JPH0727004B2 - Semiconductor laser device life evaluation method - Google Patents

Semiconductor laser device life evaluation method

Info

Publication number
JPH0727004B2
JPH0727004B2 JP61005196A JP519686A JPH0727004B2 JP H0727004 B2 JPH0727004 B2 JP H0727004B2 JP 61005196 A JP61005196 A JP 61005196A JP 519686 A JP519686 A JP 519686A JP H0727004 B2 JPH0727004 B2 JP H0727004B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
dark
laser diode
laser device
far field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61005196A
Other languages
Japanese (ja)
Other versions
JPS62163981A (en
Inventor
家郷 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP61005196A priority Critical patent/JPH0727004B2/en
Publication of JPS62163981A publication Critical patent/JPS62163981A/en
Publication of JPH0727004B2 publication Critical patent/JPH0727004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザー素子の寿命を推定する方法に係
り、特に生産工場に於いて有益な寿命推定方法に関する
ものである。
The present invention relates to a method of estimating the life of a semiconductor laser device, and more particularly to a method of estimating the life useful in a production factory.

〔従来技術と問題点〕 半導体レーザー素子の諸特性を計測するには、必要とす
る特性の分析装置を使用するのが基本であるが、当該分
析装置は高価であるうえ、分析に長い時間を費す等、取
扱いが面倒であり、半導体レーザー素子又はこれを使用
する製品の生産工場に於ける計測方法としては不適切で
ある。特に寿命特性を測定する場合に於いては、比較的
温度変化巾の広い環境中で高温加速動作(高温加速度寿
命試験)を行う必要があり、印加される温度サイクルに
よつて被検体(半導体レーザー素子)に温度ストレスが
生じ、半導体レーザー素子を損う恐れがあつて、製品に
組み込む素子の寿命測定方法としては極めて不適切であ
る。
[Prior Art and Problems] In order to measure various characteristics of a semiconductor laser device, it is basically necessary to use an analyzer for necessary characteristics, but the analyzer is expensive and requires a long time for analysis. It is troublesome to handle, such as costly, and is unsuitable as a measuring method in a production factory of semiconductor laser devices or products using the same. In particular, when measuring the life characteristics, it is necessary to perform high temperature acceleration operation (high temperature acceleration life test) in an environment with a relatively wide temperature change range. (Device) is subject to temperature stress and may damage the semiconductor laser device, which is extremely inappropriate as a method for measuring the life of the device incorporated in the product.

また、生産工場に於ける半導体レーザー素子の特性測定
では研究所に於ける場合と異なり一般には厳密な特性は
要求されず、大凡のデータ、例えば寿命傾向を求めれば
よいことが多い。
Further, unlike the case of the laboratory, the characteristic measurement of the semiconductor laser device in the production factory generally does not require strict characteristics, and it is often sufficient to obtain rough data, for example, life tendency.

〔発明の目的〕[Object of the Invention]

本発明は以上に鑑み、検体(半導体レーザー素子)に広
い変化巾の温度変化を加える必要はなく、比較的簡単な
方法で当該検体の寿命を推定評価する方法を得ることを
目的とする。
In view of the above, it is an object of the present invention to obtain a method for estimating and evaluating the life of a sample (semiconductor laser element) without the need to subject the sample (semiconductor laser element) to a wide range of temperature changes and by a relatively simple method.

〔発明の概要〕[Outline of Invention]

上記目的のため、本発明は検体である半導体レーザー素
子から放出されたレーザー光の強度を当該素子の発光面
前方で面的に掃引しながら測定し、各掃引点での受光強
度をプロツトすることによつて得られる図形(フアーフ
イールドパターン)に現われる暗線及び暗点の存在の有
無から当該半導体レーザー素子の寿命を推定評価するよ
うにしたものである。
For the above-mentioned purpose, the present invention is to measure the intensity of laser light emitted from a semiconductor laser device which is a specimen while sweeping surfacewise in front of the light emitting surface of the device, and plot the received light intensity at each sweep point. The life of the semiconductor laser device is estimated and evaluated from the presence or absence of dark lines and dark spots appearing in the figure (far field pattern) obtained by the method.

〔発明の実施例〕Example of Invention

本発明の発明者は、先に昭和59年特許願第211683号に係
る「信号の送・受特性パターン計測装置」に於いて、半
導体レーザー素子等の放出光強度のフアーフイールドパ
ターンを描く装置を提案した。この装置は、半導体レー
ザー素子(検体)又は受光体を2次元空間(平面座標)
で掃引し、各掃引点での半導体レーザー素子からのレー
ザー光の受光強度を計測して、それを3次元座標にプロ
ツトすることによつて当該半導体レーザー素子の前記フ
アーフイールドパターンを立体的に描くようにしたもの
である。
The inventor of the present invention previously described a device for drawing a far field pattern of emission light intensity of a semiconductor laser element or the like in the "signal transmission / reception characteristic pattern measurement device" of Japanese Patent Application No. 211683 of 1984. Proposed. This device uses a semiconductor laser element (specimen) or a photoreceptor as a two-dimensional space (plane coordinates).
Sweeping, measuring the received light intensity of the laser light from the semiconductor laser device at each sweep point, and plotting it on three-dimensional coordinates to three-dimensionally draw the far field pattern of the semiconductor laser device. It was done like this.

半導体レーザーダイオードのフアーフイールドパターン
を作成するには、第4図(A)に示すように、被測定半
導体レーザーダイオード(以下、レーザーダイオードと
いう。)1を定電力のパルス電力を出力する発光駆動装
置2でパルス駆動し、当該レーザーダイオード1の発光
面前方Sの平面で受光された強度を前記装置で面的に掃
張しながら計測し、各掃引点での受光強度をプロツトす
る。3個のサンプルについて、それぞれ作成したフアー
フイールドパターンを第1図〜第3図に示す。尚、この
フアーフイールドパターンの軸方向とレーザーダイオー
ド1のチツプ101の方向との関係は第4図(B)に示す
通りである。
In order to create a far field pattern of a semiconductor laser diode, as shown in FIG. 4 (A), a semiconductor laser diode to be measured (hereinafter referred to as a laser diode) 1 is a light emitting drive device that outputs a constant power pulse power. Pulse driving is performed at 2, and the intensity of light received on the plane S in front of the light emitting surface of the laser diode 1 is measured while sweeping in a plane with the device, and the intensity of light received at each sweep point is plotted. The far field patterns prepared for each of the three samples are shown in FIGS. 1 to 3. The relationship between the axial direction of this far field pattern and the direction of the chip 101 of the laser diode 1 is as shown in FIG. 4 (B).

また、第5図は上記フアーフイールドパターンに於い
て、X軸方向の1回の掃引について描かれた受光強度パ
ターンを模型的に示したものである。
Further, FIG. 5 schematically shows the received light intensity pattern drawn for one sweep in the X-axis direction in the far field pattern.

周知のように、理想的に作成されたレーザーダイオード
は、第5図実線部分が示すように、一定距離を離れた地
点での受光強度分布が受光中心点X10をピークとするガ
ウス分布特性を示す。ところが実際には、レーザーダイ
オードチツプの導波層の屈折率の不均一、発光面の不均
一等によつて当該レーザーダイオードチツプからの放出
光強度(発光強度)が基本モード(ガウス分布特性)に
対して歪んだ特性となる。すなわち、上記ガウス分布特
性以上の強度で受光される部分と上記ガウス分布特性以
下の強度で受光される部分が存在する。前者は線状に現
われることから、ここでは輝線(Bright Line:BL)とい
い、後者は線状又は点状に現われることから、ここでは
暗線(Dark Line:DL)又は暗点(Micro Spot)という。
As is well known, the ideally created laser diode has a Gaussian distribution characteristic in which the received light intensity distribution at a point separated by a certain distance has a peak at the light receiving center point X 10, as shown by the solid line in FIG. Show. However, in practice, due to the non-uniformity of the refractive index of the waveguide layer of the laser diode chip, the non-uniformity of the light emitting surface, etc., the emission light intensity (emission intensity) from the laser diode chip becomes the fundamental mode (Gaussian distribution characteristic). On the other hand, the characteristic becomes distorted. That is, there are a portion receiving light with an intensity equal to or higher than the Gaussian distribution characteristic and a portion receiving light with an intensity equal to or lower than the Gaussian distribution characteristic. The former appears as a line, and is called a bright line (BL) here. The latter appears as a line or a dot, so it is called a dark line (DL) or a dark spot (Micro Spot) here. .

上記輝線は第5図イに示すようにガウス分布曲線から外
方に伸びる極大値として現われ、通常これが活性層103
と平行方向(Y軸方向)のヒートシンク102側(第4図
(B)参照)に連続して現われ線状となる。また、上記
暗線又は暗点は、第5図ロに示すようにガウス分布曲線
から内方に伸びる極小値として現われ、Y軸方向に連続
して線状になるのが暗線であり、Y軸方向に連続してい
なくて点状になるのが暗点である。
The bright line appears as a maximum value extending outward from the Gaussian distribution curve as shown in FIG.
The linear shape appears continuously on the heat sink 102 side (see FIG. 4B) in the direction parallel to (Y axis direction). Further, the dark line or dark point appears as a minimum value extending inward from the Gaussian distribution curve as shown in FIG. 5B, and the dark line is a continuous line in the Y-axis direction. It is a scotoma that is not continuous with the dots.

輝線、暗線又は暗点の存在の有無は、ガウス分布線のピ
ーク値aに対する輝線、暗線又は暗点のピーク値bが一
定値以上、例えば10%以上のものについて輝線、暗線又
は暗点が存在するものとする。
The presence or absence of a bright line, dark line or dark point is determined by the presence or absence of a bright line, dark line or dark point peak value b with respect to the Gaussian distribution line peak value a, for example 10% or more. It shall be.

以上の観点に立ち、第1図〜第3図をみると、第1図に
示す特性のレーザーダイオードには輝線、暗線及び暗点
のいずれも存在せず、第2図に示す特性のレーザーダイ
オードには、“BL"で示すように輝線が存在し、また第
3図に示すレーザーダイオードには、“DL"で示すよう
に暗線が、及び“MS"で示すように暗点が存在する。
尚、第3図では“DL",“MS"で示す以外にも多くの暗
線、暗点が存在し、描かれたフアーフイールドパターン
は非常に崩れた形状を呈している。
From the above viewpoint, referring to FIGS. 1 to 3, the laser diode having the characteristic shown in FIG. 1 does not have any bright line, dark line or dark spot, and the laser diode having the characteristic shown in FIG. Has a bright line as indicated by "BL", a dark line as indicated by "DL" and a dark spot as indicated by "MS" in the laser diode shown in FIG.
In addition, in FIG. 3, there are many dark lines and dark spots other than those indicated by "DL" and "MS", and the drawn far field pattern has a very collapsed shape.

以上に説明した輝線、暗線及び暗点の存在とレーザーダ
イオードの光出力(温度25℃に於ける光出力のピーク
値)及び光出力温度係数(温度60℃に於ける上記光出力
と温度25℃に於ける上記光出力との比で表わしたもの)
の相関関係を第6図に示す。
Existence of the bright line, dark line, and dark spot described above, and the light output of the laser diode (peak value of light output at a temperature of 25 ° C) and temperature coefficient of light output (above-mentioned light output at a temperature of 60 ° C and temperature of 25 ° C) (Expressed as a ratio to the light output above)
FIG. 6 shows the correlation of the above.

第6図から明らかなように暗線又は暗点のいずれか一方
又は双方が存在するレーザーダイオードは光出力が小さ
く、また光出力温度係数も低い。ところが暗線及び暗点
の存在が認められず、又は輝線の存在のみが認められる
レーザーダイオードは光出力が大きいか、又は光出力温
度係数が高い。
As is clear from FIG. 6, the laser diode having either one or both of the dark line and the dark spot has a small light output and a low light output temperature coefficient. However, the presence of dark lines and dark spots, or only the presence of bright lines, has a large light output or a high light output temperature coefficient.

ところで、一般に光出力が小さく、かつ光出力温度係数
が低いレーザーダイオードでは、外部から印加された駆
動エネルギーが充分に光エネルギーに変換されず、レー
ザーダイオードチツプ内に蓄積されるエネルギーが多く
なつてチツプ自体の温度上昇の原因となり、当該レーザ
ーダイオードの熱破壊等の時期が早まつて、その寿命は
短くなる。従つて暗線又は暗点の存在が認められるレー
ザーダイオードの寿命は短いと推定評価できる。このよ
うにフアーフイールドパターンから暗線又は暗点を観察
することでレーザーダイオードの寿命評価が可能とな
る。因みに、ハイパワーパルスレーザーダイオードで
は、暗線又は暗点が認められないものの寿命は5000時間
以上あるのに対し、暗線又は暗点が認められるものの寿
命は500時間程度と極めて短かくなる(環境温度25℃、
周期100μsec、パルス巾100nsecで定格駆動(駆動電流3
0〜40A)して測定した場合)。
By the way, in general, in a laser diode having a small light output and a low light output temperature coefficient, the driving energy applied from the outside is not sufficiently converted into light energy, and the energy accumulated in the laser diode chip is large. This causes the temperature of the laser diode itself to rise, and the time of thermal destruction of the laser diode is shortened, which shortens the life of the laser diode. Therefore, it can be estimated that the lifetime of the laser diode in which the presence of dark lines or dark spots is recognized is short. In this way, by observing the dark line or the dark spot from the far field pattern, it becomes possible to evaluate the life of the laser diode. By the way, in the high-power pulse laser diode, the lifespan is 5000 hours or more, although dark lines or dark spots are not recognized, whereas the lifespan is 500 hours or so, which is extremely short (environmental temperature 25 ℃,
Period 100 microns sec, the rated drive a pulse width 100n sec (drive current 3
0-40A) and measured).

尚、フアーフイールドパターンから暗線又は暗点の存在
を検出する方法は、受光強度特性の一部分の傾斜から前
記ガウス分布特性を示す基準分布曲線を推定し、この基
準分布曲線からはみ出した極小値を演算によつて求める
ようにしており、これらは全てMPU(マイクロプロセツ
サ)による処理で得られる。
The method of detecting the presence of a dark line or a dark spot from the far field pattern is to estimate a reference distribution curve showing the Gaussian distribution characteristic from the slope of a part of the received light intensity characteristic, and calculate a minimum value protruding from this reference distribution curve. , And all of them can be obtained by processing by MPU (microprocessor).

〔発明の効果〕〔The invention's effect〕

以上、詳細に説明したように、本発明はレーザーダイオ
ードのフアーフイールドパターンから暗線又は暗点の存
在を観察することによつて当該レーザーダイオードの寿
命評価を行うようにしたのであり、非常に簡便な方法で
寿命評価が可能となるばかりか、検体に温度変化を与え
る必要がないので、測定自体によるレーザーダイオード
の劣化が皆無であり、生産工場で必要とする程度の寿命
評価に於いて極めて有益な方法である。
As described above in detail, the present invention is designed to evaluate the life of the laser diode by observing the presence of dark lines or dark spots from the far field pattern of the laser diode, which is very simple. Not only is it possible to evaluate the lifetime with the method, but there is no need to subject the sample to temperature changes, so there is no deterioration of the laser diode due to the measurement itself, which is extremely useful in assessing the lifetime required at the production plant. Is the way.

【図面の簡単な説明】[Brief description of drawings]

図面はいずれも本発明の実施例を説明する図で、第1図
〜第3図はレーザーダイオードのフアーフイールドパタ
ーンを示す図、第4図(A)は測定方法を説明する図、
第4図(B)はレーザーダイオードとフアーフイールド
パターンの軸関係を説明する図、第5図はレーザーダイ
オードの放出光の受光特性を示す図、第6図は輝線、暗
線又は暗点の存在と寿命の相関を示す図である。 (主な記号) 1…レーザーダイオード、BL…輝線 DL…暗線、MS…暗点。
1 to 3 are views showing a far field pattern of a laser diode, and FIG. 4 (A) is a view explaining a measuring method.
FIG. 4 (B) is a diagram for explaining the axial relationship between the laser diode and the far field pattern, FIG. 5 is a diagram showing the light receiving characteristic of the emitted light of the laser diode, and FIG. 6 is the existence of bright lines, dark lines or dark spots. It is a figure which shows the correlation of lifetime. (Main symbols) 1 ... Laser diode, BL ... Bright line DL ... Dark line, MS ... Dark spot.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体レーザー素子の生産時の特性測定に
おいて行なわれる寿命評価方法であって、半導体レーザ
ー素子から放出されるレーザー光の強度を当該半導体レ
ーザー素子の発光面前方平面で面的に掃引しながら測定
して作成したファーフィールドパターンを観察し、当該
ファーフィールドパターンに現われる暗線又は暗点のい
ずれか一方又は双方の存在の有無から寿命を推定するよ
うにした半導体レーザー素子の寿命評価方法。
1. A method of evaluating the life of a semiconductor laser device, which is carried out in the measurement of characteristics during production, in which the intensity of laser light emitted from the semiconductor laser device is swept over the plane in front of the emission surface of the semiconductor laser device. While observing the far field pattern measured and created, the lifetime evaluation method of the semiconductor laser device is such that the lifetime is estimated from the presence or absence of either or both of a dark line and a dark spot appearing in the far field pattern.
JP61005196A 1986-01-14 1986-01-14 Semiconductor laser device life evaluation method Expired - Lifetime JPH0727004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61005196A JPH0727004B2 (en) 1986-01-14 1986-01-14 Semiconductor laser device life evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61005196A JPH0727004B2 (en) 1986-01-14 1986-01-14 Semiconductor laser device life evaluation method

Publications (2)

Publication Number Publication Date
JPS62163981A JPS62163981A (en) 1987-07-20
JPH0727004B2 true JPH0727004B2 (en) 1995-03-29

Family

ID=11604453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61005196A Expired - Lifetime JPH0727004B2 (en) 1986-01-14 1986-01-14 Semiconductor laser device life evaluation method

Country Status (1)

Country Link
JP (1) JPH0727004B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4417411B2 (en) 2007-09-14 2010-02-17 日本航空電子工業株式会社 Electrical connection member
JP6019816B2 (en) * 2012-06-28 2016-11-02 株式会社リコー Surface emitting laser unit, optical scanning device, and image forming apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51148442A (en) * 1975-06-16 1976-12-20 Nippon Telegr & Teleph Corp <Ntt> Mode-distribution analytical method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
応用物理43〔6〕(1974)南日、"半導体レーザーの劣化機構"、P.624−628

Also Published As

Publication number Publication date
JPS62163981A (en) 1987-07-20

Similar Documents

Publication Publication Date Title
US4949034A (en) Method for contactless evaluation of characteristics of semiconductor wafers and devices
Zhang et al. Fiber‐optic high‐temperature sensor based on the fluorescence lifetime of alexandrite
US6168311B1 (en) System and method for optically determining the temperature of a test object
CN106646510B (en) A kind of first photon laser imaging system based on photon label
EP0507628B1 (en) Near field scanning optical microscope
JPH0750331A (en) Method and apparatus for evaluating semiconductor light-emitting element
CN110763764A (en) Novel ultrasonic detection system for metal internal defects
EP0332781B1 (en) Optical measuring device
US6521899B1 (en) Arrangement for the adjustment of laser power and/or pulse length of a short pulse laser in a microscope
JPH0727004B2 (en) Semiconductor laser device life evaluation method
JPH02268256A (en) Apparatus for inspecting fluorescence characteristic
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
US20030118075A1 (en) Optical temperature sensor
CN106895911A (en) A kind of high-rate laser power measurement instruments
CN110865062A (en) Optical analysis device for detecting strip-shaped fluorescent signal
Henning et al. Application of time-correlated single photon counting and stroboscopic detection methods with an evanescent-wave fibre-optic sensor for fluorescence-lifetime-based pH measurements
CN108254079B (en) A kind of dual wavelength radiation temperature measuring equipment and method
CN108365507B (en) Device and method for monitoring working state of pulse laser
CN111504497B (en) Temperature measurement method based on fluorescent optical fiber
JP2927829B2 (en) Fluorescent fiber sensor
Ohashi et al. Simultaneous acquisition of color and distance information by LiDAR with RGB visible laser diodes
JP2628816B2 (en) Wafer photoluminescence sense mapping system
Itoh et al. Reliable evaluation of the lateral resolution of a confocal Raman microscope by using the tungsten-dot array certified reference material
US5926270A (en) System and method for the remote detection of organic material in ice in situ
JPH0676844U (en) Light emitting element evaluation device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term