JPH06289086A - Fault-state discriminating method - Google Patents

Fault-state discriminating method

Info

Publication number
JPH06289086A
JPH06289086A JP5072002A JP7200293A JPH06289086A JP H06289086 A JPH06289086 A JP H06289086A JP 5072002 A JP5072002 A JP 5072002A JP 7200293 A JP7200293 A JP 7200293A JP H06289086 A JPH06289086 A JP H06289086A
Authority
JP
Japan
Prior art keywords
cause
ground fault
line
waveform
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5072002A
Other languages
Japanese (ja)
Inventor
Mitsutaka Kaneko
光孝 金子
Hidekazu Yanagisawa
英一 柳沢
Masakatsu Arakane
昌克 荒金
Kazuji Konishi
和二 小丹枝
Hiroyuki Katsukawa
裕幸 勝川
Koji Tokuyama
幸司 徳山
Tamotsu Kano
保 鹿野
Yuzo Ito
雄三 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Chubu Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Chubu Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP5072002A priority Critical patent/JPH06289086A/en
Publication of JPH06289086A publication Critical patent/JPH06289086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To make it possible to detect the cause of the line-to-ground falut occurring in a power line without visiting the site by analyzing the spectrum of the current waveform of the line-to-ground fault of the power line, and performing the duplicated discrimination analysis based on the power spectrum value. CONSTITUTION:The current waveform of the line-to-ground fault of a power line is detected with a CT. The DC component of the waveform is cut. Dividing computation is performed for the current value of the line-to-ground fault at the maximum amplitude. Normalization is performed so that the maximum amplitude of any waveform becomes equal. The spectrum of the normalized waveform is analyzed. Various peaks appear. The patterns of the peaks are changed by the causes of the line-to-ground faults. When the causes of the faults are equal, the common power- spectrum value is obtained. Thus, the cause is estimated by the analysis using the duplicated discrimination analysis method and a neutral. network method. The analysis is repeated so as to narrow the cause into the upper value. The analysis is performed only for the narrowed causes of the faults, and the final discriminated result is obtained. Information for seasons and data around the site is inputted into an inferrence system, and the cause of the fault is judged in the integrated mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、送電線や配電線のよう
な電力線において地絡故障が生じた場合に、現場へ出向
くことなく容易な波形解析および判別分析にてその原因
を知ることができる故障様相判別方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention According to the present invention, when a ground fault occurs in a power line such as a transmission line or a distribution line, the cause can be known by easy waveform analysis and discriminant analysis without going to the site. The present invention relates to a possible failure appearance determination method.

【0002】[0002]

【従来の技術】上記のような電力線の地絡故障の主な原
因としては、電力線に樹木が接触することによるもの、
電力線に鳥類やへび等の動物が接触することによるも
の、電力線にクレーン等が接触することによるもの、電
力線を絶縁支持している碍子が汚損して漏洩電流が流れ
ることによるもの等を挙げることができる。
2. Description of the Related Art The main cause of a ground fault of a power line as described above is that a tree contacts the power line,
Examples include the contact of animals such as birds and snakes with the power line, the contact of cranes with the power line, and the fact that the insulator supporting the power line is contaminated and leakage current flows. it can.

【0003】このような地絡故障が生じた場合、監視所
等においては地絡故障が発生したことは容易に把握でき
るものの、従来はその原因特定にあたって電流電圧情報
に対する複雑な演算処理を必要としており、測定誤差の
影響を大きく受けていた。また、故障原因特定の範囲に
限度があり、原因の特定には作業者が現場へ出向いてそ
の原因を把握する必要があるが、地絡故障の発生点を特
定すること自体が容易ではなく、鉄塔上へ登る必要もあ
るため多くの時間や労力がかかるという問題があった。
When such a ground fault occurs, it is possible to easily understand that the ground fault has occurred at a monitoring station or the like, but conventionally, in order to identify the cause, complicated arithmetic processing for current and voltage information is required. However, it was greatly affected by the measurement error. Also, there is a limit to the range of failure cause identification, and it is necessary for the worker to visit the site and grasp the cause to identify the cause, but it is not easy to identify the point of occurrence of the ground fault, There was a problem that it took a lot of time and labor because it was necessary to climb onto the tower.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、電力線において発生した地絡故障
の原因を、現場へ出向くことなく容易な波形解析および
判別分析にて知ることができる故障様相判別方法を提供
するために完成されたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and finds out the cause of a ground fault in a power line by easy waveform analysis and discriminant analysis without going to the site. It has been completed in order to provide a failure appearance determination method capable of performing the above.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに本発明者等は各種の方法を研究した結果、電力線に
生ずる地絡電流の波形が、電力線に接触している物体の
種類に応じてそれぞれ特有の形状をしていることに着目
し、この波形を周波数によりスペクトル解析すれば、そ
れぞれの物体に特有の波形を数値として把握できること
を知った。本発明は上記の知見に基づいて完成されたも
のであり、電力線の地絡電流波形をスペクトル解析し、
そのパワースペクトル値に基づいて特定周波数を選別
し、その値の重判別分析を実施するとともにニューラル
ネットワークを用いた判別分析を行い、それら2つの結
果を比較して最終的な地絡故障の原因を判別することを
特徴とするものである。なお、上記のスペクトル解析お
よび地絡故障の原因判別はすべてコンピュータを利用し
たシステムによって遂行することができる。
In order to solve the above problems, the inventors of the present invention have studied various methods, and as a result, the waveform of the ground fault current generated in the power line depends on the type of the object in contact with the power line. It was found that the waveforms peculiar to each object can be grasped as numerical values by focusing on the fact that each waveform has a peculiar shape and spectral analysis of this waveform by frequency. The present invention has been completed based on the above findings, and spectrally analyzes the ground fault current waveform of the power line,
A specific frequency is selected based on the power spectrum value, a multiple discriminant analysis of that value is performed, and a discriminant analysis using a neural network is performed. The two results are compared to determine the cause of the final ground fault. It is characterized by making a distinction. The above-mentioned spectrum analysis and determination of the cause of the ground fault can be performed by a system using a computer.

【0006】[0006]

【実施例】以下に本発明を図示の実施例とともに更に詳
細に説明する。図1は本発明の実施例のフローシートで
あり、図1に示すようにまず電力線の地絡電流波形をC
Tにより検出する。この地絡電流波形を解析のために記
憶させたうえ、特徴が明確に現れている部分を解析部分
として取り出す。図2と図3はこのようにして取り出さ
れた地絡電流波形の例を示すもので、図2は電力線に樹
木、鳥、へびが接触した場合の地絡電流波形を示してお
り、図3は電力ケーブルに絶縁不良が生じた場合と、電
力線を絶縁支持している碍子が汚損した場合における地
絡電流波形を示している。
The present invention will be described in more detail below with reference to the illustrated embodiments. FIG. 1 is a flow sheet of an embodiment of the present invention. As shown in FIG. 1, first, the ground fault current waveform of the power line is C
Detect by T. This ground-fault current waveform is stored for analysis, and the part where the features are clearly shown is taken out as the analysis part. 2 and 3 show examples of the ground fault current waveforms extracted in this way, and FIG. 2 shows the ground fault current waveforms when a tree, a bird, or a snake contacts the power line. Shows the ground fault current waveforms when insulation failure occurs in the power cable and when the insulator that insulates and supports the power line is soiled.

【0007】ところで、このような地絡電流波形には直
流成分が含まれていることがあり、また最大振幅がばら
ばらであるので、スペクトル解析を行う前に波形を正規
化する必要がある。このため、直流成分をカットすると
ともに、地絡電流値の最大振幅で割算を行い、どの地絡
電流波形も最大振幅が同一となるように正規化する。
By the way, such a ground-fault current waveform may contain a DC component, and the maximum amplitude is different. Therefore, it is necessary to normalize the waveform before performing spectrum analysis. For this reason, the DC component is cut off, the ground fault current value is divided by the maximum amplitude, and any ground fault current waveform is normalized so that the maximum amplitude is the same.

【0008】次に正規化された地絡電流波形をスペクト
ル解析する。その結果は図4〜図8に示す通りであり、
商用周波数の部分にスペクトル強度のピークが現れる
が、その整数倍の周波数(高調波)の部分にも様々なピ
ークが現れ、しかもそのパターンは地絡事故の原因によ
って変化する。
Next, the normalized ground fault current waveform is spectrally analyzed. The results are as shown in FIGS.
The peak of the spectrum intensity appears in the commercial frequency part, but various peaks also appear in the part of the frequency (harmonic) that is an integral multiple thereof, and the pattern changes depending on the cause of the ground fault.

【0009】例えば、図4に示す樹木の場合には商用周
波数の部分のみに大きいスペクトル強度のピークが現
れ、その他の部分にはほとんどピークが生じない。図5
に示す鳥の場合には商用周波数の3倍の周波数の部分に
もわずかなピークが生じる。また図6に示すへびの場合
には、商用周波数の部分の大きいピークの他に、1000Hz
までの部分に複雑な多数のピークが生じる。これに対し
て図7のケーブルの場合には商用周波数の部分のピーク
よりも高調波のピークの方が大きく、更に図8の汚損碍
子の場合にはへびの場合と似ているがはるかに高い周波
数の成分を含んでいる。
For example, in the case of the tree shown in FIG. 4, a peak with a large spectral intensity appears only in the commercial frequency part, and almost no peak appears in other parts. Figure 5
In the case of the bird shown in (1), a slight peak is generated even at the frequency three times the commercial frequency. In addition, in the case of the snake shown in FIG. 6, in addition to the large peak of the commercial frequency part, 1000 Hz
A large number of complex peaks occur in the area up to. On the other hand, in the case of the cable of FIG. 7, the peak of the harmonic is larger than that of the commercial frequency portion, and in the case of the fouling insulator of FIG. 8, it is similar to the case of the snake but much higher. It contains frequency components.

【0010】以上の図4〜図8は図2、図3の地絡電流
波形をスペクトル解析した結果を示すものであり、常に
これと同一の波形が生ずるとは限らない。しかし、地絡
事故の原因が同一であれば共通のパワースペクトル値が
得られるので、これを重判別分析手法およびニューラル
ネットワーク手法を利用して分析することにより、原因
を推定する。重判別分析処理は複数の原因の可能性を数
値で示して判別する手法であり、この分析処理を繰り返
し実施して上位のものに絞り込み、原因を推定する。本
システムではあらかじめ得られた故障電流波形をフラッ
シオーバ(閃絡)の前後に分け、フラッシオーバ直前3
波とフラッシオーバ直後3波を取り出し、それぞれフー
リエ変換しパワースペクトルとした後、各故障原因の特
徴を示す商用周波数の整数倍の周波数におけるパワース
ペクトル値および故障電流のフラッシオーバ前、フラッ
シオーバ時、フラッシオーバ後の地絡電流値を代表特性
として各故障原因の群を作り、それらを分ける基準(判
別式)を導き出しておく。ここで新たに得られたデータ
を判別式にかけ分析処理を実施し、その結果から上位に
挙げられた(可能性が高いと分析された)故障原因に絞
り込み、再度その絞り込んだ故障原因のみを対象として
分析処理を行い、最終判別結果とする。また、ニューロ
処理の場合も各原因の可能性が数値で出力され、判別を
実施する手法であり、本システムでは事前に学習データ
として上記代表特性のパワースペクトル値および地絡電
流値を入力層、中間層、出力層の3層からなるバックプ
ロパゲーションモデルのニューラルネットワーク入力層
にランダムに数千回与えて学習させ、そこに新しいデー
タを入力し、出力層の各故障原因のうち最も大きい値を
出力したものを判別結果とする。
FIGS. 4 to 8 show the results of spectrum analysis of the ground fault current waveforms of FIGS. 2 and 3, and the same waveform is not always generated. However, if the cause of the ground fault accident is the same, a common power spectrum value can be obtained, so the cause is estimated by analyzing this using the multiple discriminant analysis method and the neural network method. The multiple discriminant analysis process is a method of discriminating by showing numerical values the possibility of a plurality of causes, and this analysis process is repeatedly executed to narrow down to a higher rank and to estimate the cause. In this system, the fault current waveform obtained in advance is divided into before and after flashover (flashover) to
Wave and three waves immediately after the flashover are extracted, respectively, Fourier-transformed into a power spectrum, and then the power spectrum value at the frequency of an integral multiple of the commercial frequency and the fault current before the flashover, at the time of the flashover, A group (group) of each failure cause is made with the ground fault current value after flashover as a representative characteristic, and a criterion (discriminant) for dividing them is derived. Here, the newly obtained data is subjected to a discriminant analysis process, and the results are narrowed down to the higher-ranked failure causes (analyzed as likely), and only the narrowed down failure causes are targeted. As a result, the analysis process is performed to obtain the final determination result. Also, in the case of neuro processing, the possibility of each cause is output as a numerical value, and this is a method of performing discrimination.In this system, the power spectrum value and the ground fault current value of the above-mentioned representative characteristics are input data in advance as learning data. A neural network of a back propagation model consisting of three layers of an intermediate layer and an output layer is randomly given to the input layer several thousand times for learning, new data is input to the neural network, and the largest value among the failure causes of the output layer is set. The output result is used as the determination result.

【0011】更に実施例の場合には、エキスパートシス
テムとして知られる推論システムに重判別分析結果およ
びニューロ処理結果を読み込むとともに、現場周辺の季
節および時間等日時の情報も取り入れ、地絡故障の原因
を総合判定する。つまり、学習能力はないが適度なデー
タ量で判別式を導き出し分析を実施することができる重
判別分析手法の結果と、初期段階のネットワークを作成
するために膨大なデータの数を必要とするが新たなデー
タを得るたびに学習する能力を有するニューラルネット
ワーク手法の結果を、それぞれの利点を生かして、判別
された故障原因のデータ量に応じていずれの分析結果を
重視するかの重みづけをして判定するわけである。その
際、正判別の確率をより向上させるため、地絡故障発生
時の季節や時間の情報を取込み、判定の前に、起こり得
ない故障原因を割り出し、判別結果としての故障原因か
ら削除し、結果を限定しておく。これは例えば、冬季に
へびが冬眠中であるにもかかわらず紛らわしいパワース
ペクトル値が生じた場合、それをへびによる地絡故障で
あると誤認したり、夜間であるのにクレーン等の重機
(金属棒)による地絡であると誤判断したりすることを
防止するためである。更にこのほか、微妙な最終判定に
なった場合に備え、故障実績データを蓄積しているデー
タベースから、過去の同時期の故障原因の実績や各故障
原因の累積件数を取込み、総合判定の際にいずれの判別
結果を選択するかの重みづけに加味すれば、より正確な
推論が可能となる。このようにして、故障原因を正確か
つ詳細に判別することが可能となる。
Further, in the case of the embodiment, in addition to reading the results of the multiple discriminant analysis and the results of the neuro processing into an inference system known as an expert system, the information about the season and time around the site is also taken in to determine the cause of the ground fault. Make a comprehensive judgment. In other words, the result of the multiple discriminant analysis method, which has no learning ability but can derive a discriminant with an appropriate amount of data and carry out the analysis, and the enormous amount of data are required to create the network in the initial stage. The results of the neural network method that has the ability to learn each time new data is obtained are weighted by taking advantage of their respective advantages and which analysis result is to be emphasized according to the data amount of the determined failure cause. To judge. At that time, in order to further improve the probability of positive discrimination, the information on the season and time at the time of occurrence of a ground fault is taken in, the impossibility of the cause of the fault is determined before the determination, and the cause of the discrimination is deleted. Limit the results. This is because, for example, if a confusing power spectrum value occurs in the winter even though the snake is hibernating, it may be mistaken for a ground fault due to the snake, or a heavy machine such as a crane (metal This is to prevent erroneous determination that a ground fault is caused by a stick. In addition to this, in case of a subtle final judgment, the actual results of failure causes at the same time in the past and the cumulative number of each failure cause are taken in from the database that stores the failure result data, and used in the comprehensive judgment. More accurate inference can be made by adding weighting to which discrimination result is selected. In this way, the cause of failure can be determined accurately and in detail.

【0012】[0012]

【発明の効果】以上に説明したように、本発明の故障様
相判別方法は電力線に生ずる地絡電流の波形がその原因
によってそれぞれ特有の形状をしていることを利用し、
電力線において発生した地絡故障の原因を、現場へ出向
くことなく容易な波形解析および判別分析にて知ること
ができるようにしたものである。このために本発明を利
用すれば遠隔の監視所等において地絡故障の原因をかな
りの精度で知ることができ、原因に応じた対策を直ちに
講ずることが可能となる。よって本発明は従来の問題点
を解決した故障様相判別方法として、業界に寄与すると
ころは大きいものである。
As described above, the method of discriminating a failure aspect of the present invention utilizes the fact that the waveform of the ground fault current generated in the power line has a unique shape depending on its cause.
The cause of a ground fault that has occurred in a power line can be known by easy waveform analysis and discriminant analysis without visiting the site. Therefore, by using the present invention, it is possible to know the cause of the ground fault at a remote monitoring station or the like with considerable accuracy, and it is possible to immediately take measures according to the cause. Therefore, the present invention greatly contributes to the industry as a failure aspect determination method that solves the conventional problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すフローシートである。FIG. 1 is a flow sheet showing an example of the present invention.

【図2】地絡電流の波形を示す波形図である。FIG. 2 is a waveform diagram showing a waveform of a ground fault current.

【図3】地絡電流の波形を示す波形図である。FIG. 3 is a waveform diagram showing a waveform of a ground fault current.

【図4】樹木によって生ずる地絡電流波形のスペクトル
を示すグラフである。
FIG. 4 is a graph showing a spectrum of a ground fault current waveform generated by a tree.

【図5】鳥によって生ずる地絡電流波形のスペクトルを
示すグラフである。
FIG. 5 is a graph showing a spectrum of a ground fault current waveform generated by a bird.

【図6】へびによって生ずる地絡電流波形のスペクトル
を示すグラフである。
FIG. 6 is a graph showing a spectrum of a ground fault current waveform generated by a snake.

【図7】ケーブルの絶縁不良によって生ずる地絡電流波
形のスペクトルを示すグラフである。
FIG. 7 is a graph showing a spectrum of a ground-fault current waveform caused by defective insulation of a cable.

【図8】汚損碍子によって生ずる地絡電流波形のスペク
トルを示すグラフである。
FIG. 8 is a graph showing a spectrum of a ground fault current waveform generated by a pollution insulator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒金 昌克 三重県桑名市野田2丁目7番地15 (72)発明者 小丹枝 和二 愛知県岡崎市欠町石ケ崎1番地3 (72)発明者 勝川 裕幸 愛知県丹羽郡扶桑町大字高木字稲葉62番地 (72)発明者 徳山 幸司 愛知県名古屋市名東区松井町259番地 (72)発明者 鹿野 保 愛知県名古屋市守山区小幡四丁目6番31号 (72)発明者 伊藤 雄三 愛知県名古屋市瑞穂区師長町43番地の1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakatsu Arakane 2-7, Noda, Kuwana-shi, Mie 15 (72) Inventor Kazuji Otaneda 1-3, Ishigasaki, Missouri-cho, Okazaki-shi, Aichi (72) Inventor Hiroyuki Katsukawa 62 Inaba, Takagi, Fugo-cho, Niwa-gun, Aichi Prefecture (72) Inventor Koji Tokuyama 259 Matsui-cho, Meito-ku, Nagoya-shi, Aichi (72) Inventor Shikano 4-chome, Obata 4-chome, Moriyama-ku, Aichi Prefecture Issue (72) Inventor Yuzo Ito 1 of 43 Noshicho, Mizuho-ku, Nagoya, Aichi

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力線の地絡電流波形をスペクトル解析
し、そのパワースペクトル値に基づいて特定周波数を選
別し、その値の重判別分析を実施するとともにニューラ
ルネットワークを用いた判別分析を行い、それら2つの
結果を比較して最終的な地絡故障の原因を判別すること
を特徴とする故障様相判別方法。
1. A ground fault current waveform of a power line is spectrally analyzed, a specific frequency is selected based on the power spectrum value, a multiple discriminant analysis of the value is performed, and a discriminant analysis using a neural network is performed. A method for determining a failure aspect, which comprises comparing two results and determining a cause of a final ground fault.
JP5072002A 1993-03-30 1993-03-30 Fault-state discriminating method Pending JPH06289086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5072002A JPH06289086A (en) 1993-03-30 1993-03-30 Fault-state discriminating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5072002A JPH06289086A (en) 1993-03-30 1993-03-30 Fault-state discriminating method

Publications (1)

Publication Number Publication Date
JPH06289086A true JPH06289086A (en) 1994-10-18

Family

ID=13476784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5072002A Pending JPH06289086A (en) 1993-03-30 1993-03-30 Fault-state discriminating method

Country Status (1)

Country Link
JP (1) JPH06289086A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259554A (en) * 2010-06-07 2011-12-22 Nec System Technologies Ltd Electric appliance discriminating device, electric appliance discriminating method, and electric appliance discrimination program
CN107942191A (en) * 2017-09-22 2018-04-20 国网上海市电力公司 Regions and areas's direct current fluctuation sources localization method based on sensitivity analysis
JP2018125912A (en) * 2017-01-30 2018-08-09 学校法人鶴学園 Ground fault factor discrimination device
JP2020153743A (en) * 2019-03-19 2020-09-24 株式会社戸上電機製作所 Ground fault factor estimation device, data generation device, ground fault factor estimation method, data generation method, and ground fault relay
CN112731064A (en) * 2020-12-30 2021-04-30 合肥工业大学 Automatic identification method for fault waveform in extra-high voltage converter station

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259554A (en) * 2010-06-07 2011-12-22 Nec System Technologies Ltd Electric appliance discriminating device, electric appliance discriminating method, and electric appliance discrimination program
JP2018125912A (en) * 2017-01-30 2018-08-09 学校法人鶴学園 Ground fault factor discrimination device
CN107942191A (en) * 2017-09-22 2018-04-20 国网上海市电力公司 Regions and areas's direct current fluctuation sources localization method based on sensitivity analysis
CN107942191B (en) * 2017-09-22 2020-02-07 国网上海市电力公司 Regional area direct current fluctuation source positioning method based on sensitivity analysis
JP2020153743A (en) * 2019-03-19 2020-09-24 株式会社戸上電機製作所 Ground fault factor estimation device, data generation device, ground fault factor estimation method, data generation method, and ground fault relay
CN112731064A (en) * 2020-12-30 2021-04-30 合肥工业大学 Automatic identification method for fault waveform in extra-high voltage converter station
CN112731064B (en) * 2020-12-30 2021-12-28 合肥工业大学 Automatic identification method for fault waveform in extra-high voltage converter station

Similar Documents

Publication Publication Date Title
WO2022067562A1 (en) Method and device for diagnosing fault arc, and computer-readable storage medium
CN106443310B (en) A kind of transformer fault detection method based on SOM neural network
CN102016607B (en) Method and apparatus for analyzing waveform signals of a power system
Puliyadi Kubendran et al. Detection and classification of complex power quality disturbances using S‐transform amplitude matrix–based decision tree for different noise levels
CN107909118A (en) A kind of power distribution network operating mode recording sorting technique based on deep neural network
CN112464995A (en) Power grid distribution transformer fault diagnosis method and system based on decision tree algorithm
CN109917200B (en) Train traction converter fault diagnosis method, system, equipment and storage medium
CN113496440B (en) User abnormal electricity consumption detection method and system
CN117668751B (en) High-low voltage power system fault diagnosis method and device
CN107367647A (en) The detection of mains by harmonics source and localization method based on EEMD SOM
CN114152825A (en) Fault diagnosis method and device of transformer and fault diagnosis system of transformer
CN113325357A (en) Voltage transformer error evaluation method and system based on output time series difference
CN110265906B (en) Transformer substation grounding grid state evaluation method and computer system
CN109635430B (en) Power grid transmission line transient signal monitoring method and system
CN115166625A (en) Intelligent ammeter error estimation method and device
JPH06289086A (en) Fault-state discriminating method
CN113721086B (en) Method for monitoring the electrical insulation of an installation of an MV or HV electrical system
Banejad et al. High impedance fault detection: Discrete wavelet transform and fuzzy function approximation
CN110212975A (en) A kind of OTDR fault signature judgment method based on differential evolution neural network
Nicolae et al. Analyzing Electromagnetic Interferences in Power Applications by Using Time-Efficient Joint Analysis Based on DWT and WPT Trees
CN113610119A (en) Method for identifying power transmission line developmental fault based on convolutional neural network
CN117892611A (en) Method and device for generating pseudo measurement of medium-voltage distribution network based on space-time diagram neural network
CN115291039B (en) Single-phase earth fault line selection method for resonance earthing system
CN114755529A (en) Multi-feature fusion single-phase earth fault type identification method based on deep learning
Asbery et al. Electric transmission system fault identification using modular artificial neural networks for single transmission lines

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001205