JPH07270466A - Failure state discrimination method - Google Patents

Failure state discrimination method

Info

Publication number
JPH07270466A
JPH07270466A JP6063106A JP6310694A JPH07270466A JP H07270466 A JPH07270466 A JP H07270466A JP 6063106 A JP6063106 A JP 6063106A JP 6310694 A JP6310694 A JP 6310694A JP H07270466 A JPH07270466 A JP H07270466A
Authority
JP
Japan
Prior art keywords
ground fault
failure
fault current
cause
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6063106A
Other languages
Japanese (ja)
Inventor
Masakatsu Arakane
昌克 荒金
Munehisa Yokoya
宗久 横谷
Hiroyuki Katsukawa
裕幸 勝川
Satoshi Morikawa
智 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Chubu Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Chubu Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP6063106A priority Critical patent/JPH07270466A/en
Publication of JPH07270466A publication Critical patent/JPH07270466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To alleviate a burden due to a discrimination analysis and accurately discriminate failure states in discriminating the causes of a grounding failure occurring in a power cable on the basis of a waveform analysis as well as the discrimination analysis. CONSTITUTION:The waveform of earth current flowing in a power cable is arrested with CT and judgement is made as to whether a failure cause is attributable to thunderbolt on the basis of the wave height value of final flashover. Then, a discrimination analysis is undertaken on the basis of the spectrum analysis value of the earth current waveform. Also, failure causes are generally classified on the basis of whether earth current is flowing before the flashover and, then, a discrimination analysis is undertaken on the basis of the spectrum analysis value of the earth current waveform. Thus, a burden due to the discrimination analysis can be alleviated and discrimination accuracy can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、送電線や配電線のよう
な電力線において地絡故障が生じた場合に、その地絡波
形から故障原因を判別する故障様相判別方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a failure appearance determining method for determining the cause of a failure from a ground fault waveform when a ground fault occurs in a power line such as a transmission line or a distribution line.

【0002】[0002]

【従来の技術】電力線の地絡故障の主な原因としては、
落雷、樹木の接触、鳥や蛇等の動物の接触、クレーン等
の金属の接触、氷の付着、碍子の絶縁低下等を挙げるこ
とができる。これらの原因により電力線に地絡故障が生
じた場合、監視所において地絡故障の発生は容易に把握
できるものの、その故障原因を特定することは容易では
なく、多くの場合に作業者が現場へ出向いて故障原因を
発見したうえ、修復作業を行っていた。ところが故障点
を特定すること自体が容易ではないため、故障原因の発
見に多くの時間を要するという問題があった。
2. Description of the Related Art The main causes of ground faults in power lines are:
Examples include lightning strikes, contact with trees, contact with animals such as birds and snakes, contact with metals such as cranes, adhesion of ice, and lower insulation of insulators. When a ground fault occurs in the power line due to these causes, it is easy to identify the occurrence of the ground fault at the monitoring station, but it is not easy to identify the cause of the fault, and in many cases the worker will not be able to visit the site. I went out to find out the cause of the failure and then did repair work. However, since it is not easy to specify the failure point, it takes a lot of time to find the cause of the failure.

【0003】そこで本出願人は、電力線に設置したCT
により地絡電流波形を取込み、地絡電流波形をスペクト
ル解析して得られたパワースペトクル値を判別分析、ニ
ューラルネットワーク等を利用した故障原因判別方法を
開発し、既に特願平5-72002 号として特許出願済みであ
る。この方法は、電力線に生ずる地絡電流波形が故障原
因により異なるとの知見に基づいて開発されたものであ
り、監視所において故障原因をほぼ正確に推定したうえ
で現場へ出向くことができ、修復作業時間を大幅に短縮
できる効果がある。
Therefore, the applicant of the present invention has installed a CT on the power line.
The ground fault current waveform was taken in by the method, the power spectrum value obtained by spectrum analysis of the ground fault current waveform was discriminated and analyzed, and a failure cause discrimination method using a neural network was developed. Patent pending. This method was developed based on the knowledge that the ground fault current waveform generated on the power line differs depending on the cause of the failure, and it is possible to estimate the cause of the failure at the monitoring station and then go to the site for repair. This has the effect of significantly reducing the work time.

【0004】[0004]

【発明が解決しようとする課題】ところが、この先願の
故障様相判別方法においては地絡電流波形のスペクトル
解析値と地絡電流値を用い判別分析を行って故障様相の
判定を実施していたが、ファイナルフラッシオーバが明
確でなくこのポイントの取り方によって判別精度が低下
するという問題があった。本発明はこのような先願発明
の問題点を解決して正確な故障原因の判別を行うことが
できるようにした故障様相判別方法を提供するためにな
されたものである。
However, in the failure appearance discriminating method of this prior application, the failure appearance is determined by performing the discriminant analysis using the spectral analysis value of the ground fault current waveform and the ground fault current value. However, there is a problem that the final flashover is not clear and the determination accuracy is lowered depending on how to take this point. The present invention has been made to solve the problems of the invention of the prior application and to provide a failure appearance determining method capable of accurately determining the cause of a failure.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた第1の発明は、電力線の地絡電流波形から
故障原因を判別する故障様相判別方法において、ファイ
ナルフラッシオーバの波高値により故障原因が落雷であ
るか否かを大分類したうえで、地絡電流波形のスペクト
ル解析値による判別分析を行うことを特徴とするもので
ある。また第2の発明は、電力線の地絡電流波形から故
障原因を判別する故障様相判別方法において、ファイナ
ルフラッシオーバ前の地絡電流の有無により故障原因を
大分類したうえで、地絡電流波形のスペクトル解析値に
よる判別分析を行うことを特徴とするものである。な
お、後述する実施例のように、第1の発明と第2の発明
とを組み合わせて実施すれば、より好ましい結果を得る
ことができる。
SUMMARY OF THE INVENTION A first invention made to solve the above problems is a method for determining a cause of a failure from a ground fault current waveform of a power line, in which a peak value of final flashover is used. This method is characterized by roughly classifying whether or not the cause of the failure is a lightning strike, and then performing a discriminant analysis based on the spectrum analysis value of the ground fault current waveform. A second aspect of the present invention is a method of determining a cause of a failure from a ground fault current waveform of a power line, wherein the cause of the fault is roughly classified according to the presence or absence of a ground fault current before the final flashover, and then the ground fault current waveform It is characterized by performing discriminant analysis based on spectrum analysis values. It should be noted that more preferable results can be obtained by implementing the first invention and the second invention in combination as in the embodiments described later.

【0006】[0006]

【作用】第1の発明によれば、地絡電流の生波形である
ファイナルフラッシオーバの波高値により故障原因が落
雷であるか否かをまず見分け、その後に地絡電流波形の
スペクトル解析値を判別分析するので、判別分析を軽減
させることができる。また第2の発明においても、ファ
イナルフラッシオーバ前の地絡電流の有無を見分け、故
障原因を大分類したうえで地絡電流波形のスペクトル解
析値を判別分析するので、判別分析すべき故障原因の範
囲を従来よりも減少させることができ、判別分析を軽減
させることができるとともに、故障原因の判別をより正
確に行うことができる。
According to the first aspect of the present invention, whether or not the cause of the failure is lightning strike is first identified by the peak value of the final flashover, which is the raw waveform of the ground fault current, and then the spectrum analysis value of the ground fault current waveform is determined. Since the discriminant analysis is performed, the discriminant analysis can be reduced. Also in the second invention, the presence or absence of the ground fault current before the final flashover is discriminated, the causes of the fault are roughly classified, and the spectrum analysis value of the ground fault current waveform is discriminated and analyzed. The range can be reduced as compared with the conventional case, the discriminant analysis can be reduced, and the cause of failure can be discriminated more accurately.

【0007】[0007]

【実施例】以下に本発明を図面を参照しつつ更に詳細に
説明する。図1は本発明のフローチャートであり、まず
電力線の地絡電流波形をCTにより検出し、この地絡電
流波形を解析のために記憶させたうえでファイナルフラ
ッシオーバ前後の解析部分を取り出す。本発明において
は、ファイナルフラッシオーバを特定する必要がある
が、図2に示すように地絡事故によって生じた地絡電流
波形が所定のしきい値を越えたときをファイナルフラッ
シオーバの発生点と定義する。このしきい値は、実線路
においては20A程度としておけば確実にファイナルフ
ラッシオーバの判別を行うことができる。なお、波形分
析を行うために、所定の時間範囲内の波形は常に記憶さ
せておくものとする。
The present invention will be described in more detail below with reference to the drawings. FIG. 1 is a flow chart of the present invention. First, a ground fault current waveform of a power line is detected by CT, this ground fault current waveform is stored for analysis, and an analysis portion before and after final flashover is taken out. In the present invention, it is necessary to specify the final flashover, but as shown in FIG. 2, when the ground fault current waveform generated by the ground fault exceeds a predetermined threshold value, the final flashover occurrence point is defined. Define. If this threshold value is set to about 20 A in the actual line, the final flashover can be surely determined. In addition, in order to perform the waveform analysis, the waveform within the predetermined time range is always stored.

【0008】本実施例では、まずファイナルフラッシオ
ーバの波高値の最大値によって、地絡事故原因が落雷で
あるか否かを見分ける。即ち、図3に示すように雷の場
合にはファイナルフラッシオーバの波高値がその後の続
流による地絡電流値よりも非常に大きくなるので、例え
ば地絡電流値の2倍以上の波高値が検出された場合に雷
と判断させればよい。これに対して他の事故原因の場合
には、図4〜図7に示すようにファイナルフラッシオー
バの波高値とその後の続流による地絡電流値との差が比
較的少ないため、上記の方法により雷か否かを正確かつ
簡単に見分けることができる。なお、雷と判断された場
合には、それ以上の判別を行う必要はない。
In this embodiment, first, it is discriminated whether or not the cause of the ground fault accident is a lightning strike based on the maximum peak value of the final flashover. That is, as shown in FIG. 3, in the case of lightning, the peak value of the final flashover becomes much larger than the ground fault current value due to the subsequent current, so that, for example, the peak value of more than twice the ground fault current value If it is detected, it should be judged as lightning. On the other hand, in the case of other causes, as shown in FIGS. 4 to 7, the difference between the peak value of the final flashover and the ground fault current value due to the subsequent flow is relatively small. This makes it possible to accurately and easily identify whether or not it is a thunder. If it is determined that there is thunder, no further determination is necessary.

【0009】次にファイナルフラッシオーバ前の地絡電
流の有無によって、事故原因の大分類を行う。図3〜図
7は地絡電流波形(生波形)を示すもので、図3は落雷
による地絡電流波形、図4は樹木(桜)の接触による地
絡電流波形、図5は鳥の接触による地絡電流波形、図6
は氷の付着による地絡電流波形、図7は金属棒の接触に
よる地絡電流波形を示している。これらの図から分かる
ように、落雷、氷の付着、金属棒の接触等の場合にはフ
ァイナルフラッシオーバの前には地絡電流はほとんどな
いが、樹木や鳥の接触による場合にはファイナルフラッ
シオーバの前に明確な地絡電流が生じている。これらの
樹木や鳥が原因となる場合には、徐々に漏洩電流が流れ
て接触物の表面が炭化し、ファイナルフラッシオーバに
至るためと考えられる。また碍子汚損の場合にも徐々に
漏洩電流が流れてファイナルフラッシオーバに至るた
め、樹木や鳥と同様にファイナルフラッシオーバの前に
明確な地絡電流が生じることとなる。そこで本発明では
地絡電流波形をスペクトル解析する前の生波形の段階
で、ファイナルフラッシオーバ前の地絡電流の有無によ
り故障原因を大分類する。
Next, the cause of the accident is roughly classified according to the presence or absence of the ground fault current before the final flashover. 3 to 7 show ground fault current waveforms (raw waveforms). Fig. 3 shows ground fault current waveforms caused by lightning strikes, Fig. 4 shows ground fault current waveforms caused by contact with trees (cherry blossoms), and Fig. 5 shows contact with birds. Ground fault current waveform, Fig. 6
Shows a ground fault current waveform due to ice adhesion, and FIG. 7 shows a ground fault current waveform due to contact of a metal rod. As can be seen from these figures, there is almost no ground fault current before the final flashover in the case of lightning strikes, ice adhesion, contact with metal rods, etc., but in the case of contact with trees or birds, the final flashover occurs. There is a clear ground fault current in front of. When these trees and birds are the cause, it is considered that the leakage current gradually flows and the surface of the contact object is carbonized, resulting in final flashover. Also, in the case of insulator fouling, the leakage current gradually flows to reach the final flashover, so that a clear ground fault current occurs before the final flashover as in the case of trees and birds. Therefore, in the present invention, at the stage of the raw waveform before the spectrum analysis of the ground fault current waveform, the failure causes are roughly classified according to the presence or absence of the ground fault current before the final flashover.

【0010】一方、取り出された地絡電流波形は、先願
発明と同様にスペクトル解析を行う。地絡電流波形には
直流成分が含まれていることがあり、また最大振幅がば
らばらであるので、スペクトル解析を行う前にまず波形
を正規化する必要がある。このため、図1のフローに示
すように直流成分をカットするとともに、地絡電流値の
最大振幅で割算を行い、どの地絡電流波形も最大振幅が
同一となるように正規化する。次に正規化された地絡電
流波形をスペクトル解析する。その結果は図8以下に示
す通りであり、商用周波数の部分にスペクトル強度のピ
ークが現れるが、その整数倍の周波数(高調波)の部分
にも様々なピークが現れ、しかもそのパターンは地絡事
故の原因によって変化する。
On the other hand, the extracted ground fault current waveform is subjected to spectrum analysis as in the prior invention. Since the ground-fault current waveform may include a DC component and the maximum amplitude is different, it is necessary to normalize the waveform before performing spectrum analysis. Therefore, as shown in the flow of FIG. 1, the direct current component is cut off, the ground fault current value is divided by the maximum amplitude, and any ground fault current waveform is normalized to have the same maximum amplitude. Next, the normalized ground fault current waveform is spectrally analyzed. The result is as shown in Fig. 8 and below. Although the peak of the spectrum intensity appears in the commercial frequency part, various peaks also appear in the frequency part (harmonics) of integral multiples, and the pattern has a ground fault. It depends on the cause of the accident.

【0011】例えば、図8に示す樹木の場合には商用周
波数の部分のみに大きいスペクトル強度のピークが現
れ、その他の部分にはほとんどピークが生じない。図9
に示す鳥の場合には商用周波数の3倍の周波数の部分に
もわずかなピークが生じる。また図10に示すへびの場合
には、商用周波数の部分の大きいピークの他に、1000Hz
までの部分に複雑な多数のピークが生じる。
For example, in the case of the tree shown in FIG. 8, a peak with a large spectral intensity appears only in the commercial frequency portion, and almost no peak appears in other portions. Figure 9
In the case of the bird shown in (1), a slight peak is generated even at the frequency three times the commercial frequency. In addition, in the case of the snake shown in Fig. 10, in addition to the large peak of the commercial frequency part, 1000 Hz
A large number of complex peaks occur in the area up to.

【0012】このように、地絡電流波形をスペクトル解
析すると地絡事故の原因が同一であれば共通のパワース
ペクトル値が得られるので、これを重判別分析手法およ
びニューラルネットワーク手法を利用して分析すること
により、原因を推定する。重判別分析処理は複数の原因
の可能性を数値で示して判別する手法であり、この分析
処理を繰り返し実施して上位のものに絞り込み、原因を
推定する。前記したように、本発明では生波形に基づい
て予め故障原因が大分類されているため、故障原因の推
定が容易となる。
As described above, when the ground fault current waveform is spectrally analyzed, a common power spectrum value can be obtained if the cause of the ground fault is the same. Therefore, this is analyzed using the multiple discriminant analysis method and the neural network method. By doing so, the cause is estimated. The multiple discriminant analysis process is a method of discriminating by showing numerical values the possibility of a plurality of causes, and this analysis process is repeatedly executed to narrow down to a higher rank and to estimate the cause. As described above, in the present invention, the cause of failure is roughly classified in advance based on the raw waveform, so that the cause of failure can be easily estimated.

【0013】本実施例の判別分析システムでは、地絡電
流波形をファイナルフラッシオーバの前後に分け、フラ
ッシオーバ直前3波とフラッシオーバ直後3波を取り出
し、それぞれフーリエ変換しパワースペクトルとした
後、各故障原因の特徴を示す商用周波数の整数倍の周波
数におけるパワースペクトル値および故障電流のフラッ
シオーバ前、フラッシオーバ時、フラッシオーバ後の地
絡電流値を代表特性として各故障原因の群を作り、それ
らを分ける基準(判別式)を導き出しておく。ここで新
たに得られたデータを判別式にかけ分析処理を実施し、
その結果から上位に挙げられた(可能性が高いと分析さ
れた)故障原因に絞り込み、再度その絞り込んだ故障原
因のみを対象として分析処理を行い、最終判別結果とす
る。また、ニューロ処理の場合も各原因の可能性が数値
で出力され、判別を実施する手法であり、本システムで
は事前に学習データとして上記代表特性のパワースペク
トル値および地絡電流値を入力層、中間層、出力層の3
層からなるバックプロパゲーションモデルのニューラル
ネットワーク入力層にランダムに数千回与えて学習さ
せ、そこに新しいデータを入力し、出力層の各故障原因
のうち最も大きい値を出力したものを判別結果とする。
In the discriminant analysis system of the present embodiment, the ground fault current waveform is divided into before and after the final flashover, three waves immediately before the flashover and three waves immediately after the flashover are taken out, respectively, Fourier-transformed into power spectra, and then each A group of each cause of failure is created with the power spectrum value at a frequency that is an integer multiple of the commercial frequency indicating the characteristic of the cause of failure and the ground fault current value before, during, and after the flashover of the failure current as representative characteristics. Derive the criteria (discriminant) for dividing. Here, the newly obtained data is applied to the discriminant to perform the analysis process,
From the result, the cause of failure which is listed up (analyzed with high possibility) is narrowed down, and the analysis process is performed again only for the narrowed down cause of failure, and the final judgment result is obtained. Also, in the case of neuro processing, the possibility of each cause is output as a numerical value, and this is a method of performing discrimination.In this system, the power spectrum value and the ground fault current value of the above-mentioned representative characteristics are previously learned as learning data in the input layer, Middle layer, output layer 3
The neural network input layer of the back-propagation model consisting of layers is randomly given to the input layer several thousand times for learning, new data is input to that layer, and the one with the largest value among the output layer failure causes is output as the discrimination result. To do.

【0014】更に実施例の場合には、エキスパートシス
テムとして知られる推論システムに重判別分析結果およ
びニューロ処理結果を読み込むとともに、現場周辺の季
節および時間等日時の情報も取り入れ、地絡故障の原因
を総合判定する。つまり、学習能力はないが適度なデー
タ量で判別式を導き出し分析を実施することができる重
判別分析手法の結果と、初期段階のネットワークを作成
するために膨大なデータの数を必要とするが新たなデー
タを得るたびに学習する能力を有するニューラルネット
ワーク手法の結果を、それぞれの利点を生かして、判別
された故障原因のデータ量に応じていずれの分析結果を
重視するかの重みづけをして判定するわけである。その
際、正判別の確率をより向上させるため、地絡故障発生
時の季節や時間の情報を取込み、判定の前に、起こり得
ない故障原因を割り出し、判別結果としての故障原因か
ら削除し、結果を限定しておく。これは例えば、冬季に
へびが冬眠中であるにもかかわらず紛らわしいパワース
ペクトル値が生じた場合、それをへびによる地絡故障で
あると誤認したり、夜間であるのにクレーン等の重機
(金属棒)による地絡であると誤判断したりすることを
防止するためである。更にこのほか、微妙な最終判定に
なった場合に備え、故障実績データを蓄積しているデー
タベースから、過去の同時期の故障原因の実績や各故障
原因の累積件数を取込み、総合判定の際にいずれの判別
結果を選択するかの重みづけに加味すれば、より正確な
推論が可能となる。このようにして、故障原因を正確か
つ詳細に判別することが可能となる。
Further, in the case of the embodiment, in addition to reading the result of the multiple discriminant analysis and the result of the neuro processing into the inference system known as the expert system, the information about the date and time such as the season and the time around the site is also taken in to determine the cause of the ground fault. Make a comprehensive judgment. In other words, the result of the multiple discriminant analysis method, which has no learning ability but can derive a discriminant with an appropriate amount of data and carry out the analysis, and the enormous amount of data are required to create the network in the initial stage. The results of the neural network method that has the ability to learn each time new data is obtained are weighted by taking advantage of their respective advantages and which analysis result is to be emphasized according to the data amount of the determined failure cause. To judge. At that time, in order to further improve the probability of positive discrimination, the information on the season and time at the time of occurrence of a ground fault is taken in, the impossibility of the cause of the fault is determined before the determination, and the cause of the discrimination is deleted. Limit the results. This is because, for example, if a confusing power spectrum value occurs in the winter even though the snake is hibernating, it may be mistaken for a ground fault due to the snake, or heavy machinery such as a crane (metal This is to prevent erroneous determination that a ground fault is caused by a stick. In addition to this, in case of a subtle final judgment, the actual results of failure causes at the same time in the past and the cumulative number of each failure cause are taken in from the database that stores the failure result data, and used in the comprehensive judgment. More accurate inference can be made by adding weighting to which discrimination result is selected. In this way, the cause of failure can be determined accurately and in detail.

【0015】[0015]

【発明の効果】以上に説明したように、第1の発明及び
第2の発明によれば地絡電流の生波形から故障原因を大
分類したうえでスペクトル解析値を判別分析するので、
判別分析を軽減し正確な故障原因の判別を行うことがで
きる。このため、本発明を利用すれば遠隔の監視所等に
おいて地絡故障の原因を精度良く知ることができ、原因
に応じた対策を直ちに講ずることが可能となる利点があ
る。よって本発明は従来の問題点を解決した故障様相判
別方法として、業界に寄与するところは大きいものであ
る。
As described above, according to the first invention and the second invention, the spectrum analysis value is discriminated and analyzed after the failure cause is roughly classified from the raw waveform of the ground fault current.
It is possible to reduce the discriminant analysis and accurately determine the cause of failure. Therefore, the use of the present invention has an advantage that the cause of the ground fault can be accurately known at a remote monitoring place or the like, and the countermeasure according to the cause can be immediately taken. Therefore, the present invention greatly contributes to the industry as a failure aspect determination method that solves the conventional problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すフローチャートである。FIG. 1 is a flow chart showing an embodiment of the present invention.

【図2】ファイナルフラッシオーバの波形図である。FIG. 2 is a waveform diagram of final flashover.

【図3】落雷による地絡電流の波形を示す波形図であ
る。
FIG. 3 is a waveform diagram showing a waveform of a ground fault current caused by a lightning strike.

【図4】樹木による地絡電流の波形を示す波形図であ
る。
FIG. 4 is a waveform diagram showing a waveform of a ground fault current caused by a tree.

【図5】鳥による地絡電流の波形を示す波形図である。FIG. 5 is a waveform diagram showing a waveform of a ground fault current due to a bird.

【図6】氷による地絡電流の波形を示す波形図である。FIG. 6 is a waveform diagram showing a waveform of a ground fault current caused by ice.

【図7】金属棒による地絡電流の波形を示す波形図であ
る。
FIG. 7 is a waveform diagram showing a waveform of a ground fault current generated by a metal rod.

【図8】樹木によって生ずる地絡電流波形のスペクトル
を示すグラフである。
FIG. 8 is a graph showing a spectrum of a ground fault current waveform generated by a tree.

【図9】鳥によって生ずる地絡電流波形のスペクトルを
示すグラフである。
FIG. 9 is a graph showing a spectrum of a ground fault current waveform generated by a bird.

【図10】へびによって生ずる地絡電流波形のスペクト
ルを示すグラフである。
FIG. 10 is a graph showing a spectrum of a ground fault current waveform generated by a snake.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝川 裕幸 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 (72)発明者 森川 智 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Katsukawa 2-56, Sudamachi, Mizuho-ku, Nagoya, Aichi Prefecture Insulator Nihon Honjo Co., Ltd. (72) Inventor Satoshi Morikawa 2-56, Sudamachi, Mizuho-ku, Nagoya, Aichi Issue: Insulator of Nihonhon Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電力線の地絡電流波形から故障原因を判
別する故障様相判別方法において、ファイナルフラッシ
オーバの波高値により故障原因が落雷であるか否かを大
分類したうえで、地絡電流波形のスペクトル解析値によ
る判別分析を行うことを特徴とする故障様相判別方法。
1. A ground fault current waveform in which a fault cause is discriminated from a ground fault current waveform of a power line, by roughly classifying whether or not the fault cause is a lightning strike based on the peak value of the final flashover. A method for discriminating a failure aspect, which is characterized by performing discriminant analysis based on spectral analysis values of.
【請求項2】 電力線の地絡電流波形から故障原因を判
別する故障様相判別方法において、ファイナルフラッシ
オーバ前の地絡電流の有無により故障原因を大分類した
うえで、地絡電流波形のスペクトル解析値による判別分
析を行うことを特徴とする故障様相判別方法。
2. A method of determining a failure cause from a ground fault current waveform of a power line, wherein the cause of failure is roughly classified according to the presence or absence of a ground fault current before final flashover, and then a spectrum analysis of the ground fault current waveform is performed. A method for discriminating a failure aspect, which is characterized by performing discriminant analysis based on values.
【請求項3】 地絡電流が所定のしきい値を越えたとき
をファイナルフラッシオーバの発生点と定義して判別分
析を行う請求項1または2に記載の故障様相判別方法。
3. The method for determining a failure aspect according to claim 1, wherein when the ground fault current exceeds a predetermined threshold value, the point where the final flashover occurs is defined and a discriminant analysis is performed.
JP6063106A 1994-03-31 1994-03-31 Failure state discrimination method Pending JPH07270466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6063106A JPH07270466A (en) 1994-03-31 1994-03-31 Failure state discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6063106A JPH07270466A (en) 1994-03-31 1994-03-31 Failure state discrimination method

Publications (1)

Publication Number Publication Date
JPH07270466A true JPH07270466A (en) 1995-10-20

Family

ID=13219718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6063106A Pending JPH07270466A (en) 1994-03-31 1994-03-31 Failure state discrimination method

Country Status (1)

Country Link
JP (1) JPH07270466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503215B1 (en) * 2003-04-04 2005-07-25 서효성 The diagnostic system of radiation signal of electrical power equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503215B1 (en) * 2003-04-04 2005-07-25 서효성 The diagnostic system of radiation signal of electrical power equipment

Similar Documents

Publication Publication Date Title
US11656263B2 (en) Effective feature set-based high impedance fault detection
CN109946075A (en) A kind of bearing condition monitoring and method for diagnosing faults
CN114217164B (en) Cable fault distance measurement method and system based on discharge waveform intelligent identification
Núñez et al. Feature analysis and classification methodology for overhead distribution fault events
Veerasamy et al. A novel discrete wavelet transform‐based graphical language classifier for identification of high‐impedance fault in distribution power system
CN113850330A (en) Power distribution network fault cause detection method based on short-time Fourier transform and convolutional neural network
JP2000050488A (en) Method for discrimination cause of ground failure of high-voltage power distribution line
CN115144702A (en) Ground fault type identification method based on self-organizing competitive neural network
CN109635430B (en) Power grid transmission line transient signal monitoring method and system
CN115856756A (en) Fault assessment method for electric energy metering box
CN117668751B (en) High-low voltage power system fault diagnosis method and device
CN113610119A (en) Method for identifying power transmission line developmental fault based on convolutional neural network
CN110265906B (en) Transformer substation grounding grid state evaluation method and computer system
JPH07270466A (en) Failure state discrimination method
JPH06289086A (en) Fault-state discriminating method
da Silva et al. High impedance fault location-case study using wavelet transform and artificial neural networks
CN114019296A (en) Distribution line ground fault identification method based on BP neural network
CN114755529A (en) Multi-feature fusion single-phase earth fault type identification method based on deep learning
JPH07270467A (en) Failure state discrimination method
CN115017828A (en) Power cable fault identification method and system based on bidirectional long-short-time memory network
Lavanya et al. Literature review: high impedance fault in power system and detection techniques
JPH08265959A (en) Fault mode discrimination method
CN116256592B (en) Medium-voltage distribution cable latent fault detection method and system
Mortensen et al. Fuzzy risk assessment of underground power distribution network cables based on geo-analytical fault vulnerability
Athamneh et al. Line Voltage Based Distance Relay Using a Multistage Convolutional Neural Network Classifier

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010928