JPH07270231A - Photoelectric photomater - Google Patents

Photoelectric photomater

Info

Publication number
JPH07270231A
JPH07270231A JP8797094A JP8797094A JPH07270231A JP H07270231 A JPH07270231 A JP H07270231A JP 8797094 A JP8797094 A JP 8797094A JP 8797094 A JP8797094 A JP 8797094A JP H07270231 A JPH07270231 A JP H07270231A
Authority
JP
Japan
Prior art keywords
chamber
pair
water
test water
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8797094A
Other languages
Japanese (ja)
Other versions
JP2639624B2 (en
Inventor
Susumu Yoshimoto
進 吉本
Tadashi Eguchi
正 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKO KAGAKU KENKYUSHO KK
Original Assignee
RIKO KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKO KAGAKU KENKYUSHO KK filed Critical RIKO KAGAKU KENKYUSHO KK
Priority to JP8797094A priority Critical patent/JP2639624B2/en
Publication of JPH07270231A publication Critical patent/JPH07270231A/en
Application granted granted Critical
Publication of JP2639624B2 publication Critical patent/JP2639624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To provide a submerge type photoelectric photometer having a simple structure for washing and calibrating. CONSTITUTION:A measurement cell 1 forms a light source chamber 3 and a light reception chamber 4 sealed water-tightly from inspection water with a pair of optical windows 7, 8 arranged vertically putting an inspection water stagnation part 2 between them. Also it sets a light path for monocolor light for measurement which introduces the light from a source 15 arranged in the light source chamber through the inspection water stagnation part to a light reception part 17 arranged in the light reception chamber. A slide block 9 has seal rings 10a, 10b used also as at least a pair of window wipers which are in water-tight contact with the pair of optical windows. A liquid chamber 22 having an end opening facing a pair of windows between a pair of seal rings is formed water-tightly to and separated from the inspection water stagnation part. And liquid paths 18a and 18b for washing water or pure water connecting to this liquid chamber are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検水源に直浸もしく
は連通可能な光電光度計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric photometer which can be directly immersed in or communicated with a test water source.

【0002】[0002]

【従来の技術】今日の社会では、水資源の確保と生活環
境の保護等の見地から、ダム湖の水深毎の水質状態の計
測や河川、湖沼又は水処理施設におけるリアルタイムの
汚濁監視が各所で要求されるようになってきた。
2. Description of the Related Art In today's society, from the standpoints of securing water resources and protecting the living environment, it is necessary to measure the water quality at each depth of a dam lake and to monitor real-time pollution at rivers, lakes or water treatment facilities at various places. It has come to be requested.

【0003】これらの要求に対し、現在用いられている
手法としては、各測定点よりポンプ等で試料水を汲み上
げて計測器センサに導くフローセル方式の連続測定を行
うのが普通である。このフローセル方式の場合には、採
水点からセンサまでの距離および容量等による信号の遅
れと、拡散による実濃度との解離が生じるという欠点が
あり、また、測定点の移動に関しても種々の制約があっ
た。
In response to these demands, as a method currently used, it is usual to carry out continuous measurement by a flow cell system in which a sample water is pumped from each measurement point and guided to a measuring instrument sensor. In the case of this flow cell method, there is a drawback that the signal delay due to the distance from the water sampling point to the sensor and the capacity, and the dissociation with the actual concentration due to diffusion occur, and there are various restrictions on the movement of the measurement point. was there.

【0004】したがって、最近では、センサそのものを
直接測定点に投入し、これによって得られた電気信号を
リアルタイムで導き出す方式も開発されている。しかし
ながら、一般に水質汚濁の監視においては、試料の光吸
収特性に応じた試料透過光量を計測する光電光度計方式
が普通であり、フィールド‐リアルタイムモードにおい
て長期の連続測定を行う場合や被検水環境に直浸型とし
て使用する場合には、次のような種々の問題点が存在す
る。
Therefore, recently, a method has also been developed in which the sensor itself is directly put into a measuring point and an electric signal obtained by this is derived in real time. However, generally, in monitoring water pollution, a photoelectric photometer method that measures the amount of light transmitted through the sample according to the light absorption characteristics of the sample is common, and when performing long-term continuous measurement in the field-real time mode or in the test water environment. When it is used as a direct immersion type, there are the following various problems.

【0005】[0005]

【発明が解決しようとする課題】光電光度計方式におい
ては、一定の光路間隔中に存在する試料溶液に光を照射
し、その間を通過した特定波長光の減衰量から試料に溶
存する目的成分の濃度を求めるものであり、したがっ
て、光路間隔を特定し、かつ試料溶液を隔離するための
一対の窓板が設けられる。しかしながら、従来のフロー
セル方式の場合には、試料中に存在する各種汚染物質が
窓面に沈着し、見掛けの出力が徐々に上昇して時間経過
とともにあたかも高濃度の成分が存在しているかのよう
な測定値を示すようになる。
In the photoelectric photometer method, the sample solution existing in a certain optical path interval is irradiated with light, and the amount of the target component dissolved in the sample is determined by the attenuation amount of the light of a specific wavelength passing through the interval. For determining the concentration, therefore, a pair of window plates is provided for specifying the optical path interval and isolating the sample solution. However, in the case of the conventional flow cell method, various pollutants existing in the sample are deposited on the window surface, the apparent output gradually increases, and it seems as if high-concentration components exist with the passage of time. It shows various measured values.

【0006】このような窓面の汚染を解消する手段とし
て窓面にジェット水流を噴射して強制的に付着物を取り
除く方法や、ワイパにより機械的に擦り落とす方法、又
は超音波キャビティ効果によって剥離させる方法等が開
発されているが、簡単な機構で確実に洗浄効果が得られ
るものではない。さらに、これらの方法と併せて、フロ
ーセル内に塩酸等の洗浄液を流入させて化学的に分解洗
浄する方法も存在するが、この場合には、塩酸のような
強酸性の薬液を多量に必要とし、その廃棄にも問題が生
じる。
As a means for eliminating such contamination of the window surface, a method of jetting a jet water stream onto the window surface to forcibly remove the deposits, a method of mechanically scraping off with a wiper, or peeling by the ultrasonic cavity effect Although a method of doing so has been developed, the cleaning effect cannot be reliably obtained with a simple mechanism. In addition to these methods, there is also a method in which a cleaning solution such as hydrochloric acid is introduced into the flow cell to chemically decompose and clean it, but in this case, a large amount of a strongly acidic chemical solution such as hydrochloric acid is required. , Its disposal also causes a problem.

【0007】また、窓の汚染に無関係に汚染濃度を測定
する方式として、いわゆるランバート・ベールの式 As=a・L・C (As:吸光度、a:分子吸光係数、L:セル間隔、
C:対象物濃度)より、一対の窓によるセル間隔を一定
距離だけ変動させて、窓の汚れと無関係に濃度信号を得
る方式(セル変調方式)も実用化されている。すなわ
ち、 ΔAs=a・ΔL・C ここに、ΔAsは吸光度差、ΔLはセル間隔の移動距
離、である。
Further, as a method of measuring the pollution concentration irrespective of the pollution of the window, the so-called Lambert-Beer equation As = a.L.C (As: absorbance, a: molecular extinction coefficient, L: cell interval,
C: object density), a method (cell modulation method) in which the cell interval between a pair of windows is varied by a certain distance to obtain a density signal irrespective of the dirt on the windows is also in practical use. That is, ΔAs = a · ΔL · C, where ΔAs is the absorbance difference and ΔL is the moving distance of the cell interval.

【0008】しかしながら、この方式においても実試料
の測定においては窓の汚れが進行すると、絶対的な吸光
度の上昇による光電出力の減少及び測定精度の低下は避
けられなかった。
However, even in this method, in the measurement of an actual sample, when the window is contaminated, the photoelectric output and the measurement accuracy are inevitably decreased due to the absolute increase in the absorbance.

【0009】さらに、紫外線領域において汚染物質を測
定する直浸セル方式においては、通例、測定水域の水面
に多く存在している油膜が、水面に浸した直後の窓面に
付着し、この油膜により光吸収量が増加して真の測定値
が得られないという問題も多く生じていた。
Further, in the direct immersion cell system for measuring pollutants in the ultraviolet region, an oil film, which is often present on the water surface of the measurement water area, usually adheres to the window surface immediately after being immersed in the water surface. There have been many problems that the amount of light absorption increases and a true measured value cannot be obtained.

【0010】さらに、直浸方式における連続測定の場
合、システム全体の経時変化に伴う経時的なゼロ点変動
及び感度変化も無視しえない。
Further, in the case of continuous measurement in the direct immersion method, the zero-point fluctuation and the sensitivity change with the passage of time of the entire system cannot be ignored.

【0011】したがって、本発明は上記のような種々の
問題点を解決するために窓面の機械的ワイピングと、必
要最小限の塩酸等を含む洗浄液による洗浄を並行して行
い、かつ測定開始時(セル浸漬時)における光学窓の油
膜汚染を防止する手段を提供しようとするものである。
Therefore, according to the present invention, in order to solve the above-mentioned various problems, mechanical wiping of the window surface and cleaning with a cleaning liquid containing a necessary minimum amount of hydrochloric acid and the like are performed in parallel, and at the start of measurement. An object of the present invention is to provide means for preventing oil film contamination of the optical window (during cell immersion).

【0012】本発明はまた、上記の手段と併せて測定毎
にゼロ点校正又は感度校正を行う手段を提供しようとす
るものである。
The present invention also intends to provide means for performing zero point calibration or sensitivity calibration for each measurement in combination with the above means.

【0013】[0013]

【課題を解決するための手段】上記の目的を達するた
め、本発明は、被検水源に直浸もしくは連通可能な被検
水滞留部を有する光電光度計の測定セルであって、前記
被検水滞留部を挟んで垂直に配置された一対の光学窓に
より被検水から水密シールされた光源室及び受光室をそ
れぞれ形成し、前記光源室内に配置された光源から前記
一対の窓間の被検水滞留部を経て前記受光室内に配置さ
れた受光器に至る単色光測定用の光路を設定したもの
と、前記一対の光学窓に水密接触する少なくとも一対の
窓ワイパを兼ねたシールリングを有し、前記一対のシー
ルリング間において前記一対の窓に対向した開口端を有
する液室を前記被検水滞留部から水密・分離させて形成
するとともに、この液室に連通した洗浄液又は純水のた
めの通液路を形成してなる慴動ブロックであって、校正
又は洗浄位置において前記液室が前記光路を包囲し、前
記校正又は洗浄位置から後退した測定位置において前記
一対の窓間の被検水滞留部を解放して被検水源に連通さ
せるようにしたもの、を備えた光電光度計を構成したも
のである。
In order to achieve the above object, the present invention provides a measuring cell of a photoelectric photometer having a test water retention part which can be directly immersed in or communicated with a test water source, wherein A light source chamber and a light receiving chamber that are watertightly sealed from the water to be detected are formed by a pair of optical windows that are vertically arranged with the water retention part interposed therebetween. It has a set of optical paths for monochromatic light measurement that reach the light receiver arranged in the light receiving chamber through the sample water retention part, and a seal ring that also serves as at least a pair of window wipers that make watertight contact with the pair of optical windows. Then, a liquid chamber having an open end facing the pair of windows between the pair of seal rings is formed in a watertight and separated manner from the test water retention part, and a cleaning liquid or pure water communicating with the liquid chamber is formed. To form a liquid passage for In the calibration block, the liquid chamber surrounds the optical path at the calibration or cleaning position, and the test water retention part between the pair of windows is released at the measurement position retracted from the calibration or cleaning position. A photoelectric photometer is provided, which is configured to communicate with a test water source.

【0014】[0014]

【作用】上記の構成によれば、慴動ブロックを校正又は
洗浄位置としたことにより一対の光学窓を被検水から水
密シールした状態において測定セルを被検水源に浸漬
し、その浸漬後に慴動ブロックを測定位置まで後退させ
ることにより、ここで初めて慴動ブロック外の被検水が
一対の窓間の被検水滞留部に入り、この際、セル浸漬
時、慴動ブロックの先端面に付着していた油膜はそのま
ま慴動ブロックとともに移動して一対の光学窓をほとん
ど汚染せず、測定値に実質的な影響を与えないものであ
る。
According to the above construction, the measuring cell is immersed in the test water source while the pair of optical windows are watertightly sealed from the test water by setting the slidable block to the calibration or cleaning position, and after the immersion, the sludge is moved. By moving the moving block back to the measurement position, the test water outside the sliding block enters the test water retention part between the pair of windows for the first time, and at this time, when the cell is dipped, the tip surface of the sliding block is The attached oil film moves as it is together with the sliding block and hardly contaminates the pair of optical windows, and does not substantially affect the measured values.

【0015】また、測定セルの浸漬時、慴動ブロックが
校正または洗浄位置にある間に純水等の校正液をこの慴
動ブロックの液室内に導入し、これによって測定値のゼ
ロ校正および感度調整をおこなうことができる。
When the measuring cell is immersed, a calibration liquid such as pure water is introduced into the liquid chamber of the sliding block while the sliding block is in the calibration or cleaning position, whereby zero calibration of the measured value and sensitivity are performed. You can make adjustments.

【0016】また、浸漬測定中においても、慴動ブロッ
クを洗浄位置に切り替えることにより慴動ブロックの慴
動時のシールリングの清掃作用に加え、液室内に満たし
てある洗浄液により化学的な付着物の除去を行うことが
可能であり、これらの作用と相まって長期的な連続測定
が期待できる。
Further, even during the immersion measurement, by switching the sliding block to the cleaning position, in addition to the cleaning action of the seal ring when the sliding block slides, the cleaning liquid filled in the liquid chamber can be used to chemically deposit Can be removed, and long-term continuous measurement can be expected in combination with these effects.

【0017】[0017]

【実施例】図1は本発明の基本的実施例における測定状
態を示すものであり、図2はその校正又は洗浄状態を示
すものである。この実施例において、測定セル1は上下
に貫通した被検水滞留部2を有し、その両側に密閉され
た光源室3及び受光室4をそれぞれ形成した枠体からな
っている。光源室3及び受光室4の下部対向面には開口
5及び6がそれぞれ形成され、これらを塞ぐ形で両室
3、4の対向壁面上に一対の光学窓7及び8が着設さ
れ、被検水滞留部2に接している。窓7及び8の対向面
は光源室3及び受光室4の底壁の内端7a及び8aと同
一面上にあり、慴動ブロック9の側面には窓7及び8に
それぞれ慴動可能に圧接する窓ワイパ兼用の一対のシー
ルリング10a、10bを装備して被検水滞留部2内を
上下に慴動できるようになっている。この被検水滞留部
2の横断面、したがって、慴動ブロック9の横断面の形
状は図3aの平面図に示す通り矩形状であり、慴動ブロ
ック9の他の2側辺11、12はセル1における被検水
滞留部の窓7及び8に隣接した対応側壁13、14との
間にわずかに間隙を有し、慴動ブロック9の慴動を容易
にするものである。シールリング10a、10bは慴動
ブロック9の下端部において両側壁を貫通した液室22
の開口部を包囲している。液室22の口径は測定セル1
における開口5、6の口径に対応し、図2aに示すよう
に、慴動ブロック9が慴動工程の下端における校正又は
洗浄位置を占めるとき、光源室3の開口5から受光室4
の開口6に至る測定光路を許容するようになっている。
光源室3内の開口5に対応する位置には光源ランプ15
及び特定波長選択用の光学フィルタ/モノクロメータ1
6が配置され、受光室4内の開口6に対応する位置には
適当な受光器17が配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a measurement state in a basic embodiment of the present invention, and FIG. 2 shows a calibration or cleaning state thereof. In this embodiment, the measuring cell 1 is composed of a frame body having a test water retention portion 2 penetrating vertically, and a light source chamber 3 and a light receiving chamber 4 which are sealed on both sides thereof. Openings 5 and 6 are formed on the lower facing surfaces of the light source chamber 3 and the light receiving chamber 4, respectively, and a pair of optical windows 7 and 8 are attached to the facing wall surfaces of both chambers 3 and 4 so as to close them. It is in contact with the test water retention unit 2. The facing surfaces of the windows 7 and 8 are on the same surface as the inner ends 7a and 8a of the bottom walls of the light source chamber 3 and the light receiving chamber 4, and the side surfaces of the sliding block 9 are slidably pressed against the windows 7 and 8, respectively. A pair of seal rings 10a and 10b that also serve as window wipers are provided so that the inside of the test water retention section 2 can be slid up and down. The cross section of the test water retention part 2, and hence the cross section of the sliding block 9 is rectangular as shown in the plan view of FIG. 3 a, and the other two side edges 11, 12 of the sliding block 9 are There is a slight gap between the side walls 13 and 14 adjacent to the windows 7 and 8 of the test water retention portion in the cell 1 to facilitate the sliding movement of the sliding block 9. The seal rings 10a and 10b are liquid chambers 22 that penetrate through both side walls at the lower end of the sliding block 9.
Surrounds the opening. The diameter of the liquid chamber 22 is the measuring cell 1
2a corresponding to the diameters of the openings 5 and 6, and when the slidable block 9 occupies the calibration or cleaning position at the lower end of the slidable process, as shown in FIG.
The measurement optical path leading to the opening 6 is allowed.
The light source lamp 15 is provided at a position corresponding to the opening 5 in the light source chamber 3.
And optical filter / monochromator 1 for selecting specific wavelength
6 is arranged, and an appropriate light receiver 17 is arranged at a position corresponding to the opening 6 in the light receiving chamber 4.

【0018】慴動ブロック9には液室22に連通した洗
浄液又は純水のための通液路18a、18bが穿設され
ている。この通液路18a、18bの慴動ブロック9上
端における開口には、それぞれ洗浄液又は純水の供給管
及び排出管が適当な方法により接続される。図1a及び
図2aにおいて、慴動ブロック9の上方に示したブロッ
ク19は慴動ブロックのための駆動機構を代表するもの
である。
Liquid passages 18a, 18b for the cleaning liquid or pure water, which communicate with the liquid chamber 22, are formed in the sliding block 9. A supply pipe and a discharge pipe for the cleaning liquid or pure water are connected to the openings at the upper end of the slide block 9 of the liquid passages 18a and 18b by a suitable method. In FIGS. 1a and 2a, a block 19 shown above the sliding block 9 represents a driving mechanism for the sliding block.

【0019】上記の構成によれば、測定セル1は図2に
示した測定位置、すなわち慴動ブロックが最下端位置に
維持された状態において被検水源20の水面に浸漬され
る。この状態において、ゼロ点を校正するときは、通液
路、総括して18を介して液室15内に純水を満たし、
この状態において光源ランプ15からフィルタ16を通
り、窓7、8間の液室22を通って受光器17に到達し
た光量を基準としてゼロ点を設定する。また、場合によ
っては、一定の汚染物質濃度又は濁度(スパン値)に対
応する単色光透過率を有する溶液を液室15に収容し、
スパン設定操作を行うこともできる。
According to the above construction, the measuring cell 1 is immersed in the water surface of the water source 20 to be measured in the measuring position shown in FIG. 2, that is, in the state where the sliding block is maintained at the lowermost position. In this state, when calibrating the zero point, the liquid chamber 15 is filled with pure water through the liquid passage, generally 18,
In this state, the zero point is set on the basis of the amount of light reaching the light receiver 17 from the light source lamp 15 through the filter 16 and the liquid chamber 22 between the windows 7 and 8. In some cases, a solution having a monochromatic light transmittance corresponding to a certain pollutant concentration or turbidity (span value) is contained in the liquid chamber 15,
You can also perform span setting operations.

【0020】測定セル1に対し、慴動ブロック9を図1
の測定位置まで引き上げると、被検水滞留部2は被検水
源20と連なり、被検水がこの滞留部2内に充満する。
この場合、ゼロ点校正時において、慴動ブロック9の下
端面21に付着していた油膜があったとしても、これは
慴動ブロック9の上昇に伴ってそのまま上昇するだけで
あり、光学窓7、8に実質的な影響を与えない。したが
って、受光器17は被検水の汚染量に応じて減衰した光
量を正確に受光することができる。
The sliding block 9 is shown in FIG.
When it is pulled up to the measurement position of 1, the test water retention section 2 is connected to the test water source 20, and the test water fills the retention section 2.
In this case, even if there is an oil film adhered to the lower end surface 21 of the sliding block 9 at the time of zero point calibration, this only rises as the sliding block 9 rises, and the optical window 7 , 8 has no substantial effect. Therefore, the light receiver 17 can accurately receive the amount of light attenuated according to the amount of contamination of the test water.

【0021】浸漬測定中においても、慴動ブロック9を
洗浄又は校正位置まで下降させると、シールリング10
a、10bがその慴動に際して窓の汚れを拭き取り、さ
らに、液室22内に塩酸等を含む適当な洗浄液を供給す
ることにより化学的に光学窓の汚れを溶解することがで
きる。
Even during the immersion measurement, if the sliding block 9 is lowered to the cleaning or calibration position, the seal ring 10 is moved.
When the a and 10b move, the dirt on the window can be wiped off, and by supplying an appropriate cleaning liquid containing hydrochloric acid or the like into the liquid chamber 22, the dirt on the optical window can be chemically dissolved.

【0022】以上図1及び図2の基本実施例において
は、被検水滞留部及び慴動ブロックの横断面が矩形状の
場合について示したが、これを円形とし、かつこれに伴
ってシールリング10’を液室22の上下に位置する一
対の円形リングとして円筒状の慴動ブロック9’の外周
に装着することができる。この変形例を上方から見たも
のが図3bの平面図であり、液室22’は円筒状の慴動
ブロック9’に貫通形成されるため、図示しないが、測
定セル1’の光源側及び受光側の開口と整合できるよう
に適当な角度維持手段を装備すべきである。
In the basic embodiment shown in FIGS. 1 and 2, the case where the cross section of the test water retention portion and the sliding block is rectangular has been described. However, this is circular and the seal ring is accordingly formed. 10 'can be attached to the outer periphery of the cylindrical sliding block 9'as a pair of circular rings located above and below the liquid chamber 22. 3B is a plan view of this modified example as seen from above. Since the liquid chamber 22 'is formed to penetrate the cylindrical slidable block 9', although not shown, the light source side of the measurement cell 1'and Appropriate angle maintaining means should be provided to align with the aperture on the receiving side.

【0023】図4及び図5は測定セル41が被検水滞留
部42を密閉した箱型構造の実施例における測定位置、
及び校正又は洗浄位置をそれぞれ示すものである。縦断
面で示す図4aにおいて、被検水滞留部42は直方体型
の密閉空間であり、例えば、正面壁の右上隅に形成され
た被検水導入口43より導入された被検水は、左下隅に
形成された被検水排出口44より排出されるようになっ
ている。被検水滞留部42の両側における光源室45及
び受光室46には同様に光源ランプ15及び受光器17
がそれぞれ配置され、それらの内側壁に光路設定用の開
口5及び6が設けられていることは基本実施例と同様で
ある。この実施例において、光源ランプ15の前には集
光レンズ47が配置され、受光器17の手前にはフィル
タ16が配置され、受光側において単色光を選択するよ
うになっている。基本的実施例とのこのような光学素子
配列の相違は設計仕様に応じて適当に選択される。被検
水滞留部42内には先の実施例と同様な石英窓7及び8
に慴動可能に圧接する同様な円形シールリング10a、
10bを両端に有する筒状の慴動ブロック48が収容さ
れる。この慴動ブロック48の上端からは、液供給路及
び液排出路を形成する接続管49a、49bが突設さ
れ、これらの管49a、49bはセル41の頂壁50に
形成された壁面孔に嵌合してセル外に導かれる。これら
の管49a、49bと壁面孔との間もシールリング51
により水密シールされている。
FIGS. 4 and 5 show the measurement position in the embodiment of the box type structure in which the measurement cell 41 seals the test water retention section 42,
And the calibration or cleaning position, respectively. In FIG. 4a shown in a vertical section, the test water retention part 42 is a rectangular parallelepiped closed space, and, for example, the test water introduced from the test water introducing port 43 formed in the upper right corner of the front wall is at the lower left. It is adapted to be discharged from the test water discharge port 44 formed in the corner. Similarly, the light source lamp 15 and the light receiver 17 are provided in the light source chamber 45 and the light receiving chamber 46 on both sides of the test water retention section 42.
Are arranged respectively, and the openings 5 and 6 for setting the optical path are provided on the inner side walls thereof, as in the basic embodiment. In this embodiment, a condenser lens 47 is arranged in front of the light source lamp 15, and a filter 16 is arranged in front of the light receiver 17, so that monochromatic light is selected on the light receiving side. The difference in the arrangement of the optical elements from the basic embodiment is properly selected according to the design specifications. Quartz windows 7 and 8 similar to those in the previous embodiment are provided in the test water retention section 42.
A similar circular seal ring 10a that slidably presses against
A cylindrical slidable block 48 having 10b at both ends is housed. From the upper end of the slidable block 48, connecting pipes 49a and 49b that form a liquid supply passage and a liquid discharge passage are projected, and these pipes 49a and 49b are formed in wall holes formed in the top wall 50 of the cell 41. It is fitted and guided to the outside of the cell. A seal ring 51 is also provided between these pipes 49a and 49b and the wall surface hole.
It is watertightly sealed by.

【0024】この実施例においても、被検水導入口43
及び排出口44が被検水源に接続され、滞留部42内に
被検水が導入される限り、前述した基本実施例と同様に
動作するものであるが、この場合には、被検水滞留部4
2が密閉室型であるため、水源の状態と関係なく安定し
た連続測定を行うのに適している。
Also in this embodiment, the test water inlet port 43
And as long as the discharge port 44 is connected to the test water source and the test water is introduced into the retention part 42, the operation is similar to that of the basic embodiment described above. In this case, the test water retention is performed. Part 4
Since 2 is a closed chamber type, it is suitable for performing stable continuous measurement regardless of the state of the water source.

【0025】図6及び7に示す実施例は図1に示した基
本実施例と同様な開放型測定セル61を用いるものであ
り、このセル61内において基本実施例と同一の参照数
字を付したものについては説明を省略する。セル61内
において、この実施例に固有の素子は受光器17の手前
において光路を横切ることができるスパン校正板62で
ある。スパン校正板62はその名の通り、被検水の一定
の汚染物質濃度又は濁度(スパン値)に対応する光透過
度を有する半透明板からなるものである。
The embodiment shown in FIGS. 6 and 7 uses an open type measuring cell 61 similar to that of the basic embodiment shown in FIG. 1, in which the same reference numerals as those of the basic embodiment are attached. The description of the items is omitted. In the cell 61, the element specific to this embodiment is a span calibration plate 62 that can cross the optical path in front of the optical receiver 17. As its name implies, the span calibration plate 62 is composed of a semi-transparent plate having a light transmittance corresponding to a certain contaminant concentration or turbidity (span value) of the test water.

【0026】この実施例における慴動ブロック63は校
正液専用の液室64及び洗浄液専用の液室65を上下に
隣接し、かつ互いに水密分離状態に形成した点が基本実
施例の慴動ブロック9と相違している。66a、66
b、及び67a、67bはそれぞれ校正液室64及び洗
浄液室65に連通する通液路である。この場合、洗浄液
室65は校正液室64の下側に位置している。
In the sliding block 63 of this embodiment, the sliding chamber 9 for the calibration liquid and the liquid chamber 65 for the cleaning liquid are vertically adjacent to each other and are watertightly separated from each other. Is different from 66a, 66
Reference numerals b, 67a, and 67b are liquid passages that communicate with the calibration liquid chamber 64 and the cleaning liquid chamber 65, respectively. In this case, the cleaning liquid chamber 65 is located below the calibration liquid chamber 64.

【0027】図7a、b及びcは洗浄位置、ゼロ校正位
置、及びスパン校正位置をそれぞれ示すものであり、測
定セル61を被検水源に浸漬する場合には、慴動ブロッ
ク63をこれら(a)、(b)、(c)の位置のいずれ
かにしておく。洗浄位置(a)及びゼロ校正位置(b)
の動作は、図1の基本実施例における場合と同様である
が、スパン校正(c)の動作においては、前述したスパ
ン校正板62を受光器17の手前まで下ろし静止させた
状態で液室64内に純水を満たし、光源ランプ15から
フィルタ16及び窓7、8に挟まれた純水及びこのスパ
ン校正板62を透過した光量を測定する。校正を終わる
とセル61を図6の位置にして被検水の測定を行う。
FIGS. 7a, 7b and 7c respectively show the cleaning position, the zero calibration position and the span calibration position. When the measuring cell 61 is dipped in the water source to be measured, the slidable block 63 is moved to these (a). ), (B), or (c). Cleaning position (a) and zero calibration position (b)
1 is similar to that in the basic embodiment of FIG. 1, but in the span calibration (c) operation, the span calibration plate 62 is lowered to the front of the optical receiver 17 and is kept stationary in the liquid chamber 64. The inside is filled with pure water, and the amount of light transmitted from the light source lamp 15 through the filter 16 and the windows 7 and 8 and the span calibration plate 62 is measured. When the calibration is completed, the cell 61 is moved to the position shown in FIG. 6 and the test water is measured.

【0028】この実施例においては、厳密な測定値を得
るために校正時純水を供給するのみの校正液室と、塩酸
等の薬液を供給する洗浄液室とを区分したものであり、
しかも、ゼロ校正に加えて、スパン校正をも行って測定
スケール全体における精度を維持しようとするものであ
る。
In this embodiment, a calibration liquid chamber which only supplies pure water during calibration and a cleaning liquid chamber which supplies a chemical liquid such as hydrochloric acid are divided in order to obtain a strict measurement value.
Moreover, in addition to zero calibration, span calibration is also performed to maintain accuracy in the entire measurement scale.

【0029】[0029]

【発明の効果】以上述べた通り、本発明によれば、被検
水面の油膜等に影響されないで、正確に水質測定を行
い、かつ洗浄液供給機構と、ワイパ兼用のシールリング
による機械的な窓面の拭き取りにより窓面の汚染を確実
に防止し、水質汚濁等の連続監視に適したフローセル型
光電光度計が提供される。例えば、本発明に従って低圧
水銀ランプを光源とし、選択波長254nm及び546
nmの二波長三光路連続測定方式による紫外線吸光光度
計を構成して、測定範囲を吸光度0〜0.5、1.0及
び2.0の3レンジ切換式とし、測定光路長を10mm
とした場合、その直線性はフルスケールの±5%以内、
繰り返し再現性はフルスケールの±2%以内、そしてゼ
ロドリフト及びスパンドリフトもフルスケールの±2%
以内であった。これは従来の直浸式フローセルを用いた
光電光度計に比して極めて安定な連続測定が可能である
ことを示している。
As described above, according to the present invention, the water quality can be accurately measured without being affected by the oil film on the water surface to be detected, and the mechanical window by the cleaning liquid supply mechanism and the seal ring that also serves as the wiper can be used. Provided is a flow cell type photoelectric photometer which reliably prevents contamination of a window surface by wiping the surface and is suitable for continuous monitoring of water pollution and the like. For example, according to the present invention, a low pressure mercury lamp is used as a light source, and selective wavelengths of 254 nm and 546 are selected.
An ultraviolet absorptiometer based on a continuous measurement method of two wavelengths and three optical paths of nm is configured, and the measurement range is set to three ranges of absorbance 0 to 0.5, 1.0 and 2.0, and the measurement optical path length is 10 mm.
, The linearity is within ± 5% of full scale,
Repeatability is within ± 2% of full scale, and zero drift and span drift are ± 2% of full scale.
It was within. This indicates that extremely stable continuous measurement is possible as compared with the photoelectric photometer using the conventional direct immersion type flow cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】aは基本実施例における直浸型光電光度計の測
定位置を示す正面断面図であり、bはその校正又は洗浄
位置におけるA−A断面図である。
1A is a front sectional view showing a measurement position of a direct immersion photoelectric photometer in a basic embodiment, and FIG. 1B is a sectional view taken along line AA at a calibration or cleaning position thereof.

【図2】aは図1の実施例校正又は洗浄位置における正
面断面図であり、bはその校正又は洗浄位置におけるB
−B断面図である。
2A is a front sectional view in the calibration or cleaning position of the embodiment of FIG. 1, and b is B in the calibration or cleaning position.
It is a -B sectional view.

【図3】aは図1の基本実施例の平面図、bはその変形
例を示す平面図である。
3A is a plan view of the basic embodiment shown in FIG. 1, and FIG. 3B is a plan view showing a modification thereof.

【図4】aは密閉型フローセルの実施例の測定位置を示
す正面方向から見た縦断面図であり、bはそのC−C断
面図である。
FIG. 4A is a vertical cross-sectional view showing a measurement position of an embodiment of the closed type flow cell as seen from the front direction, and b is a CC cross-sectional view thereof.

【図5】aは校正又は洗浄位置における図4の縦断面図
であり、bはそのD−D断面図である。
5 is a vertical sectional view of FIG. 4 in a calibration or cleaning position, and b is a DD sectional view thereof.

【図6】aは慴動ブロックにおいて校正液専用の液室及
び洗浄液専用の液室を分離形成した実施例の測定位置に
おける正面断面図であり、bはその側断面図である。
6A is a front sectional view at a measurement position of an embodiment in which a liquid chamber dedicated to a calibration liquid and a liquid chamber dedicated to a cleaning liquid are separately formed in a slide block, and b is a side sectional view thereof.

【図7】aは図6の実施例における洗浄位置を示す縦断
面図であり、bはゼロ校正位置を示す縦断面であり、そ
して、cはスパン校正位置を示す縦断面図である。
7 is a vertical sectional view showing a cleaning position in the embodiment of FIG. 6, b is a vertical sectional view showing a zero calibration position, and c is a vertical sectional view showing a span calibration position.

【符号の説明】[Explanation of symbols]

1 測定セル 2 被検水滞留部 3 光源室 4 受光室 5、6 開口 7、8 光学窓 7a、8a 受光室の底壁の内端 9 慴動ブロック 10a、10b シールリング 11、12 慴動ブロックの他の2側辺 13、14 側壁 15 光源ランプ 16 フィルタ/モノクロメータ 17 受光器 18 通液路 19 ブロック 20 被検水源 21 慴動ブロックの下端面 22 液室 1 Measurement Cell 2 Test Water Retaining Part 3 Light Source Room 4 Light-receiving Room 5, 6 Opening 7, 8 Optical Window 7a, 8a Inner End of Bottom Wall of Light-receiving Room 9 Sliding Block 10a, 10b Seal Ring 11, 12 Sliding Block Other 2 sides 13 and 14 Side wall 15 Light source lamp 16 Filter / monochromator 17 Light receiver 18 Liquid passage 19 Block 20 Test water source 21 Lower end surface of sliding block 22 Liquid chamber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検水源に直浸もしくは連通可能な被検
水滞留部を有する光電光度計の測定セルであって、前記
被検水滞留部を挟んで垂直に配置された一対の光学窓に
より被検水から水密シールされた光源室及び受光室をそ
れぞれ形成し、前記光源室内に配置された光源から前記
一対の窓間の被検水滞留部を経て前記受光室内に配置さ
れた受光器に至る単色光測定用の光路を設定したもの
と、 前記一対の光学窓に水密接触する少なくとも一対の窓ワ
イパを兼ねたシールリングを有し、前記一対のシールリ
ング間において前記一対の窓に対向した開口端を有する
液室を前記被検水滞留部から水密・分離させて形成する
とともに、この液室に連通した洗浄液又は純水のための
通液路を形成してなる慴動ブロックであって、校正又は
洗浄位置において前記液室が前記光路を包囲し、前記校
正又は洗浄位置から後退した測定位置において前記一対
の窓間の被検水滞留部を解放して被検水源に連通させる
ようにしたもの、を備えたことを特徴とする光電光度
計。
1. A measuring cell of a photoelectric photometer having a test water retention part that can be directly immersed in or communicated with a test water source, wherein a pair of optical windows are arranged vertically with the test water retention part interposed therebetween. To form a light source chamber and a light receiving chamber that are water-tightly sealed from the test water by means of a light source arranged in the light source chamber, and a light receiver arranged in the light receiving chamber via a water-to-be-tested portion between the pair of windows. With an optical path for monochromatic light measurement up to and having a seal ring that also serves as at least a pair of window wipers in water-tight contact with the pair of optical windows, and faces the pair of windows between the pair of seal rings. A slidable block which is formed by water-tightening and separating a liquid chamber having an open end from the test water retention part, and forming a liquid passage for the cleaning liquid or pure water in communication with the liquid chamber. The calibration or cleaning position. The liquid chamber surrounds the optical path, and at the measurement position retracted from the calibration or cleaning position, the test water retention part between the pair of windows is opened to communicate with the test water source. A photoelectric photometer characterized in that.
【請求項2】 前記被検水滞留部が前記測定セル内に設
けられた被検水入口及び被検水出口を有する密閉室内に
形成され、前記慴動ブロックが前記密閉室内に配置さ
れ、前記慴動ブロックから延出した前記通液路を形成す
る接続管が前記密閉室の壁面孔に嵌合してその室外に導
かれたものであることを特徴とする請求項1記載の光電
光度計。
2. The test water retention part is formed in a closed chamber having a test water inlet and a test water outlet provided in the measurement cell, and the sliding block is arranged in the closed chamber, 2. The photoelectric photometer according to claim 1, wherein a connection pipe extending from the sliding block and forming the liquid passage is fitted into a wall hole of the closed chamber and guided to the outside thereof. .
【請求項3】 前記液室が、前記慴動ブロックの慴動方
向に隣接し、かつ互いに水密・分離された第1及び第2
の液室からなり、第1の液室を純水用通液路に連通した
校正液室とし、第2の液室を洗浄液用通液路に連通した
洗浄液室としたことを特徴とする請求項1記載の光電光
度計。
3. The first and second liquid chambers are adjacent to each other in the sliding direction of the sliding block and are watertight and separated from each other.
And the first liquid chamber is a calibration liquid chamber communicating with the pure water passage, and the second liquid chamber is a cleaning liquid chamber communicating with the cleaning liquid passage. Item 2. The photoelectric photometer according to Item 1.
JP8797094A 1994-03-30 1994-03-30 Photoelectric meter Expired - Lifetime JP2639624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8797094A JP2639624B2 (en) 1994-03-30 1994-03-30 Photoelectric meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8797094A JP2639624B2 (en) 1994-03-30 1994-03-30 Photoelectric meter

Publications (2)

Publication Number Publication Date
JPH07270231A true JPH07270231A (en) 1995-10-20
JP2639624B2 JP2639624B2 (en) 1997-08-13

Family

ID=13929711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8797094A Expired - Lifetime JP2639624B2 (en) 1994-03-30 1994-03-30 Photoelectric meter

Country Status (1)

Country Link
JP (1) JP2639624B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327802A (en) * 2006-06-07 2007-12-20 Meidensha Corp Optical water quality instrumentation
CN111351755A (en) * 2020-04-28 2020-06-30 北京微芯边缘计算研究院 Full spectrum water quality sensor
KR102641798B1 (en) * 2023-06-20 2024-02-28 (주) 디케이금속 Turbidimeter system for valve room, smart valve room equipped with it, and control method of the smart valve room

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327802A (en) * 2006-06-07 2007-12-20 Meidensha Corp Optical water quality instrumentation
CN111351755A (en) * 2020-04-28 2020-06-30 北京微芯边缘计算研究院 Full spectrum water quality sensor
KR102641798B1 (en) * 2023-06-20 2024-02-28 (주) 디케이금속 Turbidimeter system for valve room, smart valve room equipped with it, and control method of the smart valve room

Also Published As

Publication number Publication date
JP2639624B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
US5453832A (en) Turbidity measurement
KR20050002822A (en) Method for analysing liquids, in addition to a device therefor
EP0576501B1 (en) Organic pollutant monitor
RU2125267C1 (en) Device and method of analysis of liquid medium
JP2008051813A (en) Cell for carrying out electroluminescence measurements
JPH07270231A (en) Photoelectric photomater
US6003362A (en) Apparatus for measuring the partial pressure of gases dissolved in liquids
WO2011041378A1 (en) Total organic carbon (toc) fluid sensor
GB2256043A (en) Organic pollutant monitor
JP2007003335A (en) Spectrophotometer
JP3031778U (en) Probe type turbidity detector
JPH02259451A (en) Turbidity meter
RU2408908C1 (en) Apparatus for measuring concentration of light-absorbing substances
JPH04343057A (en) Method for determining quantity of ammonia in solution
JPH10111235A (en) Photometric analyzer and flow cell apparatus
JP2542531B2 (en) Water chlorophyll concentration measuring device
Strait et al. Preliminary results of new calibration approach and uncertainty assessment for PSICAM
KR100485637B1 (en) Integrate detector with sensing membrane and flow cell
JPH10325802A (en) Automatic underwater silica component measuring apparatus for weather resistant (light resistant) tester
JP2007155371A (en) Optical measuring instrument
Vogt et al. Optically discriminating flow-through cuvette
JPS6044851A (en) Spectrophotometer
JP2005134146A (en) Transmitted light detection cell
SU572688A1 (en) Automatic photoelectric single-channel colorimeter
SU1022018A1 (en) Instrument for determination of oil and petroleum product concentration in water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110502

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120502

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 17

EXPY Cancellation because of completion of term