JPH0727089A - Vacuum pump device - Google Patents

Vacuum pump device

Info

Publication number
JPH0727089A
JPH0727089A JP19282293A JP19282293A JPH0727089A JP H0727089 A JPH0727089 A JP H0727089A JP 19282293 A JP19282293 A JP 19282293A JP 19282293 A JP19282293 A JP 19282293A JP H0727089 A JPH0727089 A JP H0727089A
Authority
JP
Japan
Prior art keywords
gas
pump
auxiliary pump
pressure
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19282293A
Other languages
Japanese (ja)
Other versions
JP3494457B2 (en
Inventor
Masashi Iguchi
昌司 井口
Mitsuru Sakurai
充 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO, OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO
Priority to JP19282293A priority Critical patent/JP3494457B2/en
Publication of JPH0727089A publication Critical patent/JPH0727089A/en
Application granted granted Critical
Publication of JP3494457B2 publication Critical patent/JP3494457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve exhaust performance of light gas such as hydrogen gas by a turbomolecular pump by introducing specific gas of large molecular weight to a suction side of an auxiliary pump connected to the turbomolecular pump, so as to decrease its suction port pressure. CONSTITUTION:In a vacuum device, an auxiliary pump 2 is connected to a turbomolecular pump 1. Here to a suction side of the auxiliary pump 2, an introducing pipe 4 for introducing specific gas of large molecular weight is connected. In the vacuum device, a control means 6 for adjusting an introducing amount of specific gas is additionally provided. Further as the specific gas, nitrogen gas is used. That is, when both the pumps 1, 2 are respectively driven, gas containing hydrogen gas in a chamber 5 is compressed and discharged to the atmosphere. Here is measured a pressure in the chamber 5 by a vacuum gage 3, and an introducing amount of nitrogen gas is adjusted by the control means 6 so as to minimize the pressure in the chamber 5. In this way, suction port pressure of the turbomolecular pump 1 is decreased, to improve exhaust performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薬品工業や電子工業及
び研究所等で使用される分析装置、IC製造装置及び試
験装置等において、清浄な高真空或いは超高真空を得る
のに好適な真空ポンプ装置に関する。
BACKGROUND OF THE INVENTION The present invention is suitable for obtaining a clean high vacuum or ultra-high vacuum in an analyzer, an IC manufacturing apparatus, a test apparatus, etc. used in the chemical industry, electronic industry, laboratory, etc. The present invention relates to a vacuum pump device.

【0002】[0002]

【従来の技術】従来この種の真空ポンプ装置としては、
補助ポンプとしてドライ往復動型真空ポンプを用い、タ
ーボ分子ポンプと組合わせた形式のものが知られてい
る。
2. Description of the Related Art Conventionally, as a vacuum pump device of this type,
It is known that a dry reciprocating vacuum pump is used as an auxiliary pump in combination with a turbo molecular pump.

【0003】[0003]

【発明が解決しようとする課題】この従来の真空ポンプ
装置においては、ドライ往復動型真空ポンプの到達圧力
が100Pa前後で、ターボ分子ポンプの補助ポンプと
しては限界の性能であり、吸気ガスが水素ガスのように
軽いガスを含む場合には該ターボ分子ポンプの排気速度
が大きく阻害され、排気性能が低下する問題点を有し、
且つドライ往復動型真空ポンプの到達圧力を下げること
は技術的に難しく、又これを向上するためには費用が極
めて大きくなる等の問題点を有していた。
In this conventional vacuum pump device, the ultimate pressure of the dry reciprocating vacuum pump is about 100 Pa, which is the limit performance as the auxiliary pump of the turbo molecular pump, and the intake gas is hydrogen. When a light gas such as gas is included, the exhaust speed of the turbo molecular pump is greatly hindered, and there is a problem that the exhaust performance decreases.
In addition, it is technically difficult to lower the ultimate pressure of the dry reciprocating vacuum pump, and there is a problem that the cost is extremely high to improve it.

【0004】本発明は上記の問題点を解消し、簡易な手
段によりターボ分子ポンプの吸気口圧力を低下させ、該
ターボ分子ポンプにより水素ガス等の軽いガスの排気性
能を大巾に改善することを目的とする。
The present invention solves the above problems, reduces the intake port pressure of a turbo molecular pump by a simple means, and greatly improves the exhaust performance of light gas such as hydrogen gas by the turbo molecular pump. With the goal.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め本発明は、ターボ分子ポンプに補助ポンプを連結した
真空装置において、該補助ポンプの吸気側に、分子量の
大きい特定ガスを導入する導入管を接続したことを特徴
とする。
In order to achieve the above object, the present invention is directed to a vacuum device in which an auxiliary pump is connected to a turbo molecular pump, in which a specific gas having a large molecular weight is introduced to the intake side of the auxiliary pump. It is characterized by connecting a pipe.

【0006】[0006]

【作用】補助ポンプをその性能がガス種によらない容積
移送型真空ポンプとした場合、ターボ分子ポンプの到達
圧力時に適量の窒素ガスを該真空ポンプの吸気側から導
入すると、該ターボ分子ポンプの吸気口の水素ガスの分
圧が大巾に低下し、これにより水素ガスの排気性能が大
巾に改善される。
When the auxiliary pump is a positive displacement vacuum pump whose performance does not depend on the type of gas, when an appropriate amount of nitrogen gas is introduced from the suction side of the vacuum molecular pump at the ultimate pressure of the turbo molecular pump, The partial pressure of hydrogen gas at the intake port is drastically reduced, which greatly improves the exhaust performance of hydrogen gas.

【0007】[0007]

【実施例】以下本発明の第1実施例を図1乃至図3によ
り説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS.

【0008】1はターボ分子ポンプ(以下TMPと称す
る)を示す。
Reference numeral 1 denotes a turbo molecular pump (hereinafter referred to as TMP).

【0009】2は補助ポンプを示し、該補助ポンプ2は
例えば容積移送型真空ポンプの一種であるドライ往復動
型真空ポンプからなる。
Reference numeral 2 denotes an auxiliary pump, which is composed of, for example, a dry reciprocating vacuum pump which is a kind of volume transfer vacuum pump.

【0010】3は真空計で該真空計3はTMP1と連通
するチャンバー5内の真空度を計測する。
Reference numeral 3 denotes a vacuum gauge, which measures the degree of vacuum in the chamber 5 communicating with the TMP 1.

【0011】4は前記補助ポンプ2の吸気側に窒素ガス
を導入する導入管、6は該導入管4に介在し窒素ガスを
導入調整するマスフローコントローラ(以下MFCと称
する)を示す。
Reference numeral 4 denotes an introduction pipe for introducing nitrogen gas into the intake side of the auxiliary pump 2, and reference numeral 6 denotes a mass flow controller (hereinafter referred to as MFC) interposed in the introduction pipe 4 for adjusting the introduction of nitrogen gas.

【0012】次に本実施例の作動を説明する。Next, the operation of this embodiment will be described.

【0013】TMP1と補助ポンプ2を作動すると、チ
ャンバー5内の水素ガスを含むガスがTMP1で圧縮さ
れ更に補助ポンプ2により大気に排出される。
When the TMP1 and the auxiliary pump 2 are operated, the gas containing hydrogen gas in the chamber 5 is compressed by the TMP1 and further discharged to the atmosphere by the auxiliary pump 2.

【0014】このとき該チャンバー5内の圧力を真空計
3により計測し、MFC6により該チャンバー5内の圧
力が最低になるように窒素ガスを調整して補助ポンプの
吸気側から導入する。これによりTMP1の吸気口圧力
が低下し、排気性能が大巾に改善される。
At this time, the pressure in the chamber 5 is measured by the vacuum gauge 3, the nitrogen gas is adjusted by the MFC 6 so that the pressure in the chamber 5 becomes the minimum, and the nitrogen gas is introduced from the intake side of the auxiliary pump. As a result, the intake port pressure of TMP1 is lowered, and the exhaust performance is greatly improved.

【0015】以下、上記態様を図2及び図3により説明
する。
The above aspect will be described below with reference to FIGS.

【0016】図2は補助ポンプ2の排気速度(Sb)−
吸気口圧力(Psb)曲線を、又図3は水素ガス30P
al/sと窒素ガス30及び90Pal/sのガスを排
気したときの該TMP1の背圧(Pb)と吸気口圧(P
s)との関係を示す。
FIG. 2 shows the exhaust speed (Sb) of the auxiliary pump 2.
Intake port pressure (Psb) curve, and Fig. 3 shows hydrogen gas 30P
The back pressure (Pb) and the intake port pressure (P) of the TMP1 when the gas of al / s and nitrogen gas of 30 and 90 Pal / s are exhausted.
s) is shown.

【0017】今、TMP1の吸気口から水素ガス30P
al/sが流入している場合には該TMP1の背圧(P
b)はこれと図2の補助ポンプの特性曲線Sbとの交点
即ちA点の200Paであり、又図3より吸気口圧(P
s)は53Paとなり、水素ガスに対するTMP1の排
気速度(SH2)は[数I]より0.57l/sとなる。
Now, the hydrogen gas 30P from the intake port of TMP1
When al / s is flowing in, the back pressure (P
b) is 200 Pa at the intersection of this and the characteristic curve Sb of the auxiliary pump of FIG. 2, that is, at point A, and from FIG.
s) is the pumping speed of the TMP1 next 53 Pa, to hydrogen gas (S H2) becomes 0.57l / s from Equation I].

【0018】次に補助ポンプ2の吸気側より窒素ガスを
30Pal/s導入すると、TMP1の背圧側、即ち補
助ポンプ2の吸入側には水素ガス(QH2)が30Pal
/sと窒素ガス(QN2)が30Pal/sが流れてお
り、図2においてこれと補助ポンプの排気速度曲線Sb
との交点より補助ポンプ2の吸気口圧力(Psb)は2
00Paであるが[数II]よりTMPの背圧(Pb)の
水素分圧は100Pa(図2のB点)であり、且つ図3
よりTMP1の吸気口圧力(Ps)は10Paに低下
し、該TMP1の水素ガスの排気速度(SH2)は[数 I
II]より3l/sに改善される。
Next, when 30 Pal / s of nitrogen gas is introduced from the intake side of the auxiliary pump 2, hydrogen gas (Q H2 ) is 30 Pal on the back pressure side of the TMP 1, that is, the intake side of the auxiliary pump 2.
/ S and nitrogen gas (Q N2 ) are flowing at 30 Pal / s, and this is shown in FIG. 2 and the exhaust speed curve Sb of the auxiliary pump.
The intake port pressure (Psb) of the auxiliary pump 2 is 2 from the intersection with
Although it is 00 Pa, the hydrogen partial pressure of the back pressure (Pb) of TMP is 100 Pa (point B in FIG. 2) from [Equation II], and FIG.
More TMP1 inlet pressure (Ps) is reduced to 10 Pa, the exhaust velocity of the hydrogen gas in the TMP1 (S H2) is [number I
II] is improved to 3 l / s.

【0019】このとき背圧側の窒素ガス分圧はほぼ0か
ら100Paに増大するが、図3により吸気口圧力は全
く影響を受けない。
At this time, the nitrogen gas partial pressure on the back pressure side increases from almost 0 to 100 Pa, but the intake port pressure is not affected at all by FIG.

【0020】同様にして補助ポンプ2の吸気側から窒素
ガスを90Pal/sを導入すると、図2の補助ポンプ
の特性曲線Sbとの交点より背圧Psbは200Paの
ままであり、[数IV]より前記TMP1の背圧の水素ガ
ス分圧は図2のC点即ち50Paとなり、図3より該T
MP1の吸気口圧力(Ps)は1.35Paに低下し、
このときの排気速度(S)は[数V」により22l/s
に改善される。
Similarly, when 90 Pal / s of nitrogen gas is introduced from the intake side of the auxiliary pump 2, the back pressure Psb remains 200 Pa from the intersection with the characteristic curve Sb of the auxiliary pump of FIG. As a result, the hydrogen gas partial pressure of the back pressure of the TMP1 becomes point C in FIG. 2, that is, 50 Pa.
The inlet pressure (Ps) of MP1 drops to 1.35Pa,
The pumping speed (S) at this time is 22 l / s due to [several V].
To be improved.

【0021】このように図2の補助ポンプ2と図3のT
MP1とを組合せた場合、水素ガスに対してはほとんど
排気能力がなかったものが、該補助ポンプ2の吸気側よ
り窒素ガスを導入することにより水素ガスに対する排気
性能が大きく改善される。
Thus, the auxiliary pump 2 of FIG. 2 and the T of FIG.
When it is combined with MP1, it has almost no exhaust capability for hydrogen gas, but by introducing nitrogen gas from the intake side of the auxiliary pump 2, the exhaust performance for hydrogen gas is greatly improved.

【0022】図4は本発明の第2実施例を示し、この実
施例においては前記真空計3と前記MFC6との間に例
えばマイクロコンピュータからなる制御手段7を介在さ
せ、補助ポンプ2に導入する窒素ガスの流量を制御して
該TMP1の排気性能を最大に発揮するようにしたもの
であり、排気効率を向上できる特徴を有する。
FIG. 4 shows a second embodiment of the present invention. In this embodiment, a control means 7 composed of, for example, a microcomputer is interposed between the vacuum gauge 3 and the MFC 6 and introduced into the auxiliary pump 2. The flow rate of nitrogen gas is controlled so that the exhaust performance of the TMP1 is maximized, and it has a feature that the exhaust efficiency can be improved.

【0023】尚、該制御手段6に記憶装置を付加して前
記図2に相当するSb−Psb曲線を記憶させ、図2の
補助ポンプのSb−Psb曲線にてPsbが一定になる
範囲の流量に水素流量と窒素流量の和がなり、かつ図3
の前段TMP1の窒素ガスに対するPs−Pb曲線にて
Psが一定範囲内になるような窒素ガス流量とする。
A storage device is added to the control means 6 to store the Sb-Psb curve corresponding to FIG. 2, and the flow rate in the range where Psb is constant in the Sb-Psb curve of the auxiliary pump of FIG. The sum of the flow rate of hydrogen and the flow rate of nitrogen becomes
The nitrogen gas flow rate is set so that Ps falls within a certain range in the Ps-Pb curve for the nitrogen gas in the preceding TMP1.

【0024】この場合前記チャンバー5に水素ガスが導
入されないときは、前記MFC6の開閉弁を閉止する。
In this case, when hydrogen gas is not introduced into the chamber 5, the open / close valve of the MFC 6 is closed.

【0025】更に上記実施例においては導入ガスとして
窒素ガスを用いたが、該窒素ガスに代えて分子量の大き
なガス、例えば空気やアルゴンガス等を導入してもよ
い。
Further, although nitrogen gas was used as the introduction gas in the above embodiments, a gas having a large molecular weight such as air or argon gas may be introduced instead of the nitrogen gas.

【0026】[0026]

【発明の効果】上記のように本発明によれば、ターボ分
子ポンプに補助ポンプを連結した真空装置において、該
補助ポンプの吸気側に分子量の大きい特定ガスを導入し
たので、該ターボ分子ポンプの吸気口圧力を低下し、タ
ーボ分子ポンプの水素ガス等の排気性能を大巾に改善す
ることができる効果を有する。
As described above, according to the present invention, in a vacuum device in which an auxiliary pump is connected to a turbo molecular pump, a specific gas having a large molecular weight is introduced into the intake side of the auxiliary pump. This has the effect of lowering the intake port pressure and greatly improving the exhaust performance of hydrogen gas or the like of the turbo molecular pump.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の概略図である。FIG. 1 is a schematic diagram of a first embodiment of the present invention.

【図2】補助ポンプのSb−Psb曲線である。FIG. 2 is a Sb-Psb curve of an auxiliary pump.

【図3】ターボ分子ポンプのPs−Pb曲線である。FIG. 3 is a Ps-Pb curve of a turbo molecular pump.

【図4】本発明の第2実施例の概略図である。FIG. 4 is a schematic diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ターボ分子ポンプ 2 補助ポンプ 4 導入管 6 マスフローコントローラー 7 制御手段 1 turbo molecular pump 2 auxiliary pump 4 introduction pipe 6 mass flow controller 7 control means

【数I】[Number I]

【数II】[Formula II]

【数III】[Formula III]

【数IV】[Equation IV]

【数V】[Number V]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月15日[Submission date] October 15, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薬品工業や電子工業及
び研究所等で使用される分析装置、IC製造装置及び試
験装置等において、清浄な高真空或いは超高真空を得る
のに好適な真空ポンプ装置に関する。
BACKGROUND OF THE INVENTION The present invention is suitable for obtaining a clean high vacuum or ultra-high vacuum in an analyzer, an IC manufacturing apparatus, a test apparatus, etc. used in the chemical industry, electronic industry, laboratory, etc. The present invention relates to a vacuum pump device.

【0002】[0002]

【従来の技術】従来この種の真空ポンプ装置としては、
補助ポンプとしてドライ往復動型真空ポンプを用い、タ
ーボ分子ポンプと組合わせた形式のものが知られてい
る。
2. Description of the Related Art Conventionally, as a vacuum pump device of this type,
It is known that a dry reciprocating vacuum pump is used as an auxiliary pump in combination with a turbo molecular pump.

【0003】[0003]

【発明が解決しようとする課題】この従来の真空ポンプ
装置においては、ドライ往復動型真空ポンプの到達圧力
が100Pa前後で、ターボ分子ポンプの補助ポンプと
しては限界の性能であり、吸気ガスが水素ガスのように
軽いガスを含む場合には該ターボ分子ポンプの排気速度
が大きく阻害され、排気性能が低下する問題点を有し、
且つドライ往復動型真空ポンプの到達圧力を下げること
は技術的に難しく、又これを向上するためには費用が極
めて大きくなる等の問題点を有していた。
In this conventional vacuum pump device, the ultimate pressure of the dry reciprocating vacuum pump is about 100 Pa, which is the limit performance as the auxiliary pump of the turbo molecular pump, and the intake gas is hydrogen. When a light gas such as gas is included, the exhaust speed of the turbo molecular pump is greatly hindered, and there is a problem that the exhaust performance decreases.
In addition, it is technically difficult to lower the ultimate pressure of the dry reciprocating vacuum pump, and there is a problem that the cost is extremely high to improve it.

【0004】本発明は上記の問題点を解消し、簡易な手
段によりターボ分子ポンプの吸気口圧力を低下させ、該
ターボ分子ポンプにより水素ガス等の軽いガスの排気性
能を大巾に改善することを目的とする。
The present invention solves the above problems, reduces the intake port pressure of a turbo molecular pump by a simple means, and greatly improves the exhaust performance of light gas such as hydrogen gas by the turbo molecular pump. With the goal.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め本発明は、ターボ分子ポンプに補助ポンプを連結した
真空装置において、該補助ポンプの吸気側に、分子量の
大きい特定ガスを導入する導入管を接続したことを特徴
とする。
In order to achieve the above object, the present invention is directed to a vacuum device in which an auxiliary pump is connected to a turbo molecular pump, in which a specific gas having a large molecular weight is introduced to the intake side of the auxiliary pump. It is characterized by connecting a pipe.

【0006】[0006]

【作用】補助ポンプをその性能がガス種によらない容積
移送型真空ポンプとした場合、ターボ分子ポンプの到達
圧力時に適量の窒素ガスを該真空ポンプの吸気側から導
入すると、該ターボ分子ポンプの吸気口の水素ガスの分
圧が大巾に低下し、これにより水素ガスの排気性能が大
巾に改善される。
When the auxiliary pump is a positive displacement vacuum pump whose performance does not depend on the type of gas, when an appropriate amount of nitrogen gas is introduced from the suction side of the vacuum molecular pump at the ultimate pressure of the turbo molecular pump, The partial pressure of hydrogen gas at the intake port is drastically reduced, which greatly improves the exhaust performance of hydrogen gas.

【0007】[0007]

【実施例】以下本発明の第1実施例を図1乃至図3によ
り説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS.

【0008】1はターボ分子ポンプ(以下TMPと称す
る)を示す。
Reference numeral 1 denotes a turbo molecular pump (hereinafter referred to as TMP).

【0009】2は補助ポンプを示し、該補助ポンプ2は
例えば容積移送型真空ポンプの一種であるドライ往復動
型真空ポンプからなる。
Reference numeral 2 denotes an auxiliary pump, which is composed of, for example, a dry reciprocating vacuum pump which is a kind of volume transfer vacuum pump.

【0010】3は真空計で該真空計3はTMP1と連通
するチャンバー5内の真空度を計測する。
Reference numeral 3 denotes a vacuum gauge, which measures the degree of vacuum in the chamber 5 communicating with the TMP 1.

【0011】4は前記補助ポンプ2の吸気側に窒素ガス
を導入する導入管、6は該導入管4に介在し窒素ガスを
導入調整するマスフローコントローラ(以下MFCと称
する)を示す。
Reference numeral 4 denotes an introduction pipe for introducing nitrogen gas into the intake side of the auxiliary pump 2, and reference numeral 6 denotes a mass flow controller (hereinafter referred to as MFC) interposed in the introduction pipe 4 for adjusting the introduction of nitrogen gas.

【0012】次に本実施例の作動を説明する。Next, the operation of this embodiment will be described.

【0013】TMP1と補助ポンプ2を作動すると、チ
ャンバー5内の水素ガスを含むガスがTMP1で圧縮さ
れ更に補助ポンプ2により大気に排出される。
When the TMP1 and the auxiliary pump 2 are operated, the gas containing hydrogen gas in the chamber 5 is compressed by the TMP1 and further discharged to the atmosphere by the auxiliary pump 2.

【0014】このとき該チャンバー5内の圧力を真空計
3により計測し、MFC6により該チャンバー5内の圧
力が最低になるように窒素ガスを調整して補助ポンプの
吸気側から導入する。これによりTMP1の吸気口圧力
が低下し、排気性能が大巾に改善される。
At this time, the pressure in the chamber 5 is measured by the vacuum gauge 3, the nitrogen gas is adjusted by the MFC 6 so that the pressure in the chamber 5 becomes the minimum, and the nitrogen gas is introduced from the intake side of the auxiliary pump. As a result, the intake port pressure of TMP1 is lowered, and the exhaust performance is greatly improved.

【0015】以下、上記態様を図2及び図3により説明
する。
The above aspect will be described below with reference to FIGS.

【0016】図2は補助ポンプ2の排気速度(Sb)−
吸気口圧力(Psb)曲線を、又図3は水素ガス30P
a1/sと窒素ガス30及び90Pa1/sのガスを排
気したときの該TMP1の背圧(Pb)と吸気口圧(P
s)との関係を示す。
FIG. 2 shows the exhaust speed (Sb) of the auxiliary pump 2.
Intake port pressure (Psb) curve, and Fig. 3 shows hydrogen gas 30P
a1 / s, the nitrogen gas 30 and the back pressure (Pb) and the intake pressure (Pb) of the TMP1 when the gas of 90 Pa1 / s is exhausted.
s) is shown.

【0017】今、TMP1の吸気口から水素ガス30P
a1/sが流入している場合には該TMP1の背圧(P
b)はこれと図2の補助ポンプの特性曲線sbとの交点
即ちA点の200Paであり、又図3より吸気口圧(P
s)は53Paとなり、水素ガスに対するTMP1の排
気速度(SH2)は
Now, the hydrogen gas 30P from the intake port of TMP1
When a1 / s is flowing in, the back pressure (P
b) is 200 Pa at the intersection of this and the characteristic curve sb of the auxiliary pump of FIG. 2, that is, point A, and from FIG.
s) of 53Pa, and the pumping speed of the TMP1 to hydrogen gas (S H2) is

【0018】[0018]

【数I】 [Number I]

【0019】より0.571/sとなる。From the above, it becomes 0.571 / s.

【0020】次に補助ポンプ2の吸気側より窒素ガスを
30Pa1/s導入すると、TMP1の背圧側、即ち補
助ポンプ2の吸入側には水素ガス(QH2)が30Pa
1/sと窒素ガス(QN2)が30Pa1/sが流れて
おり、図2においてこれと補助ポンプの排気速度曲線S
bとの交点より補助ポンプ2の吸気口圧力(Psb)は
200Paであるが
Next, when nitrogen gas of 30 Pa1 / s is introduced from the intake side of the auxiliary pump 2, 30 Pa of hydrogen gas (Q H2 ) is supplied to the back pressure side of the TMP1, that is, the intake side of the auxiliary pump 2.
1 / s and 30 Pa1 / s of nitrogen gas (Q N2 ) are flowing, and this is shown in FIG. 2 and the exhaust speed curve S of the auxiliary pump.
Although the inlet pressure (Psb) of the auxiliary pump 2 is 200 Pa from the intersection with b,

【0021】[0021]

【数II】 [Formula II]

【0022】よりTMPの背圧(Pb)の水素分圧(P
H2は100Pa(図2のB点)であり、且つ図3よ
りTMP1の吸気口圧力(Ps)は10Paに低下し、
該TMP1の水素ガスの排気速度(SH2)は
From the back pressure (Pb) of TMP, the hydrogen partial pressure (P
H2 ) is 100 Pa (point B in FIG. 2), and from FIG. 3, the intake port pressure (Ps) of TMP1 drops to 10 Pa,
Pumping speed of the hydrogen gas in the TMP1 (S H2) is

【0023】[0023]

【数III】 [Formula III]

【0024】より31/sに改善される。It is improved to 31 / s.

【0025】このとき背圧側の窒素ガス分圧はほぼ0か
ら100Paに増大するが、図3により吸気口圧力は全
く影響を受けない。
At this time, the nitrogen gas partial pressure on the back pressure side increases from almost 0 to 100 Pa, but the intake port pressure is not affected at all by FIG.

【0026】同様にして補助ポンプ2の吸気側から窒素
ガスを90Pa1/sを導入すると、図2の補助ポンプ
の特性曲線Sbとの交点より背圧Psbは200Paの
ままであり、
Similarly, when 90 Pa1 / s of nitrogen gas is introduced from the intake side of the auxiliary pump 2, the back pressure Psb remains 200 Pa from the intersection with the characteristic curve Sb of the auxiliary pump of FIG.

【0027】[0027]

【数IV】 [Equation IV]

【0028】より前記TMP1の背圧の水素ガス分圧
(PH2は図2のC点即ち50Paとなり、図3より
該TMP1の吸気口圧力(Ps)は1.35Paに低下
し、このときの排気速度(S)は
From the TMP1 back pressure, the hydrogen gas partial pressure
(P H2) point C i.e. 50Pa next to FIG. 2, the air inlet pressure of the TMP1 from FIG 3 (Ps) is reduced to 1.35 Pa, the exhaust speed at this time (S) is

【0029】[0029]

【数V】 [Number V]

【0030】により221/sに改善される。Is improved to 221 / s.

【0031】このように図2の補助ポンプ2と図3のT
MP1とを組合せた場合、水素ガスに対してはほとんど
排気能力がなかったものが、該補助ポンプ2の吸気側よ
り窒素ガスを導入することにより水素ガスに対する排気
性能が大きく改善される。
Thus, the auxiliary pump 2 of FIG. 2 and the T of FIG.
When it is combined with MP1, it has almost no exhaust capability for hydrogen gas, but by introducing nitrogen gas from the intake side of the auxiliary pump 2, the exhaust performance for hydrogen gas is greatly improved.

【0032】図4は本発明の第2実施例を示し、この実
施例においては前記真空計3と前記MFC6との間に例
えばマイクロコンピュータからなる制御手段7を介在さ
せ、補助ポンプ2に導入する窒素ガスの流量を制御して
該TMP1の排気性能を最大に発揮するようにしたもの
であり、排気効率を向上できる特徴を有する。
FIG. 4 shows a second embodiment of the present invention. In this embodiment, a control means 7 composed of, for example, a microcomputer is interposed between the vacuum gauge 3 and the MFC 6 and introduced into the auxiliary pump 2. The flow rate of nitrogen gas is controlled so that the exhaust performance of the TMP1 is maximized, and it has a feature that the exhaust efficiency can be improved.

【0033】尚、該制御手段6に記憶装置を付加して前
記図2に相当するSb−Psb曲線を記憶させ、図2の
補助ポンプのSb−Psb曲線にてPsbが一定になる
範囲の流量に水素流量と窒素流量の和がなり、かつ図3
の前段TMP1の窒素ガスに対するPs−Pb曲線にて
Psが一定範囲内になるような窒素ガス流量とする。
A storage device is added to the control means 6 to store the Sb-Psb curve corresponding to FIG. 2, and the flow rate in the range where Psb is constant in the Sb-Psb curve of the auxiliary pump of FIG. The sum of the flow rate of hydrogen and the flow rate of nitrogen becomes
The nitrogen gas flow rate is set so that Ps falls within a certain range in the Ps-Pb curve for the nitrogen gas in the preceding TMP1.

【0034】この場合前記チャンバー5に水素ガスが導
入されないときは、前記MFC6の開閉弁を閉止する。
In this case, when hydrogen gas is not introduced into the chamber 5, the open / close valve of the MFC 6 is closed.

【0035】更に上記実施例においては導入ガスとして
窒素ガスを用いたが、該窒素ガスに代えて分子量の大き
なガス、例えば空気やアルゴンガス等を導入してもよ
い。
Further, although nitrogen gas was used as the introduction gas in the above embodiments, a gas having a large molecular weight such as air or argon gas may be introduced instead of the nitrogen gas.

【0036】[0036]

【発明の効果】上記のように本発明によれば、ターボ分
子ポンプに補助ポンプを連結した真空装置において、該
補助ポンプの吸気側に分子量の大きい特定ガスを導入し
たので、該ターボ分子ポンプの吸気口圧力を低下し、タ
ーボ分子ポンプの水素ガス等の排気性能を大巾に改善す
ることができる効果を有する。
As described above, according to the present invention, in a vacuum device in which an auxiliary pump is connected to a turbo molecular pump, a specific gas having a large molecular weight is introduced into the intake side of the auxiliary pump. This has the effect of lowering the intake port pressure and greatly improving the exhaust performance of hydrogen gas or the like of the turbo molecular pump.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ターボ分子ポンプに補助ポンプを連結し
た真空装置において、該補助ポンプの吸気側に、分子量
の大きい特定ガスを導入する導入管を接続したことを特
徴とする真空ポンプ装置。
1. A vacuum pump apparatus in which an auxiliary pump is connected to a turbo molecular pump, and an introduction pipe for introducing a specific gas having a large molecular weight is connected to an intake side of the auxiliary pump.
【請求項2】 前記真空装置に特定ガスの導入量を調整
制御する制御手段を設けたことを特徴とする請求項1に
記載の真空ポンプ装置。
2. The vacuum pump device according to claim 1, wherein the vacuum device is provided with control means for adjusting and controlling the introduction amount of the specific gas.
【請求項3】 前記特定ガスが窒素ガスであることを特
徴とする請求項1に記載の真空ポンプ装置。
3. The vacuum pump device according to claim 1, wherein the specific gas is nitrogen gas.
JP19282293A 1993-07-07 1993-07-07 Vacuum pump device Expired - Fee Related JP3494457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19282293A JP3494457B2 (en) 1993-07-07 1993-07-07 Vacuum pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19282293A JP3494457B2 (en) 1993-07-07 1993-07-07 Vacuum pump device

Publications (2)

Publication Number Publication Date
JPH0727089A true JPH0727089A (en) 1995-01-27
JP3494457B2 JP3494457B2 (en) 2004-02-09

Family

ID=16297561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19282293A Expired - Fee Related JP3494457B2 (en) 1993-07-07 1993-07-07 Vacuum pump device

Country Status (1)

Country Link
JP (1) JP3494457B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454524B1 (en) * 1998-07-21 2002-09-24 Seiko Instruments Inc. Vacuum pump and vacuum apparatus
JP2008095504A (en) * 2006-10-05 2008-04-24 Agilent Technol Inc Analysis apparatus
JP2008218663A (en) * 2007-03-02 2008-09-18 Mitsubishi Heavy Ind Ltd Operating method of vacuum treatment device and vacuum treatment device
JP2009510321A (en) * 2005-09-28 2009-03-12 エドワーズ リミテッド How to pump gas
EP2644900A3 (en) * 2012-03-30 2015-08-19 Pfeiffer Vacuum GmbH Pump system for evacuating of gas from a plurality of chambers and method for controlling the pump system
CN110036204A (en) * 2016-12-15 2019-07-19 莱宝有限公司 Vacuum pump system and method for operated vacuum pumps system
WO2023007820A1 (en) * 2021-07-30 2023-02-02 株式会社島津製作所 Mass spectrometer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454524B1 (en) * 1998-07-21 2002-09-24 Seiko Instruments Inc. Vacuum pump and vacuum apparatus
JP2009510321A (en) * 2005-09-28 2009-03-12 エドワーズ リミテッド How to pump gas
JP2008095504A (en) * 2006-10-05 2008-04-24 Agilent Technol Inc Analysis apparatus
JP2008218663A (en) * 2007-03-02 2008-09-18 Mitsubishi Heavy Ind Ltd Operating method of vacuum treatment device and vacuum treatment device
EP2644900A3 (en) * 2012-03-30 2015-08-19 Pfeiffer Vacuum GmbH Pump system for evacuating of gas from a plurality of chambers and method for controlling the pump system
CN110036204A (en) * 2016-12-15 2019-07-19 莱宝有限公司 Vacuum pump system and method for operated vacuum pumps system
WO2023007820A1 (en) * 2021-07-30 2023-02-02 株式会社島津製作所 Mass spectrometer

Also Published As

Publication number Publication date
JP3494457B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
US7793685B2 (en) Controlling gas partial pressures for process optimization
US20080145238A1 (en) Vacuum exhaust apparatus and drive method of vacuum exhaust apparatus
US6782907B2 (en) Gas recirculation flow control method and apparatus for use in vacuum system
JPH08232870A (en) Vacuum pump stand
CN100470434C (en) Device and method for controlling atmosphere content and pressure balance in negative pressure container
JP2005330967A (en) Vacuum pump system for light gas
JPH10220373A (en) Control method and device for volumetric flow amount of vacuum pump
JPH0727089A (en) Vacuum pump device
US6662795B2 (en) Method and apparatus configured to maintain a desired engine emissions level
CN108424996A (en) The emulation mode of dry type oil-sealed rotary pump pumping process for RH vacuum refinings
JP3982673B2 (en) Operation method of vacuum exhaust system
JP5102068B2 (en) Multistage vacuum pump
JPH05248383A (en) Multi-stage vacuum pump system
JP2007107398A (en) Evacuating device and evacuating method
EP0972561A3 (en) Vacuum apparatus
JP2760331B2 (en) Vacuum exhaust device
JP2003139056A (en) Evacuation device
CN219873413U (en) Vacuum system of wafer bonding equipment and wafer bonding equipment
TWI684707B (en) Energy-saving exhaust gas pumping system
CN219260275U (en) Control system for stabilizing reaction cavity pressure of silicon carbide epitaxial equipment
JPH10146791A (en) Glove box device
CN213803801U (en) Mask bacterial filtration test machine
TWI230391B (en) Method and apparatus for regulating exhaust pressure in evacuation system of semiconductor process chamber
TWI240947B (en) Pumping system of load lock chamber and operating method thereof
KR20230079022A (en) vacuum exhaust system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031020

LAPS Cancellation because of no payment of annual fees