal is output even though the operation of the small refrigerator 22 is controlled by the output signal of the pressure sensor P, it is estimated that an abnormality has occurred in one of the devices. Therefore, the cause is sought, and after the cause is eliminated, the operation is restarted. In the above-described embodiment, the pressure sensor P and the level sensor L open and close the power supply circuit via the electromagnetic switch controller 43. However, as can be easily understood from the above-mentioned structural function,
A pressure switch may be used instead of the pressure sensor, and a level switch may be used instead of the level sensor to directly control the opening and closing of the power supply circuit of the small refrigerator, which is within the technical scope of the present invention. Further, as in the present embodiment, not only opening and closing the power circuit of the small refrigerator,
It is also possible to control the refrigerating function via the thermostat of the small refrigerator, which belongs to the technical scope of the present invention. In the pressure control mechanism having the configuration described above with reference to FIG. 1, the operation of the small refrigerator 22 is stopped when the pressure in the gas-liquid separator 4, which is a closed container, is equal to or lower than the predetermined value P 2. There is no possibility that the inside of the hermetically sealed container will be overcooled and the refrigerant liquid will not return properly.

【0016】次に、本発明に係る抽気装置の圧力制御機
構の実施例について説明する。図2は本発明に係る抽気
装置の圧力制御機構を示す系統図であって、図8に示し
た未公知の先願発明に係る抽気装置に本発明を適用して
改良した実施例の要部を描いてある。次に、図8の構成
に比して異なる点、すなわち本発明を適用して改良した
事項について説明する。小形冷凍機22を備え、混合ガ
ス(冷媒ガス+非凝縮性ガス)を導入される密閉容器で
ある精溜器9の内部圧力を検出する圧力センサP、およ
び該密閉容器内に溜まっている冷媒液の液面レベルを検
出するレベルセンサLを設けるとともに、上記双方のセ
ンサの検出信号出力は、それぞれ電磁スイッチ制御器4
3に入力される。一方、前記小形冷凍機22と、該小形
冷凍機用電源41とを接続している電源回路中に電磁ス
イッチ42が介装接続されている。上記小形冷凍機22
の圧縮機22a、および、凝縮器22b用のファンモー
タは、上記の電源41から供給される電力によって駆動
され、電源を断たれると作動を停止する。前記圧力セン
サが所定の値P1以上を検出したとき、その出力信号を
入力された電磁スイッチ制御器43は電磁スイッチ42
をONさせる。また、上記と異なる所定の値P2以下を
検出したとき、上記電磁スイッチ42をOFFさせて小
形冷凍機22の冷却機能を停止させる。上記の値P1
2については、任意に設定することができるが、本発
明者の研究結果によれば、所定圧力P1を−0.2〜+
2.0Kgf/cm2gとすることが望ましい。この数値範
囲の幅は、抽気装置の特性および環境温度や冷媒の種類
の変動を考慮したものであるが、本邦における気候条件
や使用されている冷媒物質の性状の範囲内において条件
が変化しても、この圧力範囲よりも低い圧力で小形冷凍
機を作動させると冷媒の戻り不良を発生する虞れが有
り、また、この圧力範囲よりも高い圧力では冷媒の戻り
不良を発生しないので小形冷凍機の作動を停止させるこ
とは無益,かつ有害である。また、前記の所定圧力P2
は、圧力センサの作動特性などを勘案して適宜に設定し
得るが、本発明者の研究結果によれば、該所定圧力P2
を前記所定圧力P1に比して0.1〜1.5Kgf/cm2
だけ低く設定すると良好な作用,効果が得られる。ま
た、前記のレベルセンサLは、密閉容器内の冷媒液面が
上昇すると、電磁スイッチ制御器43に対して液面高の
信号を出力する。この信号を入力されると該電磁スイッ
チ制御器43は電磁スイッチをOFFさせる。前記の圧
力センサPの出力信号によって小形冷凍機22の運転を
制御しているにも拘らず液面高の信号が出力された場合
は、何れかの機器に異常が発生しているものと推定され
るので、その原因を探求し、原因を解消した後に運転を
再開する。上述の実施例においては、圧力センサPおよ
びレベルセンサLにより、電磁スイッチ制御器43を介
して電源回路を開閉する構造であるが、前述の構造機能
から容易に理解し得るごとく、圧力センサに代えて圧力
スイッチを用い、レベルセンサに代えてレベルスイッチ
を用いて、直接的に小形冷凍機の電源回路を開閉制御す
ることもでき、本発明の技術的範囲に属するものであ
る。また、本実施例におけるがごとく、小形冷凍機の電
源回路を開閉することに限らず、該小形冷凍機のサーモ
スタットを介して冷凍機能を制御することも可能であ
り、本発明の技術的範囲に属するものである。図2につ
いて以上に説明した構成に成る圧力制御機構において
は、密閉容器である精溜器9内の圧力が所定値P2以下
であると小形冷凍機22の作動が停止せしめられるの
で、該密閉容器内が過冷されて冷媒液の戻り不良を生じ
る虞れが無い。
Next, an embodiment of the pressure control mechanism of the extraction apparatus according to the present invention will be described. FIG. 2 is a system diagram showing a pressure control mechanism of the bleeding device according to the present invention, which is a main part of an embodiment improved by applying the present invention to the bleeding device according to the previously unknown invention shown in FIG. Is drawn. Next, points different from the configuration of FIG. 8, that is, matters improved by applying the present invention will be described. A pressure sensor P provided with a small refrigerator 22 for detecting the internal pressure of a rectifier 9 which is a closed container into which a mixed gas (refrigerant gas + non-condensable gas) is introduced, and a refrigerant accumulated in the closed container. A level sensor L for detecting the liquid level of the liquid is provided, and the detection signal outputs of both of the above sensors are respectively provided by the electromagnetic switch controller 4
Input to 3. On the other hand, an electromagnetic switch 42 is interposed and connected in a power supply circuit connecting the small refrigerator 22 and the small refrigerator power source 41. The small refrigerator 22
The fan motors for the compressor 22a and the condenser 22b are driven by the electric power supplied from the power supply 41, and stop operating when the power is cut off. When the pressure sensor detects a predetermined value P 1 or more, the electromagnetic switch controller 43 to which the output signal is input is controlled by the electromagnetic switch 42.
Turn on. When a predetermined value P 2 different from the above is detected, the electromagnetic switch 42 is turned off to stop the cooling function of the small refrigerator 22. The above value P 1 ,
The P 2, can be set arbitrarily, according to the research results of the inventors, -0.2 predetermined pressure P 1 +
It is desirable to set it to 2.0 kgf / cm 2 g. The width of this numerical range takes into consideration the characteristics of the extraction device, the environmental temperature and the variation of the type of refrigerant, but the conditions may change within the range of the climatic conditions and the properties of the refrigerant substance used in Japan. Also, if the small refrigerator is operated at a pressure lower than this pressure range, there is a risk that defective refrigerant return may occur, and if the pressure is higher than this pressure range, refrigerant return failure does not occur, so the small refrigerator Stopping the operation of is useless and harmful. In addition, the predetermined pressure P 2
Can be appropriately set in consideration of the operating characteristics of the pressure sensor and the like, but according to the research results of the present inventor, the predetermined pressure P 2
Relative to the predetermined pressure P 1 is 0.1 to 1.5 kgf / cm 2 g
Setting the value as low as possible gives good action and effect. The level sensor L outputs a liquid level signal to the electromagnetic switch controller 43 when the liquid level of the refrigerant in the closed container rises. When this signal is input, the electromagnetic switch controller 43 turns off the electromagnetic switch. If the liquid level signal is output even though the operation of the small refrigerator 22 is controlled by the output signal of the pressure sensor P, it is estimated that an abnormality has occurred in one of the devices. Therefore, the cause is sought, and after the cause is eliminated, the operation is restarted. In the above-mentioned embodiment, the pressure sensor P and the level sensor L open and close the power supply circuit via the electromagnetic switch controller 43. It is also possible to directly control the opening and closing of the power supply circuit of the small refrigerator by using a pressure switch and a level switch instead of the level sensor, which is within the technical scope of the present invention. Further, as in the present embodiment, it is not limited to opening and closing the power circuit of the small refrigerator, it is also possible to control the refrigeration function via the thermostat of the small refrigerator, within the technical scope of the present invention. Belong to. In the pressure control mechanism having the configuration described above with reference to FIG. 2, the operation of the small refrigerator 22 is stopped when the pressure in the rectifier 9, which is a closed container, is equal to or lower than the predetermined value P 2 , so that the closed There is no possibility that the inside of the container will be overcooled and a defective return of the refrigerant liquid will occur.

【0017】[0017]

【発明の効果】本発明を適用すると、小形冷凍機によっ
て強冷される密閉容器内の圧力が検出され、該密閉容器
内の温度いかんに拘らず、検出圧力値が所定圧力以下で
あると上記小形冷凍機の作動を停止させる。このため、
該密閉容器内の混合ガス(冷媒ガス+非凝縮性ガス)の
圧力が低いときは強冷されず、戻り不能の状態が未然に
防止される。こうした機能は、回収装置や抽気装置が作
動を開始する場合には、前記密閉容器内の圧力が所定値
に達するまでの間、小形冷凍機の運転開始を遅らせると
いう形に作用し、冷媒液の戻り(回収装置においては冷
媒タンク内への流入、抽気装置においては蒸発器への還
流)が不能にならないよう、未然防止の効果を奏する。
さらに、前記密閉容器内の冷媒液面を検出するレベルセ
ンサを設けておくと、万一、何らかの事情によって本発
明に係る装置が正常に機能せずに冷媒液の戻り不能ない
し戻り不充分となって、密閉容器内の液面レベルが上昇
したとき、その異常を検知して小形冷凍機の作動を停止
させるといった安全装置としての機能を果たさせること
ができるという優れた実用的効果を奏し、公害防止に貢
献するところ多大である。
When the present invention is applied, the pressure in the closed container which is strongly cooled by the small refrigerator is detected, and the detected pressure value is below the predetermined pressure regardless of the temperature in the closed container. Stop the operation of the small refrigerator. For this reason,
When the pressure of the mixed gas (refrigerant gas + non-condensable gas) in the closed container is low, strong cooling is not performed, and the state of being unable to return is prevented. Such a function, when the recovery device or the bleeding device starts to operate, acts to delay the start of operation of the small refrigerator until the pressure in the closed container reaches a predetermined value. This has an effect of preventing the return (inflow into the refrigerant tank in the recovery device and return to the evaporator in the extraction device) from being disabled.
Furthermore, if a level sensor for detecting the liquid level of the refrigerant in the closed container is provided, the device according to the present invention will not function normally due to some circumstances and the refrigerant liquid cannot be returned or is insufficiently returned. Then, when the liquid level in the closed container rises, it has an excellent practical effect that it can function as a safety device such as detecting the abnormality and stopping the operation of the small refrigerator. There is a great deal of contribution to pollution prevention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る回収装置の圧力制御機構を示す系
統図であって、図7に示した未公知の先願発明に係る回
収装置に本発明を適用して改良した実施例の要部を描い
てある。
FIG. 1 is a system diagram showing a pressure control mechanism of a recovery device according to the present invention, which is a main part of an embodiment improved by applying the present invention to the recovery device according to the previously unknown invention shown in FIG. The section is drawn.

【図2】本発明に係る抽気装置の圧力制御機構を示す系
統図であって、図8に示した未公知の先願発明に係る抽
気装置に本発明を適用して改良した実施例の要部を描い
てある。
FIG. 2 is a system diagram showing a pressure control mechanism of the bleeding device according to the present invention, showing the essential points of an embodiment improved by applying the present invention to the bleeding device according to the previously unknown invention shown in FIG. The section is drawn.

【図3】従来例の冷媒ガスの回収装置を示す系統図であ
る。
FIG. 3 is a system diagram showing a conventional refrigerant gas recovery device.

【図4】上記と異なる従来例の冷媒ガスの回収装置を示
す系統図である。
FIG. 4 is a system diagram showing a conventional refrigerant gas recovery device different from the above.

【図5】先願の発明(実願平4−156912号)に係
る冷媒の回収装置を示す系統図である。
FIG. 5 is a system diagram showing a refrigerant recovery device according to the invention of the prior application (Japanese Patent Application No. 4-156912).

【図6】抽気装置の従来例を示す系統図である。FIG. 6 is a system diagram showing a conventional example of an extraction device.

【図7】図5に示した回収装置における気液分離器内の
混合ガスを強冷するように改良した1例であって、先願
の発明(特願平4−156912号に提案された未公知
の先行技術に係る回収装置の系統図である。
7 is an example in which the mixed gas in the gas-liquid separator in the recovery apparatus shown in FIG. 5 is improved to be strongly cooled, and is proposed in the invention of the prior application (Japanese Patent Application No. 4-156912). FIG. 3 is a system diagram of a collection device according to an unknown prior art.

【図8】小形冷凍機22を併設して冷媒ガスを強冷する
ように構成された未公知の先願(特願平4−18103
5号)に係る抽気装置の1例を示し、模式的な系統図で
ある。
FIG. 8 is an unknown prior application (Japanese Patent Application No. 4-18103) that is provided with a small refrigerator 22 to strongly cool the refrigerant gas.
5 is a schematic system diagram showing an example of an extraction device according to No. 5).

【符号の説明】 1…冷凍機、1a…凝縮器、1b…蒸発器、1c…圧縮
機、2…圧縮機、3…凝縮器、4,4′…気液分離器、
4a…フロート弁、4b…放出弁、4c…冷却管、5…
冷媒タンク、9…精溜器、9a…冷却管、9b…圧力セ
ンサ、9c…放出ユニット、15…電磁弁、19…真空
ポンプ、21…オリフィス、22…小形冷凍機、22a
…圧縮機、22b…凝縮器、22c…膨張弁、23…ド
ライヤ、41…小形冷凍機用電源、42…電磁スイッ
チ、43…電磁スイッチ制御器、L…レベルセンサ、P
…圧力センサ。
[Explanation of Codes] 1 ... Refrigerator, 1a ... Condenser, 1b ... Evaporator, 1c ... Compressor, 2 ... Compressor, 3 ... Condenser, 4, 4 '... Gas-liquid separator,
4a ... float valve, 4b ... discharge valve, 4c ... cooling pipe, 5 ...
Refrigerant tank, 9 ... rectifier, 9a ... Cooling pipe, 9b ... Pressure sensor, 9c ... Discharge unit, 15 ... Solenoid valve, 19 ... Vacuum pump, 21 ... Orifice, 22 ... Small refrigerator, 22a
... Compressor, 22b ... Condenser, 22c ... Expansion valve, 23 ... Dryer, 41 ... Small refrigerating power source, 42 ... Electromagnetic switch, 43 ... Electromagnetic switch controller, L ... Level sensor, P
… Pressure sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮武 輝佳 東京都港区高輪2−20−36 日立ビル施設 エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Teruyoshi Miyatake 2-20-36 Takanawa, Minato-ku, Tokyo Hitachi Building Facility Engineering Co., Ltd.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 冷凍機内に漏入した非凝縮性ガスと冷媒
ガスとの混合ガスを、冷却管を備えた密閉容器内に導
き、上記冷凍機と別体の小形冷凍機から供給されて上記
冷却管を流通する低温流体によって強冷し、前記冷媒ガ
スが凝縮した冷媒液を冷媒タンクに導いて回収する装置
において、前記の冷却管を備えた密閉容器内の圧力が所
定圧力以下とならないように、前記別体の小形冷凍機の
作動を制御することを特徴とする、回収装置における圧
力制御方法。
1. A mixed gas of a non-condensable gas and a refrigerant gas, which has leaked into the refrigerator, is introduced into a closed container having a cooling pipe, and is supplied from a small refrigerator separate from the refrigerator, In a device that strongly cools with a low temperature fluid flowing through a cooling pipe, and guides and collects a refrigerant liquid in which the refrigerant gas is condensed to a refrigerant tank, so that the pressure in the closed container equipped with the cooling pipe does not fall below a predetermined pressure. In addition, the pressure control method in the recovery device, characterized in that the operation of the separate small refrigerator is controlled.
【請求項2】 前記別体の小形冷凍機の作動制御は、前
記密閉器内の圧力を検出し、所定圧力P1以上となった
とき該小形冷凍機を作動させ、上記と異なる所定圧力P
2以下となったとき該小形冷凍機を停止せしめて行なう
ことを特徴とする、請求項1に記載した回収装置におけ
る圧力制御方法。
2. The operation control of the separate small refrigerator is performed by detecting the pressure in the enclosure and operating the small refrigerator when the pressure reaches a predetermined pressure P 1 or more, and a predetermined pressure P different from the above.
The pressure control method in the recovery device according to claim 1, wherein the small refrigerator is stopped when it becomes 2 or less.
【請求項3】 前記の所定圧力P1は2〜5Kgf/cm2
であり、かつ前記の所定圧力P2は上記所定圧力P1に比
して0.3〜1.5Kgf/cm2だけ低い値であることを
特徴とする、請求項2に記載した回収装置における圧力
制御方法。
3. The predetermined pressure P 1 is 2 to 5 kgf / cm 2 g
And the predetermined pressure P 2 is a value lower than the predetermined pressure P 1 by 0.3 to 1.5 Kgf / cm 2 in the recovery device according to claim 2. Pressure control method.
【請求項4】 前記密閉器内の冷媒液の液面レベルを監
視し、該液面レベルが所定値以上になったとき、前記別
体の小形冷凍機の作動を停止させることを特徴とする、
請求項1ないし請求項3の何れかに記載した回収装置に
おける圧力制御方法。
4. The liquid level of the refrigerant liquid in the hermetically sealed container is monitored, and when the liquid level reaches or exceeds a predetermined value, the operation of the separate small refrigerator is stopped. ,
A pressure control method in the recovery device according to claim 1.
【請求項5】 液面レベルが所定値以上となって小形冷
凍機の作動を停止した後、液面レベルが所定値よりも低
くなるまでの間、密閉器内の圧力いかんに拘らず小形冷
凍機の作動を停止せしめたままで回収操作を継続し、 液面レベルが所定値よりも低くなり、かつ、該密閉器内
の圧力が所定圧力P1以上となったとき、回収操作を続
行しつつ小形冷凍機の作動を再開することを特徴とす
る、請求項4に記載した回収装置における圧力制御方
法。
5. A small refrigeration system, regardless of the pressure in the airtight container, until the liquid level falls below a predetermined value after the liquid level reaches or exceeds a predetermined value and the operation of the small refrigerator is stopped. When the recovery operation is continued with the operation of the machine stopped, the liquid level becomes lower than the predetermined value, and the pressure inside the enclosure becomes the predetermined pressure P 1 or more, the recovery operation is continued. The pressure control method in the recovery device according to claim 4, wherein the operation of the small refrigerator is restarted.
【請求項6】 冷凍機内に漏入した非凝縮性ガスと冷媒
ガスとの混合ガスを、冷却管を備えた密閉容器内に導
き、上記冷凍機と別体の小形冷凍機から供給されて上記
冷却管を流通する低温流体によって強冷し、前記冷媒ガ
スが凝縮した冷媒液を冷媒タンクに導いて回収する冷媒
の回収装置において、前記密閉器内の圧力が所定圧力以
下とならないように前記別体の小形冷凍機の作動を制御
する手段が設けられていることを特徴とする、回収装置
における圧力制御機構。
6. A mixed gas of a non-condensable gas and a refrigerant gas, which has leaked into the refrigerator, is introduced into a closed container having a cooling pipe, and is supplied from a small refrigerator separate from the refrigerator, Refrigerant recovery device that strongly cools by a low-temperature fluid flowing through a cooling pipe and guides and recovers a refrigerant liquid in which the refrigerant gas is condensed to a refrigerant tank, in order to prevent the pressure in the sealing device from becoming equal to or lower than a predetermined pressure, A pressure control mechanism in a recovery device, characterized in that means for controlling the operation of the small body refrigerator is provided.
【請求項7】 前記の密閉器内の圧力を検出する圧力セ
ンサと、上記圧力センサの検出信号出力に基づいて前記
小形冷凍機の駆動電源回路を開閉する制御器とを具備し
ていることを特徴とする、請求項6に記載した回収装置
における圧力制御機構。
7. A pressure sensor for detecting the pressure in the hermetic container, and a controller for opening and closing a drive power supply circuit of the small refrigerator based on a detection signal output of the pressure sensor. The pressure control mechanism in the recovery device according to claim 6, which is characterized.
【請求項8】 前記の制御器は、圧力センサの検出圧力
が所定圧力P1以上となったとき電源回路をONし、上
記と異なる所定圧力P2以下となったとき電源回路をO
FFする構造であって、 上記所定圧力P1は2〜5Kgf/cm2gであり、かつ、前
記の所定圧力P2は上記所定圧力P1に比して0.3〜
1.5Kgf/cm2だけ低い値であることを特徴とする、
請求項7に記載した回収装置における圧力制御機構。
8. The controller turns on the power supply circuit when the pressure detected by the pressure sensor is equal to or higher than a predetermined pressure P 1, and turns on the power supply circuit when the pressure is equal to or lower than a predetermined pressure P 2 different from the above.
In the structure for FF, the predetermined pressure P 1 is 2 to 5 kgf / cm 2 g, and the predetermined pressure P 2 is 0.3 to 10 % compared to the predetermined pressure P 1.
Characterized by a low value of 1.5 Kgf / cm 2 ,
A pressure control mechanism in the recovery device according to claim 7.
【請求項9】 前記密閉器内の冷媒液の液面レベルを検
出するレベルセンサが設けられており、前記の制御器は
上記レベルセンサの検出値が所定値以上になったとき電
源回路をOFFするようになっていることを特徴とす
る、請求項7または請求項8に記載した回収装置におけ
る圧力制御機構。
9. A level sensor for detecting the liquid level of the refrigerant liquid in the hermetically sealed device is provided, and the controller turns off the power supply circuit when the detection value of the level sensor exceeds a predetermined value. The pressure control mechanism in the recovery device according to claim 7 or 8, characterized in that.
【請求項10】 前記の制御器は、レベルセンサの検出
値が所定値以上になって電源をOFFした後、該レベル
センサの検出値が所定値よりも低くなり、かつ圧力セン
サの検出値が所定圧力P1以上であるとき電源回路をO
Nするようになっていることを特徴とする、請求項9に
記載した回収装置における圧力制御機構。
10. The controller according to claim 1, wherein after the level sensor detection value exceeds a predetermined value and the power is turned off, the level sensor detection value becomes lower than the predetermined value and the pressure sensor detection value is lower than the predetermined value. When the pressure is equal to or higher than the predetermined pressure P 1 , turn on the power circuit
The pressure control mechanism in the recovery device according to claim 9, wherein the pressure control mechanism is N.
【請求項11】 冷凍機内に漏入した非凝縮性ガスと冷
媒ガスとの混合ガスを、冷却管を備えた密閉容器内に導
き、上記冷凍機と別体の小形冷凍機から供給されて上記
冷却管を流通する低温流体によって強冷し、前記冷媒ガ
スが凝縮した冷媒液を冷凍機の蒸発器に還流せしめる抽
気装置において、前記の冷却管を備えた密閉容器内の圧
力が所定圧力以下とならないように、前記別体の小形冷
凍機の作動を制御することを特徴とする、抽気装置にお
ける圧力制御方法。
11. A mixed gas of a non-condensable gas and a refrigerant gas, which has leaked into the refrigerator, is introduced into a closed container provided with a cooling pipe, and is supplied from a small refrigerator separate from the refrigerator, Strongly cooled by a low-temperature fluid flowing through a cooling pipe, in a bleeding device for recirculating the refrigerant liquid in which the refrigerant gas is condensed to the evaporator of the refrigerator, the pressure in the closed container provided with the cooling pipe is equal to or lower than a predetermined pressure. The method of controlling the pressure in the bleeding device is characterized in that the operation of the separate small refrigerator is controlled so as not to occur.
【請求項12】 前記別体の小形冷凍機の作動制御は、
前記密閉器内の圧力を検出し、所定圧力P1以上となっ
たとき該小形冷凍機を作動させ、上記と異なる所定圧力
2以下となったとき該小形冷凍機を停止せしめて行な
うことを特徴とする、請求項11に記載した抽気装置に
おける圧力制御方法。
12. The operation control of the separate small refrigerator comprises:
The pressure inside the airtight device is detected, and when the pressure reaches a predetermined pressure P 1 or more, the small refrigerator is operated, and when the pressure becomes a predetermined pressure P 2 or less different from the above, the small refrigerator is stopped. The pressure control method in the extraction device according to claim 11, which is characterized in that.
【請求項13】 前記の所定圧力P1は−0.2〜+
2.0Kgf/cm2gであり、かつ前記の所定圧力P2は上
記所定圧力P1に比して、0.1〜1.5Kgf/cm2だけ
低い値であることを特徴とする、請求項12に記載した
抽気装置における圧力制御方法。
13. The predetermined pressure P 1 is −0.2 to +.
2.0 kgf / cm 2 g, and the predetermined pressure P 2 is a value lower than the predetermined pressure P 1 by 0.1 to 1.5 kgf / cm 2. Item 13. A pressure control method in the extraction device according to item 12.
【請求項14】 前記密閉器内の冷媒液の液面レベルを
監視し、該液面レベルが所定値以上になったとき、前記
別体の小形冷凍機の作動を停止させることを特徴とす
る、請求項11ないし請求項13の何れかに記載した抽
気装置における圧力制御方法。
14. The liquid level of the refrigerant liquid in the hermetically sealed container is monitored, and when the liquid level reaches or exceeds a predetermined value, the operation of the separate small refrigerator is stopped. The pressure control method in the extraction device according to any one of claims 11 to 13.
【請求項15】 液面レベルが所定値以上となって小形
冷凍機の作動を停止した後、液面レベルが所定値よりも
低くなるまでの間、密閉器内の圧力いかんに拘らず小形
冷凍機の作動を停止せしめたままで抽気操作を継続し、
液面レベルが所定値よりも低くなり、かつ、該密閉器内
の圧力が所定圧力P1以上となったとき、抽気操作を続
行しつつ小形冷凍機の作動を再開することを特徴とす
る、請求項14に記載した抽気装置における圧力制御方
法。
15. A small refrigeration system, regardless of the pressure in the airtight container, until the liquid level falls below a predetermined value after the liquid level has exceeded a predetermined value and the operation of the small refrigerator has been stopped. Continue the bleeding operation with the operation of the machine stopped,
When the liquid level becomes lower than a predetermined value and the pressure in the closed vessel becomes a predetermined pressure P 1 or more, the operation of the small refrigerator is restarted while continuing the extraction operation. The pressure control method in the extraction device according to claim 14.
【請求項16】 冷凍機内に漏入した非凝縮性ガスと冷
媒ガスとの混合ガスを、冷却管を備えた密閉容器内に導
き、上記冷凍機と別体の小形冷凍機から供給されて上記
冷却管を流通する低温流体によって強冷し、前記冷媒ガ
スが凝縮した冷媒液を冷凍機の蒸発器に還流せしめる抽
気装置において、前記密閉容器内の圧力が所定圧力以下
とならないように前記別体の小形冷凍機の作動を制御す
る手段が設けられていることを特徴とする、抽気装置に
おける圧力制御機構。
16. A mixed gas of a non-condensable gas and a refrigerant gas, which has leaked into the refrigerator, is introduced into an airtight container provided with a cooling pipe, and is supplied from a small refrigerator separate from the refrigerator, In a bleeding device that strongly cools with a low temperature fluid flowing through a cooling pipe, and causes the refrigerant liquid in which the refrigerant gas is condensed to flow back to the evaporator of the refrigerator, the separate body so that the pressure in the closed container does not fall below a predetermined pressure. A means for controlling the operation of the small refrigerator is provided, and the pressure control mechanism in the bleeding device.
【請求項17】 前記の密閉器内の圧力を検出する圧力
センサと、上記圧力センサの検出信号出力に基づいて前
記小形冷凍機の駆動電源回路を開閉する制御器とを具備
していることを特徴とする、請求項16に記載した抽気
装置における圧力制御機構。
17. A pressure sensor for detecting the pressure in the airtight container, and a controller for opening and closing a drive power supply circuit of the small refrigerator based on a detection signal output of the pressure sensor. The pressure control mechanism in the extraction device according to claim 16, which is characterized in that.
【請求項18】 前記の制御器は、圧力センサの検出圧
力が所定圧力P1以上となったとき電源回路をONし、
上記と異なる所定圧力P2以下となったとき電源回路を
OFFする構造であって、 上記所定圧力P1は−0.2〜+2.0Kgf/cm2gであ
り、かつ、前記の所定圧力P2は上記所定圧力P1に比し
て0.1〜1.5Kgf/cm2だけ低い値であることを特
徴とする、請求項17に記載した抽気装置における圧力
制御機構。
18. The controller turns on the power supply circuit when the pressure detected by the pressure sensor becomes equal to or higher than a predetermined pressure P 1 ,
The power supply circuit is turned off when the pressure becomes lower than a predetermined pressure P 2 different from the above, the predetermined pressure P 1 is -0.2 to +2.0 Kgf / cm 2 g, and the predetermined pressure P is 2 is characterized by a low value only 0.1~1.5Kgf / cm 2 compared to the predetermined pressure P 1, the pressure control mechanism in the bleed system as set forth in claim 17.
【請求項19】 前記密閉器内の冷媒液の液面レベルを
検出するレベルセンサが設けられており、前記の制御器
は上記レベルセンサの検出値が所定値以上になったとき
電源回路をOFFするようになっていることを特徴とす
る、請求項7または請求項18に記載した抽気装置にお
ける圧力制御機構。
19. A level sensor for detecting the liquid level of the refrigerant liquid in the hermetically sealed device is provided, and the controller turns off the power supply circuit when the detected value of the level sensor becomes a predetermined value or more. The pressure control mechanism in the extraction device according to claim 7 or 18, wherein the pressure control mechanism is configured to:
【請求項20】 前記の制御器は、レベルセンサの検出
値が所定値以上になって電源をOFFした後、該レベル
センサの検出値が所定値よりも低くなり、かつ圧力セン
サの検出値が所定圧力P1以上であるとき電源回路をO
Nするようになっていることを特徴とする、請求項19
に記載した抽気装置における圧力制御機構。
20. The controller is configured such that the level sensor detection value becomes lower than a predetermined value and the pressure sensor detection value becomes lower than a predetermined value after the power supply is turned off when the level sensor detection value becomes a predetermined value or more. When the pressure is equal to or higher than the predetermined pressure P 1 , turn on the power circuit
20. The method according to claim 19, characterized in that
A pressure control mechanism in the extraction device described in.
JP17551593A 1993-07-15 1993-07-15 Pressure controlling method in recovering and gas extracting device and pressure controlling mechanism Pending JPH0727451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17551593A JPH0727451A (en) 1993-07-15 1993-07-15 Pressure controlling method in recovering and gas extracting device and pressure controlling mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17551593A JPH0727451A (en) 1993-07-15 1993-07-15 Pressure controlling method in recovering and gas extracting device and pressure controlling mechanism

Publications (1)

Publication Number Publication Date
JPH0727451A true JPH0727451A (en) 1995-01-27

Family

ID=15997408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17551593A Pending JPH0727451A (en) 1993-07-15 1993-07-15 Pressure controlling method in recovering and gas extracting device and pressure controlling mechanism

Country Status (1)

Country Link
JP (1) JPH0727451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115954185A (en) * 2023-03-14 2023-04-11 科畅电气有限公司 High-temperature-resistant oil-leakage-proof maintenance-free energy-saving transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115954185A (en) * 2023-03-14 2023-04-11 科畅电气有限公司 High-temperature-resistant oil-leakage-proof maintenance-free energy-saving transformer

Similar Documents

Publication Publication Date Title
US5501082A (en) Refrigeration purge and/or recovery apparatus
CN103968588B (en) Refrigeration machine and the refrigeration plant using the refrigeration machine
US5636526A (en) Apparatus and method for automatically purging an absorption cooling system
JP2008128535A (en) Bleeder for compression type refrigerating machine
US11435123B2 (en) Refrigeration system with transfer system
US20190056159A1 (en) Purging device, chiller equipped with same, and method for controlling purging device
US5067327A (en) Refrigerant recovery and recharging device
JP2013190151A (en) Turbo refrigerator and control method thereof
US10775083B2 (en) Purging device, chiller equipped with same, and method for controlling purging device
JP2008096027A (en) Bleeding device for compression type refrigerating machine
JPH0727451A (en) Pressure controlling method in recovering and gas extracting device and pressure controlling mechanism
JPH0611216A (en) Device and method for recovering refrigerant
JP2011075208A (en) Bleed air recovery device, method for operating the bleed air recovery device, and turbo refrigerator including the bleed air recovery device
JP2008014598A (en) Bleeder for compression type refrigerating machine
JP3486852B2 (en) Method and apparatus for centrally controlling prevention of air pollution by refrigerant
JP2003194427A (en) Cooling device
JPH062993A (en) Method and apparatus for recoverying refrigerant
JPH10238909A (en) Method and apparatus for efficiently recovering refrigerant as well as adsorption tank
JP2757589B2 (en) Oil absorption type bleeding device for refrigerator
JPH06137723A (en) Air bleeding method and air bleeder device, using refrigerant recovery device
US3286480A (en) Steam powered refrigeration system
JPH062994A (en) Method and apparatus for adjusting temperature and pressure for recovery of refrigerant
US11519648B2 (en) Purge system for closed-cycle absorption heat pumps
JP3154043B2 (en) Absorption refrigerator
JPS5838950Y2 (en) Turbo chiller safety device