JPH0727162A - Damper for microamplitude - Google Patents

Damper for microamplitude

Info

Publication number
JPH0727162A
JPH0727162A JP5175535A JP17553593A JPH0727162A JP H0727162 A JPH0727162 A JP H0727162A JP 5175535 A JP5175535 A JP 5175535A JP 17553593 A JP17553593 A JP 17553593A JP H0727162 A JPH0727162 A JP H0727162A
Authority
JP
Japan
Prior art keywords
working fluid
chamber
damper
flange
bellows cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5175535A
Other languages
Japanese (ja)
Other versions
JP3198737B2 (en
Inventor
Nobuyuki Kobayashi
信之 小林
Hiroyoshi Kobayashi
博栄 小林
Osamu Saito
修 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP17553593A priority Critical patent/JP3198737B2/en
Publication of JPH0727162A publication Critical patent/JPH0727162A/en
Application granted granted Critical
Publication of JP3198737B2 publication Critical patent/JP3198737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Fluid-Damping Devices (AREA)
  • Supports For Pipes And Cables (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

PURPOSE:To provide a damper for microamplitude which is constituted to effectively suppress microvibration generated at the cooling water circulation pump of an atomic power plant and the piping system thereof. CONSTITUTION:In a damper for microamplitude to suppress the generation of microvibration between a fixed flange 1 and a moving flange 2, double inner and outer expandable bellows cylinder bodies 3 and 5 are arranged between the fixed flange l and the moving flange 2. An outer working fluid chamber 9 is formed between the inner and outer bellows cylinder bodies 3 and 5. A partition is located in the inner bellows cylinder body 5, the interior thereof is partitioned into an air chamber 8 and an inner working fluid chamber 7. The inner and outer working fluid chambers 7 and 9 are respectively filled with working fluid S, and an orifice means 4 through which the working fluid S in the inner and outer working fluid chambers 7 and 9 is caused to flow is provided in the inner bellows cylinder body 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学プラント、火力及び
原子力発電施設等に設置される冷却水循環ポンプや配管
系に発生する微小な振動を抑制したり、又、舶用エンジ
ンなどの配管系の振動抑制、エンジン本体などにも供す
ることができるための微小振幅用ダンパーに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention suppresses minute vibrations generated in cooling water circulation pumps and piping systems installed in chemical plants, thermal power plants and nuclear power generation facilities, and vibrations in piping systems such as marine engines. The present invention relates to a damper for small amplitude, which can be used for suppression, an engine body, and the like.

【0002】[0002]

【従来の技術】一般に、化学プラント、火力及び原子力
プラントに設置される冷却水循環ポンプやその配管系は
建家等の固定系に複数の架台やストラッドなどの支持装
置によって支持されると共に、メカニカルスナッバー等
の制振装置によって発生した振動が効果的に減衰されて
振動に対する安全性が確保されている。このメカニカル
スナッバーは周知のように、地震やポンプ駆動時等に発
生する動的な変位に対してはこれを受けて減衰させるこ
とにより、冷却水循環ポンプや配管系等の支持対象物の
破損を防止すると共に、冷却水の上昇によって高熱化す
ることにより発生する熱膨張などの静的な変位に対して
はこれを許容するようになっている。
2. Description of the Related Art Generally, a cooling water circulation pump installed in a chemical plant, a thermal power plant, and a nuclear power plant and its piping system are supported by a fixed system such as a building by a plurality of supporting devices such as a pedestal and a straddle and a mechanical snap. Vibration generated by a vibration damping device such as a bar is effectively damped, and safety against vibration is ensured. As is well known, this mechanical snubber receives and damps dynamic displacements that occur during earthquakes, pump driving, etc. to prevent damage to supported objects such as cooling water circulation pumps and piping systems. In addition to preventing it, it also allows static displacement such as thermal expansion that occurs due to high heat due to rise of cooling water.

【0003】[0003]

【発明が解決しようとする課題】ところで、このメカニ
カルスナッバーは地震やポンプ振動等の大きな振動に対
しては有効に作用するが、これは連結部や内部に機械的
なガタや摩擦を有するため、0.1〜0.2mm程度の
微小な振動を止めることは不可能であった。特に、極め
て高い安全性が要求される原子力プラントの冷却水循環
ポンプにおいては、このような微小な振動の連続が大き
な影響を与える場合がある。
By the way, this mechanical snubber works effectively against large vibrations such as earthquakes and pump vibrations, but it has mechanical backlash and friction inside the connecting portion and inside. It was impossible to stop a minute vibration of about 0.1 to 0.2 mm. In particular, in a cooling water circulation pump for a nuclear power plant, which requires extremely high safety, such a series of minute vibrations may have a great influence.

【0004】そこで、本発明は上記の問題点を有効に解
決するために案出されたものであり、その目的は原子力
プラントの冷却水循環ポンプやその配管系に発生する微
小な振動を効果的に抑制することができる微小振幅用ダ
ンパーを提供するものである。
Therefore, the present invention has been devised in order to effectively solve the above-mentioned problems, and the purpose thereof is to effectively prevent minute vibrations generated in a cooling water circulation pump of a nuclear power plant and its piping system. A damper for a minute amplitude that can be suppressed is provided.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は固定フランジと可動フランジ間で微小振動を
抑制する微小振幅用ダンパーにおいて、上記固定フラン
ジと可動フランジ間に伸縮自在な内外2重のベローズ筒
体を設け、該内外ベローズ筒体間に外側作動流体室を形
成すると共に、該内側ベローズ筒体内に閉塞板を設け
て、その内部を吸排気口を通じて外部と連通する空気室
と内側作動流体室に区画形成して、上記内外の作動流体
室にそれぞれ作動流体を充填し、かつ上記内外の作動流
体室内の作動流体を流通するオリフィス手段を設けたも
のであり、また、上記作動流体として、印加される電界
強度によって粘性が連続的に変化する電気粘性流体を用
いたものである。
In order to achieve the above object, the present invention is a damper for minute amplitude for suppressing minute vibration between a fixed flange and a movable flange. A heavy bellows cylinder is provided, an outer working fluid chamber is formed between the inner and outer bellows cylinders, and a closing plate is provided in the inner bellows cylinder, and an air chamber communicating the inside with the outside through intake and exhaust ports. An inner working fluid chamber is partitioned and formed, and each of the inner and outer working fluid chambers is filled with a working fluid, and an orifice means for circulating a working fluid in the inner and outer working fluid chambers is provided. As the fluid, an electrorheological fluid whose viscosity continuously changes depending on the strength of the applied electric field is used.

【0006】[0006]

【作用】本発明によれば、振動によって圧縮及び引張荷
重、すなわち可動フランジが固定フランジに対して近接
離反移動すると、内側ベローズ筒体内の空気室の空気が
膨張収縮することにより、内外ベローズ筒体間の外側作
動流体室内及び内側ベローズ筒体内の内側作動流体室内
の圧力が交互に変化することになる。そして、この圧力
変化によって両作動流体室内の粘性を有する作動流体が
オリフィス手段を通過して両作動流体室内を交互に往復
移動する際に、このオリフィス手段が作動流体の流動抵
抗となって可動フランジの近接離反移動、すなわち振動
が減衰されて抑制されることになる。また、この作動流
体として粘性を有する通常の流体の代りに電気粘性流体
を用いることにより、印加される電圧に応じて作動流体
の流動抵抗が変化するため、振動減衰性能を連続的に可
変させることもできる。
According to the present invention, when the compressive and tensile loads, that is, the movable flange moves toward and away from the fixed flange due to vibration, the air in the air chamber in the inner bellows cylinder expands and contracts, so that the inner and outer bellows cylinders. The pressure in the outer working fluid chamber between and the pressure in the inner working fluid chamber in the inner bellows cylinder alternate. When the working fluid having viscosity in both working fluid chambers passes through the orifice means and alternately reciprocates in both working fluid chambers due to this pressure change, the orifice means becomes a flow resistance of the working fluid and the movable flange. The approaching / separating movement of, that is, the vibration is attenuated and suppressed. Further, by using an electrorheological fluid as the working fluid instead of the ordinary viscous fluid, the flow resistance of the working fluid changes according to the applied voltage, so that the vibration damping performance can be continuously varied. You can also

【0007】[0007]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0008】図1〜図3は本発明に係る微小振幅用ダン
パーAの一実施例を示したものである。図示するよう
に、この微小振幅用ダンパーAは、建家の壁面Bに固定
される固定フランジ1と、冷却水循環ポンプや配管系等
の支持対象物Cに接続される可動フランジ2間に、伸縮
自在な外側ベローズ筒体3が設けられており、可動フラ
ンジ2が固定フランジ1に対して近接離反自在となって
いる。また、外側ベローズ筒体3内には、その内部を区
画する円板状のオリフィス手段4と、このオリフィス手
段4と上記固定フランジ1間を接続する内側ベローズ筒
体5が設けられており、これらオリフィス手段4と内側
ベローズ筒体5によって、その内部は外側流体作動室9
と可動フランジ側流体作動室10とに区画形成されてい
る。また、この内側ベローズ筒体5内の略中央部には閉
塞体6が設けられており、オリフィス手段4側が内部作
動流体室7に、固定フランジ1側が空気室8に区画形成
されている。そして、これら外側流体作動室9、可動フ
ランジ側流体作動室10、内側作動流体室7内には高粘
性の作動流体Sが充填されている。
1 to 3 show an embodiment of a damper A for minute amplitude according to the present invention. As shown in the figure, this minute amplitude damper A is expanded and contracted between a fixed flange 1 fixed to a wall surface B of a building and a movable flange 2 connected to a support object C such as a cooling water circulation pump or a piping system. A free outer bellows cylinder 3 is provided so that the movable flange 2 can move toward and away from the fixed flange 1. Further, in the outer bellows cylinder 3, a disk-shaped orifice means 4 for partitioning the inside thereof and an inner bellows cylinder 5 for connecting the orifice means 4 and the fixed flange 1 are provided. Due to the orifice means 4 and the inner bellows cylinder 5, the inside thereof is the outer fluid working chamber 9
And the movable flange side fluid working chamber 10 are partitioned and formed. Further, a closing body 6 is provided at a substantially central portion in the inner bellows tubular body 5, and the orifice means 4 side is partitioned into an internal working fluid chamber 7 and the fixed flange 1 side is partitioned into an air chamber 8. The outer fluid working chamber 9, the movable flange side fluid working chamber 10, and the inner working fluid chamber 7 are filled with a highly viscous working fluid S.

【0009】また、図2に示すように、円板状のオリフ
ィス手段4の中心部とその周縁部には、複数のオリフィ
ス11a,11b,11b…が形成されており、外側流
体作動室9と可動フランジ側流体作動室10間及び可動
フランジ側流体作動室10と内部作動流体室7間でそれ
ぞれ作動流体Sが相互に流通するようになっている。
Further, as shown in FIG. 2, a plurality of orifices 11a, 11b, 11b ... Are formed in the central portion and the peripheral portion of the disk-shaped orifice means 4, and the outer fluid working chamber 9 and The working fluid S flows between the movable flange side fluid working chambers 10 and between the movable flange side fluid working chamber 10 and the internal working fluid chamber 7.

【0010】また、固定フランジ1には空気室に連通さ
れた吸排気孔12が形成されており、空気室8が大気開
放されている。尚、この吸排気孔12は固定フランジ1
に形成する必要はなく、チューブ状の配管(図示せず)
等を用いて空気室8から直接、外側流体作動室9及び外
側ベローズ筒体3を貫通させて形成しても、また場合に
よって空気室8内を密閉状態にしても良い。また、これ
ら外側ベローズ筒体3及び内側ベローズ筒体5は周知の
金属ベローズであり、その長さ方向には伸縮自在である
が、半径方向の伸縮膨張には極めて剛な性質を有してい
る。
Further, the fixed flange 1 is formed with an intake / exhaust hole 12 communicating with the air chamber, and the air chamber 8 is open to the atmosphere. The intake / exhaust holes 12 are fixed flanges 1.
It does not need to be formed into a tube-like pipe (not shown)
Or the like, the outer fluid working chamber 9 and the outer bellows cylinder 3 may be formed directly through the air chamber 8, or the air chamber 8 may be hermetically sealed in some cases. The outer bellows tubular body 3 and the inner bellows tubular body 5 are well-known metal bellows and can be expanded and contracted in the length direction thereof, but have a very rigid property for expansion and contraction in the radial direction. .

【0011】次に、本実施例の作用を説明する。Next, the operation of this embodiment will be described.

【0012】先ず、図4に示すように、流体の流れやモ
ータ(図示せず)等の駆動による振動の際に、引張応
力、すなわち可動フランジ2が固定フランジ1の反対方
向に引き寄せられることによって外側ベローズ筒体3が
伸びると、外側流体作動室9内及びこれと連通している
可動フランジ側流体作動室10が負圧状態になり、ま
た、これと同時に、この可動フランジ側流体作動室10
と連通している内側作動流体室7及び空気室8内部も負
圧状態になる。すると、外部の空気が吸排気孔12から
空気室8内へ流入して、空気室8が膨張して容積が増え
るのに伴って、内側作動流体室7内の作動流体Sがオリ
フィス手段4の中心部のオリフィス11aから可動フラ
ンジ側流体作動室10側を経由して再びオリフィス11
b,11b…を通過して外側流体作動室9内へ流れるこ
とになる。そして、この作動流体Sがオリフィス11a
及び11b,11b…を流れる際に、これが流動抵抗と
なって可動フランジ2の固定フランジ1側の反対方向へ
の離反移動が抑制されて引張応力が減衰される。
First, as shown in FIG. 4, when the fluid flow or the vibration due to the driving of a motor (not shown) or the like, tensile stress, that is, the movable flange 2 is attracted in the direction opposite to the fixed flange 1, When the outer bellows tubular body 3 extends, the inside of the outer fluid working chamber 9 and the movable flange side fluid working chamber 10 become negative pressure state, and at the same time, the movable flange side fluid working chamber 10
The inside working fluid chamber 7 and the inside of the air chamber 8 communicating with are also in a negative pressure state. Then, outside air flows into the air chamber 8 from the intake / exhaust holes 12, and as the air chamber 8 expands and its volume increases, the working fluid S in the inner working fluid chamber 7 becomes the center of the orifice means 4. From the orifice 11a of the portion through the movable flange side fluid working chamber 10 side and the orifice 11 again.
It flows through b, 11b ... into the outer fluid working chamber 9. Then, the working fluid S becomes the orifice 11a.
, 11b, 11b ... As flow resistance, the movable flange 2 is prevented from moving away from the fixed flange 1 in the opposite direction, and the tensile stress is attenuated.

【0013】反対に、圧縮応力、すなわち可動フランジ
2が固定フランジ1側へ引き寄せられた場合には、図5
に示すように、外側流体作動室9、可動フランジ側流体
作動室10、可動フランジ側流体作動室10の内部の圧
力が上昇し、空気室8内の空気が排気されて収縮するこ
とにより、作動流体Sが上記の場合と反対方向に流れ、
これが流動抵抗となって可動フランジ2の固定フランジ
1側への近接移動が抑制されて圧縮応力が減衰される。
On the contrary, when the compressive stress, that is, when the movable flange 2 is pulled toward the fixed flange 1 side, FIG.
As shown in, the pressure inside the outer fluid working chamber 9, the movable flange-side fluid working chamber 10, and the movable flange-side fluid working chamber 10 rises, and the air in the air chamber 8 is exhausted and contracts, thereby operating. The fluid S flows in the opposite direction to the above case,
This serves as flow resistance, and the close movement of the movable flange 2 to the fixed flange 1 side is suppressed, and the compressive stress is attenuated.

【0014】そして、これらの作用が短時間で交互に行
われることにより、可動フランジ2、すなわち、図3に
示すような振動部Cの微小振動が効果的に減衰抑制され
ることになる。尚、本実施例では、可動フランジ2側に
発生した振動の場合の作用を説明したが、地震等によっ
て建家B側に設けられた固定フランジ1側に振動が発生
した場合も全く同様な作用によって振動が減衰抑制され
るのは勿論である。また、使用する作動流体の粘性やオ
リフィスの大きさを任意に設定することで所望の減衰性
能を得ることも可能である。
By alternately performing these actions in a short time, the minute vibration of the movable flange 2, that is, the vibrating portion C as shown in FIG. 3, is effectively damped and suppressed. In the present embodiment, the operation in the case of vibration generated on the movable flange 2 side has been described, but the same operation is also performed when vibration occurs on the fixed flange 1 side provided on the building B side due to an earthquake or the like. Of course, the vibration is damped and suppressed by. It is also possible to obtain desired damping performance by arbitrarily setting the viscosity of the working fluid used and the size of the orifice.

【0015】配管が温度応力などにより熱変形するとき
は、その動きは極めて緩慢なものであるためオリフィス
部での流動抵抗はほとんど生じないので変形に対する抵
抗はベローズのばね力のみである。このばね力は配管の
剛性によるそれと比較すると充分小さいため、配管に悪
影響を与えない。また、ベローズの山数、径、板厚を適
当に選ぶことによって、熱変形のような大きなゆっくり
した変形を許容しながら微小な振動変位を減衰させるダ
ンパーが実現できる。
When the pipe is thermally deformed due to temperature stress or the like, its movement is extremely slow and flow resistance at the orifice hardly occurs. Therefore, the resistance to deformation is only the spring force of the bellows. This spring force is sufficiently small compared to that due to the rigidity of the pipe, so that it does not adversely affect the pipe. Further, by appropriately selecting the number of peaks, diameter, and plate thickness of the bellows, it is possible to realize a damper that attenuates a minute vibration displacement while allowing a large slow deformation such as thermal deformation.

【0016】次に、図6は本発明の第二の実施例を示し
たものである。
Next, FIG. 6 shows a second embodiment of the present invention.

【0017】図示するように、本実施例では作動流体S
に接触するオリフィス手段4に電極13,13を設ける
と共に、作動流体Sとして電気粘性流体(ER流体)を
用いたものである。この電気粘性流体は周知のように印
加される電界強度によって見掛けの粘性が連続的に変化
する性質を有したものであり、通常、絶縁性の分散媒中
に澱粉、セルロース、アルミナ、イオン交換樹脂等の固
定粒子を分散させたものである。
As shown, in this embodiment, the working fluid S
Electrodes 13 and 13 are provided on the orifice means 4 which comes into contact with, and an electrorheological fluid (ER fluid) is used as the working fluid S. As is well known, this electrorheological fluid has a property that the apparent viscosity continuously changes depending on the strength of an applied electric field. Usually, starch, cellulose, alumina, an ion exchange resin are contained in an insulating dispersion medium. And the like fixed particles are dispersed.

【0018】従って、本実施例ではコントローラ14か
ら電極13,13に印加する電圧を制御することによっ
て作動流体Sの見掛けの粘性が連続的に変化することに
なり、任意の減衰係数を得ることのできる可変ダンパー
を構成することができる。
Therefore, in this embodiment, the apparent viscosity of the working fluid S is continuously changed by controlling the voltage applied from the controller 14 to the electrodes 13 and 13, so that an arbitrary damping coefficient can be obtained. A variable damper that can be configured.

【0019】[0019]

【発明の効果】以上要するに本発明によれば、原子力プ
ラントの冷却水循環ポンプやその配管系に発生する微小
な振動を効果的に抑制すると共に、また、必要に応じて
減衰性能を任意に可変することができる等といった優れ
た効果を有する。
In summary, according to the present invention, the microvibration generated in the cooling water circulation pump of the nuclear power plant and its piping system is effectively suppressed, and the damping performance is arbitrarily changed as necessary. It has an excellent effect such as being able to.

【0020】また、本発明の作用上の特徴から、プラン
ト類の配管系のみならず船舶用エンジンなどの振動制
御、エンジンの防振マウントなどにも供することができ
ることは明らかである。
Further, from the operational characteristics of the present invention, it is apparent that the present invention can be applied not only to the piping system of plants but also to the vibration control of a marine engine or the like, the engine vibration proof mount and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1中A−A矢視図である。FIG. 2 is a view taken along the line AA in FIG.

【図3】本発明装置の取付状態の一実施例を示す説明図
である。
FIG. 3 is an explanatory view showing an example of a mounting state of the device of the present invention.

【図4】引張応力が加わったときの作用を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing an action when a tensile stress is applied.

【図5】圧縮応力が加わったときの作用を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing an operation when a compressive stress is applied.

【図6】本発明の他の実施例を示す断面図である。FIG. 6 is a sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 固定フランジ 2 可動フランジ 3 内側ベローズ筒体 4 オリフィス手段 5 外側ベローズ筒体 6 閉塞板 7 内側作動流体室 8 空気室 9 外側作動流体室 S 作動流体 1 Fixed Flange 2 Movable Flange 3 Inner Bellows Cylindrical Body 4 Orifice Means 5 Outer Bellows Cylindrical Body 6 Closing Plate 7 Inner Working Fluid Chamber 8 Air Chamber 9 Outer Working Fluid Chamber S Working Fluid

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16F 9/53 F16L 3/20 3/215 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area F16F 9/53 F16L 3/20 3/215

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固定フランジと可動フランジ間で微小振
動を抑制する微小振幅用ダンパーにおいて、上記固定フ
ランジと可動フランジ間に伸縮自在な内外2重のベロー
ズ筒体を設け、該内外ベローズ筒体間に外側作動流体室
を形成すると共に、該内側ベローズ筒体内に閉塞板を設
けて、その内部を吸排気口を通じて外部と連通する空気
室と内側作動流体室に区画形成して、上記内外の作動流
体室にそれぞれ作動流体を充填し、かつ上記内外の作動
流体室内の作動流体を流通するオリフィス手段を設けた
ことを特徴とする微小振幅用ダンパー。
1. A damper for small amplitude for suppressing minute vibration between a fixed flange and a movable flange, wherein an expandable inner and outer double bellows cylinder is provided between the fixed flange and the movable flange, and between the inner and outer bellows cylinders. An inner working fluid chamber and an outer working fluid chamber, a closing plate is provided in the inner bellows cylinder, and an inner working fluid chamber and an air chamber communicating with the outside through an intake / exhaust port are formed to define the inner and outer working chambers. A minute amplitude damper characterized in that the fluid chamber is filled with a working fluid, and an orifice means is provided to allow the working fluid inside and outside the working fluid chamber to flow therethrough.
【請求項2】 上記作動流体として、印加される電界強
度によって粘性が連続的に変化する電気粘性流体を用い
たことを特徴とする請求項1記載の微小振幅用ダンパ
ー。
2. The damper for micro-amplitude according to claim 1, wherein the working fluid is an electrorheological fluid whose viscosity continuously changes depending on the strength of an applied electric field.
JP17553593A 1993-07-15 1993-07-15 Small amplitude damper Expired - Lifetime JP3198737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17553593A JP3198737B2 (en) 1993-07-15 1993-07-15 Small amplitude damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17553593A JP3198737B2 (en) 1993-07-15 1993-07-15 Small amplitude damper

Publications (2)

Publication Number Publication Date
JPH0727162A true JPH0727162A (en) 1995-01-27
JP3198737B2 JP3198737B2 (en) 2001-08-13

Family

ID=15997776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17553593A Expired - Lifetime JP3198737B2 (en) 1993-07-15 1993-07-15 Small amplitude damper

Country Status (1)

Country Link
JP (1) JP3198737B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041942A (en) * 2015-06-29 2015-11-11 上海交通大学 Frictionless fluid damping vibration isolator
CN105840724A (en) * 2016-05-06 2016-08-10 上海交通大学 Two-layer mesh structure shock absorber with fluid damper
JP2019199880A (en) * 2018-05-14 2019-11-21 株式会社ミツトヨ Bellows type damper

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7338947B2 (en) 2017-11-21 2023-09-05 株式会社Nbcメッシュテック Fruit ripening control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041942A (en) * 2015-06-29 2015-11-11 上海交通大学 Frictionless fluid damping vibration isolator
CN105041942B (en) * 2015-06-29 2018-01-19 上海交通大学 A kind of frictionless fluid damping isolator
CN105840724A (en) * 2016-05-06 2016-08-10 上海交通大学 Two-layer mesh structure shock absorber with fluid damper
JP2019199880A (en) * 2018-05-14 2019-11-21 株式会社ミツトヨ Bellows type damper

Also Published As

Publication number Publication date
JP3198737B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
US5927699A (en) Damping apparatus
JPS5821131B2 (en) Rubber bearing device with hydraulic damping effect
US4781363A (en) Vibration isolator particularly of the antiresonance force type
US4926985A (en) Oscillating apparatus for damping vibration
CN101725660A (en) High-frequency decoupling piston magneto-rheological damper
US5286013A (en) Vibration damper assembly
JPH0727162A (en) Damper for microamplitude
JP2007205543A (en) Vibration cancellation device
JP3324251B2 (en) Seismic isolation device
JPH04203629A (en) Vibration isolator
JPH01238730A (en) Fluid seal type mount device
JPH10169705A (en) Vibration damping device
US3749339A (en) Vibration isolator mount
JPH04341629A (en) Cylindrical vibro-isolator
JP3307051B2 (en) Micro-vibration suppressing device
JPH1026173A (en) Damper for vibration damping
JPS58124841A (en) Fluid filled engine mount unit
JPS63275827A (en) Vibrationproofing method using liquid sealing mounting device
JP4017811B2 (en) Anti-vibration support frame for engine heat exchanger
JPH0353502B2 (en)
JP3085164B2 (en) Tuning mass damper device
JPH04331834A (en) Control type engine mount
KR20090131165A (en) Hydraulic active engine mounting apparatus
JP2022190391A (en) Snubber
SU603795A2 (en) Vibration damping support

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 13

EXPY Cancellation because of completion of term