JPH07269619A - Shape memory micro spring and manufacture of it - Google Patents

Shape memory micro spring and manufacture of it

Info

Publication number
JPH07269619A
JPH07269619A JP8398294A JP8398294A JPH07269619A JP H07269619 A JPH07269619 A JP H07269619A JP 8398294 A JP8398294 A JP 8398294A JP 8398294 A JP8398294 A JP 8398294A JP H07269619 A JPH07269619 A JP H07269619A
Authority
JP
Japan
Prior art keywords
shape memory
spring
wire
coil
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8398294A
Other languages
Japanese (ja)
Other versions
JP2975258B2 (en
Inventor
Masahisa Sugihara
正久 杉原
Keisuke Yamamoto
啓介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP8398294A priority Critical patent/JP2975258B2/en
Publication of JPH07269619A publication Critical patent/JPH07269619A/en
Application granted granted Critical
Publication of JP2975258B2 publication Critical patent/JP2975258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0258Shape-memory metals, e.g. Ni-Ti alloys

Landscapes

  • Micromachines (AREA)
  • Springs (AREA)

Abstract

PURPOSE:To realize a shape memory microspring and a manufacture of it suitable for a constituent part such as a micromachine, a multifunctional cathe ter, etc., extremely small, and excellent in responsiveness of extension and contraction. CONSTITUTION:In a micro spring wherein the outside diameter of a coil using an element wire made of shape memory metal whose outside diameter is 100mum or less is 500mum or less, the coil pitch is taken as l to 10 times of the outside diameter of the element wire, the mean diameter of the coil is taken as Do, and the element wire diameter is taken as (d), thereby the spring index C shown by Do/d is selected within the range of 1.5 to 10. And, the element wire diameter (d), the coil outside diameter D, the coil pitch P, and the spring index C within the specific range are integrally unseparable and excellent in responsiveness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コイル素線径が100
μm以下、コイル外径が500μm以下の形状記憶性の
マイクロバネ及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention has a coil wire diameter of 100.
The present invention relates to a shape-memory microspring having a coil outer diameter of less than or equal to μm and a coil outer diameter of less than or equal to 500 μm, and a manufacturing method thereof.

【0002】[0002]

【発明の背景】従来、コイル外径が500μm以下程度
のマイクロバネとしては、ステンレスなどの極細金属線
を用いて形成されたものがある。このようなバネを、例
えば人体の血管に挿入して各種の治療を行うマイクロマ
シンや多機能カテーテル等の構成部品の一つとして用い
ようとする場合、サイズ的には問題ないが通常のバネ動
作しか示さないため、バネの伸縮を遠隔地から外力によ
らず自在に制御することができない。従って、なるべく
少ない部品での多機能化が要求される上記マイクロマシ
ンやカテーテル等の構成部品としては基本的に不向きで
ある。
2. Description of the Related Art Conventionally, as a micro spring having a coil outer diameter of about 500 μm or less, there is one formed by using an ultrafine metal wire such as stainless steel. When using such a spring as one of the components such as a micromachine and a multi-function catheter that perform various treatments by inserting it into a blood vessel of a human body, there is no problem in size, but only normal spring operation is possible. Since it is not shown, it is not possible to freely control the expansion and contraction of the spring from a remote location regardless of external force. Therefore, it is basically unsuitable as a component such as the above-mentioned micromachine or catheter, which is required to have multiple functions with as few components as possible.

【0003】一方、形状記憶性金属を用いた通常のサイ
ズのバネも知られている。該形状記憶性バネは外力によ
らずバネを通電加熱する等して温度変化を与えるだけ
で、伸長若しくは縮小動作を行わせ得る。従来の形状記
憶性バネは、専ら温度変化で伸縮動作が可能という点の
みに注目され、その動作の高速性すなわち良好な応答性
はさほど問題とせず、また高速応答性が要求されない用
途につき主に形状記憶性バネの開発が行われてきた。
On the other hand, a spring of a normal size using a shape memory metal is also known. The shape memory spring can be expanded or contracted only by applying a temperature change by electrically heating the spring regardless of an external force. The conventional shape memory spring is focused only on the fact that it can be expanded and contracted by temperature change, and its high speed of operation, that is, good responsiveness does not pose a problem, and it is mainly used for applications where high speed responsiveness is not required. Shape memory springs have been developed.

【0004】[0004]

【発明が解決しようとする課題】マイクロマシンや多機
能カテーテル等の用途に使用されるバネは、微小でかつ
遠隔地からの伸長若しくは縮小の制御が可能であり、し
かもバネを加熱若しくは冷却したときに瞬時にバネが伸
縮する高速応答性を具備していることが要求される。と
りわけ高速応答性が、マイクロマシン等の高機能化を実
現するにあたり最も重要となる。しかしながら、上記の
要望を満足するマイクロバネは現状では何等提案されて
おらず、上記のマイクロマシンや多機能カテーテル等の
実用化のネックとなっている。従って本発明は、マイク
ロマシンや多機能カテーテル等の構成部品として好適
な、極めて微小で、伸縮の応答性に優れる形状記憶性マ
イクロバネ及びその製造方法を提供することを課題とす
る。
The springs used in applications such as micromachines and multifunction catheters are minute and can be controlled to extend or contract from a remote location, and when the spring is heated or cooled. It is required to have a high-speed response in which the spring expands and contracts instantly. In particular, high-speed responsiveness is the most important factor in achieving high functionality of micromachines and the like. However, at present, no microsprings satisfying the above demands have been proposed, which is a hindrance to the practical use of the above micromachines, multifunctional catheters and the like. Therefore, an object of the present invention is to provide an extremely minute shape memory microspring which is suitable as a component such as a micromachine or a multi-function catheter and has excellent response of expansion and contraction, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明の形状記憶性マイ
クロバネは、外径が100μm以下の形状記憶性金属か
らなる素線を用いたコイル外径が500μm以下のマイ
クロバネであって、コイルピッチが素線外径の1〜10
倍であり、かつコイル平均径をD0 、上記の素線径をd
とするときD0 /dで表されるバネ指数Cが1.5〜1
0の範囲であることを特徴とするものである。本発明者
らは、上記要件を全て満足するようにバネを構成するこ
とにより、実用に充分供し得るような伸縮の高速応答性
を備える形状記憶性マイクロバネが実現されることを知
見した。
The shape-memory microspring of the present invention is a microspring having an outer diameter of 100 μm or less and a coil made of a shape-memory metal having an outer diameter of 500 μm or less. Pitch is 1 to 10 of wire outer diameter
And the average coil diameter is D 0 and the above wire diameter is d
And the spring index C represented by D 0 / d is 1.5 to 1
It is characterized in that the range is 0. The present inventors have found that by configuring the spring so as to satisfy all the above requirements, a shape memory microspring having a high-speed response of expansion and contraction that can be sufficiently provided for practical use is realized.

【0006】まず、図1に符号dで示す形状記憶性金属
からなる素線の外径が100μmを越えたり、コイル外
径Dが500μmを越えたりすると、基本的な目的であ
るバネのマイクロ化が図り得ないのは当然として、バネ
の温度変化による応答性が低下する。すなわち、応答速
度は形状記憶性マイクロバネ自身の加熱・冷却速度に依
存することになり、該加熱・冷却速度、とりわけ冷却速
度はバネの熱容量に左右され、従って熱容量が小さい程
応答性が良好となるという仮定に基づき種々実験を重ね
た結果、素線の外径及びコイル外径が上記の範囲にある
とき、実用に耐え得ることを見出したものである。
First, when the outer diameter of the wire made of a shape-memory metal shown by symbol d in FIG. 1 exceeds 100 μm or the outer diameter D of the coil exceeds 500 μm, the basic purpose is to make the spring microscopic. However, as a matter of course, the response due to the temperature change of the spring deteriorates. That is, the response speed depends on the heating / cooling speed of the shape memory micro spring itself, and the heating / cooling speed, especially the cooling speed depends on the heat capacity of the spring. Therefore, the smaller the heat capacity, the better the responsiveness. As a result of repeating various experiments based on the assumption that the above, it was found that when the outer diameter of the wire and the outer diameter of the coil are in the above ranges, the wire can withstand practical use.

【0007】すなわち、素線の外径dが100μmを越
え、またコイル外径Dが500μmを越えると、バネの
熱容量が大きくなってしまい応答性が低下する。一方こ
れらが小さすぎると製作の困難性が増大する点より望ま
しくないので、好ましい素線の外径は10〜80μm、
とりわけ20〜70μmであり、好ましいコイル外径は
50〜300μm、とりわけ80〜200μmである。
That is, when the outer diameter d of the wire exceeds 100 μm and the outer diameter D of the coil exceeds 500 μm, the heat capacity of the spring increases and the responsiveness deteriorates. On the other hand, if these are too small, it is not desirable because the manufacturing difficulty increases, so the preferred outer diameter of the wire is 10 to 80 μm.
In particular, it is 20 to 70 μm, and the preferable coil outer diameter is 50 to 300 μm, especially 80 to 200 μm.

【0008】また、応答性を良好とするには上記の素線
外径及びコイル外径だけでなく、そのコイルピッチ及び
バネ指数を適宜な範囲に選定する必要があることを知見
した。すなわち、コイルピッチPが素線外径dの1〜1
0倍の範囲であり、かつコイル平均径をD0 、上記の素
線径をdとするときD0 /dで表されるバネ指数Cが
1.5〜10の範囲であることを要する。
Further, it has been found that not only the outer diameter of the wire and the outer diameter of the coil, but also the coil pitch and the spring index thereof must be selected within appropriate ranges in order to improve the response. That is, the coil pitch P is 1 to 1 of the wire outer diameter d.
It is necessary that the spring index C is in the range of 0 times, and the spring index C represented by D 0 / d is in the range of 1.5 to 10 when the coil average diameter is D 0 and the strand diameter is d.

【0009】上記コイルピッチPは換言するとバネの伸
長範囲を特定するものであって、常温状態若しくは形状
回復状態のいずれかにおいて最大限に伸長しうる範囲を
意味する。例えば、当該形状記憶性マイクロバネを完全
に縮小した状態(この場合コイルピッチP=素線外径d
となる)を形状記憶形態とし、通常時は伸長させた形態
で使用する場合においては、バネの伸長時におけるコイ
ルピッチPが、長くとも10倍以下となるよう設定する
ものである。逆に伸長状態が形状記憶形態であるとき
は、前述のピッチ以下となるよう設定するものである。
このコイルピッチPが素線外径dの10倍を越えると応
答速度が緩慢になる傾向が強くなると共に、本来のバネ
性が低下する。より高速な応答性を目的とする点で好ま
しいコイルピッチPは、素線外径dの1〜8倍、とりわ
け1〜6倍である。
In other words, the coil pitch P specifies the extension range of the spring, and means the range in which it can be extended to the maximum in either the normal temperature state or the shape recovery state. For example, a state in which the shape memory micro spring is completely reduced (in this case, the coil pitch P = the outer wire diameter d).
Is used as the shape memory mode, and when the spring is normally used in a stretched form, the coil pitch P when the spring is stretched is set to be 10 times or less at the longest. On the contrary, when the expanded state is the shape memory mode, the pitch is set to be equal to or less than the above-mentioned pitch.
If the coil pitch P exceeds 10 times the outer diameter d of the strand, the response speed tends to be slow and the original spring property is deteriorated. The coil pitch P preferable for the purpose of higher speed responsiveness is 1 to 8 times, especially 1 to 6 times the outer diameter d of the wire.

【0010】通常のバネのバネ指数は、必要とする伸縮
力等に応じて適宜選定されるものであるが、本発明の形
状記憶性マイクロバネのように非常に微細で、伸縮動作
が温度変化により達成され、かつ高速応答性が要求され
る特殊バネにおいては、特定範囲に設定する必要があ
る。かかる要求を達成できるバネ指数Cは1.5〜10
であり、好ましくは1.7〜8、特に2〜6である。バ
ネ指数Cが1.5以下の場合若しくは10以上の場合は
いずれも応答速度が低下し、これは前者の場合は機械的
剛性が高くなって温度による形状回復力が阻害されるた
め、後者の場合は形状回復時にバネ形状に歪みが生じ易
いためと考えられる。
The spring index of an ordinary spring is appropriately selected according to the required expansion / contraction force, etc., but it is extremely fine like the shape memory micro spring of the present invention, and the expansion / contraction operation changes with temperature. It is necessary to set a specific range in the special spring that is achieved by the above and requires high-speed response. The spring index C that can achieve this requirement is 1.5 to 10
And preferably 1.7 to 8, particularly 2 to 6. When the spring index C is 1.5 or less or 10 or more, the response speed decreases, and in the former case, the mechanical rigidity increases and the shape recovery force due to temperature is impeded. In this case, it is considered that the spring shape is likely to be distorted when the shape is recovered.

【0011】後述する実施例からも明らかな通り、上記
した特定範囲の素線外径d、コイル外径D、コイルピッ
チP及びバネ指数Cが一体不可分となって応答性に優れ
る本発明の形状記憶性マイクロバネが実現されるもので
ある。
As will be apparent from the examples described below, the shape of the present invention is excellent in responsiveness because the outer diameter d of the wire, the outer diameter D of the coil, the coil pitch P and the spring index C in the above-described specific range are inseparable. A memory micro spring is realized.

【0012】上記の形状記憶性金属としては特に限定は
ないが、好ましいものは、Ni:49〜51at%、T
i:51〜49at%のNi−Ti合金からなるもの、
或いは、Cu:10〜30重量%、Zn:3〜10重量
%、残部AlのCu−Zn−Al合金からなる形状記憶
合金である。これら形状記憶合金は本質的に温度変化に
ともなう変態特性に優れ、本発明のバネに好適に用いる
ことができる。
The shape memory metal is not particularly limited, but the preferable one is Ni: 49 to 51 at%, T.
i: 51-49 at% Ni-Ti alloy,
Alternatively, it is a shape memory alloy composed of Cu: 10 to 30% by weight, Zn: 3 to 10% by weight, and the balance Al being a Cu-Zn-Al alloy. These shape memory alloys are essentially excellent in transformation characteristics associated with temperature changes and can be suitably used for the spring of the present invention.

【0013】また、バネの全長は、3〜1000mmの範
囲で選択することが望ましい。短尺すぎるバネは、上記
の特定された諸元でかつ形状記憶特性を利用したバネで
ある関係上、ごく僅かな伸縮動作しか示さないため好ま
しくなく、長尺すぎるバネは応答性がどうしても緩慢と
なるため好ましくない。このため、より望ましい全長は
5〜100mmであり、マイクロマシンやカテーテルへの
組み込み性の点からは7〜30mm程度が好ましい。
The total length of the spring is preferably selected within the range of 3 to 1000 mm. A spring that is too short is not preferable because it exhibits only a slight expansion and contraction action because it is a spring that uses the above-specified specifications and shape memory characteristics, and a spring that is too long has a slow response. Therefore, it is not preferable. For this reason, the more desirable total length is 5 to 100 mm, and from the viewpoint of incorporation into a micromachine or a catheter, about 7 to 30 mm is preferable.

【0014】一方、本発明の形状記憶性マイクロバネの
製造方法は、外径が500μm以下であってその軸線を
中心として回転する高強度芯線に、外径が100μm以
下の形状記憶性金属からなる素線を、1.5〜300g
fのバックテンションを加えつつ前記芯線の回転力にて
巻き付け、得られたコイルを熱処理することを特徴とす
るものである。
On the other hand, in the method for manufacturing a shape memory microspring according to the present invention, the high-strength core wire having an outer diameter of 500 μm or less and rotating about its axis is made of a shape memory metal having an outer diameter of 100 μm or less. 1.5-300g of wire
It is characterized in that the coil obtained by winding with the rotational force of the core wire while applying the back tension of f and heat-treating the coil is obtained.

【0015】好ましくは上記芯線の回転は、同期回転す
る一対のチャック間に上記高強度芯線を保持することに
より行わせること、また素線の芯線への巻き付けピッチ
を、素線外径1〜10倍の範囲において選択することが
望ましい。
Preferably, the rotation of the core wire is performed by holding the high-strength core wire between a pair of chucks that rotate in synchronization, and the winding pitch of the wire around the core wire is 1-10 outer diameters. It is desirable to select in the double range.

【0016】図2に本発明の製造方法を達成する製造装
置の一例を示す。図において、1は高強度芯線であり、
例えばSUS304等のステンレス線若しくはステンレ
ス線と同等またはそれ以上の抗張力を備える線材が使用
される。また2はコイルの素線であり、上述したNi−
Ti合金やCu−Zn−Al合金等からなる形状記憶性
金属の線材が使用される。コイル外径が500μm以下
のバネを製造する関係上、芯線1の外径は500μm以
下の範囲において選択される。例えば素線2の外径が5
0μmである場合、芯線1としては400μm以下で所
望のバネ指数等を考慮したものが選択される。
FIG. 2 shows an example of a manufacturing apparatus for achieving the manufacturing method of the present invention. In the figure, 1 is a high-strength core wire,
For example, a stainless wire such as SUS304 or a wire having a tensile strength equal to or higher than that of the stainless wire is used. Further, 2 is a coil wire, which is the above-mentioned Ni-
A shape memory metal wire made of a Ti alloy, a Cu-Zn-Al alloy, or the like is used. The outer diameter of the core wire 1 is selected in the range of 500 μm or less in order to manufacture a spring having a coil outer diameter of 500 μm or less. For example, the outer diameter of the wire 2 is 5
In the case of 0 μm, the core wire 1 is selected to be 400 μm or less in consideration of a desired spring index and the like.

【0017】上記芯線1は、その軸線を中心として回転
するよう構成され、この回転力により素線2が芯線1上
にコイル状に巻回される。この回転手段については特に
限定はないが、図2の例では、芯線1の両端を保持し、
かつ同期回転する一対のチャック31,32を用いた例
を示している。この方式によれば、非常に細いものであ
る芯線1を撓ませることなく安定して回転させることが
でき、また芯線1の取り付け及び取り外しが容易である
という利点がある。なおチャック31,32の回転速度
は、1500rpm以下の範囲で選定するのが適当であ
る。
The core wire 1 is constructed so as to rotate about its axis, and the wire 2 is wound around the core wire 1 in a coil shape by this rotational force. The rotating means is not particularly limited, but in the example of FIG. 2, holding both ends of the core wire 1,
In addition, an example using a pair of chucks 31 and 32 that rotate synchronously is shown. According to this method, there is an advantage that the core wire 1 which is very thin can be stably rotated without bending, and the core wire 1 can be easily attached and detached. The rotation speed of the chucks 31 and 32 is appropriately selected within the range of 1500 rpm or less.

【0018】4は素線供給装置であり、素線2に所定の
バックテンションを付与しつつ芯線1へ素線2を供給す
る。該素線供給装置4は芯線1と並行方向に移動自在と
されている。素線2に与えるバックテンションは1.5
〜300gfの範囲において選択する必要があり、テン
ションが上記より小さいと素線2に撓みが生じ易くなっ
て芯線1への密巻きが行いにくくなり、上記より大きい
と素線2が断線し易くなる。図2の例では、テンション
付与手段として3個のテンションロール41を用いた場
合を示した。
Reference numeral 4 denotes a wire supply device, which supplies the wire 2 to the core wire 1 while applying a predetermined back tension to the wire 2. The strand supply device 4 is movable in a direction parallel to the core 1. The back tension given to the wire 2 is 1.5
It is necessary to select in the range of up to 300 gf. When the tension is smaller than the above, the strand 2 is apt to bend and it is difficult to tightly wind the core 1, and when it is larger than the above, the strand 2 is easily broken. . In the example of FIG. 2, the case where three tension rolls 41 are used as the tension applying means is shown.

【0019】実際にバネを製造する場合、チャック3
1,32の回転速度、素線2へのバックテンション、及
び素線2の芯線1への巻き付けピッチを、素線外径や所
望のバネ指数に応じて制御する。ピッチの制御は、素線
供給装置4の移動速度を調整することにより制御すれば
良い。また素線供給装置4を固定しチャック31,32
をピッチに応じて平行移動させるようにしても良い。な
おピッチは、上述した理由により、素線外径の1〜10
倍の範囲で選定することが望ましい。
When actually manufacturing a spring, the chuck 3 is used.
The rotation speeds of 1, 32, the back tension on the wire 2, and the winding pitch of the wire 2 around the core 1 are controlled according to the outer diameter of the wire and the desired spring index. The pitch control may be performed by adjusting the moving speed of the wire supply device 4. In addition, the wire feeder 4 is fixed and the chucks 31, 32
May be moved in parallel according to the pitch. The pitch is 1 to 10 of the outer diameter of the wire due to the reason described above.
It is desirable to select in the double range.

【0020】上記のようにして得られたコイルは、その
後形状記憶性を付与するために熱処理が施される。この
熱処理は、例えば素線2としてNi−Ti合金線を用い
た場合、350℃、1時間程度のものである。
The coil obtained as described above is then subjected to heat treatment in order to impart shape memory property. This heat treatment is, for example, at 350 ° C. for about 1 hour when a Ni—Ti alloy wire is used as the wire 2.

【0021】なお、上記の形状記憶性マイクロバネを使
用するにあたり、その伸縮制御を遠隔地から行う手段と
しては、例えば光ファイバを介してレーザー光をバネに
照射し得るよう構成し、照射時の熱によりバネを縮小若
しくは伸長状態の形状記憶形態に復元させ、照射停止に
より伸長若しくは縮小させるという制御、若しくはバネ
自身を通電加熱して同様の伸縮を行わせる制御等が、最
も簡易で合理的な方法である。
When the shape memory micro spring is used, as a means for controlling the expansion and contraction of the spring from a remote location, for example, a laser beam can be applied to the spring via an optical fiber. The simplest and rational control is to restore the shape of the spring to the shape memory shape that is contracted or expanded by heat, and to expand or contract by stopping irradiation, or to control the spring itself to be electrically expanded and contracted in the same manner. Is the way.

【0021】[0021]

【実施例】【Example】

(実施例1〜6,比較例1〜5)素線材としてNi:4
9.5at%、Ti:50.5at%のNi−Ti合金
からなるものを用い、図2に示す装置を使用し、表1に
示す素線外径及びコイル外径が得られる外径のSUS3
04芯線をそれぞれ使用して、素線を芯線へ密巻き(巻
き付けピッチ=1)してコイルを作製した。得られたコ
イルに350℃、1時間の熱処理を施して形状記憶させ
た後、各コイルを一定長さ(30mm)に切断し、それぞ
れ45mmに伸長させて、11本の形状記憶性マイクロバ
ネを作成した。
(Examples 1 to 6 and Comparative Examples 1 to 5) Ni: 4 as a wire rod
SUS3 having an outer diameter of 9.5 at% and Ti: 50.5 at% of Ni-Ti alloy is used, and the apparatus shown in FIG. 2 is used to obtain the wire outer diameter and the coil outer diameter shown in Table 1.
Using each of the 04 core wires, the wire was tightly wound around the core wire (winding pitch = 1) to produce a coil. After heat-treating the obtained coils at 350 ° C for 1 hour to memorize the shape, each coil is cut into a certain length (30 mm) and stretched to 45 mm to obtain 11 shape-memory microsprings. Created.

【0022】(応答性評価試験)図3に示すように、シ
リンダ5内にフランジ部61を具備し、その前方部がシ
リンダ5から突出可能なピストン6を収納し、フランジ
部61の後方側にバイアスバネ62を、前方側に上記で
得た形状記憶性マイクロバネ20を配置し、バイアスバ
ネ62と形状記憶性マイクロバネ20とが互いに引き合
うようにセットした。さらに形状記憶性マイクロバネ2
0にレーザ光を照射するための光ファイバ7を、シリン
ダ5の側壁に配置した。また、ピストン6の前方に、ピ
ストン6が突出したときに投光路が遮断されるように一
対のアレイ型投受光器からなる光センサ8を配置した。
(Responsiveness Evaluation Test) As shown in FIG. 3, a flange portion 61 is provided in the cylinder 5, a front portion of which accommodates a piston 6 which can project from the cylinder 5, and a rear portion of the flange portion 61 is provided. The bias spring 62 was set such that the shape memory microspring 20 obtained above was arranged on the front side and the bias spring 62 and the shape memory microspring 20 were attracted to each other. Further shape memory micro spring 2
An optical fiber 7 for irradiating laser light to the laser light 0 was arranged on the side wall of the cylinder 5. Further, in front of the piston 6, an optical sensor 8 composed of a pair of array type light emitting and receiving devices is arranged so that the light projecting path is blocked when the piston 6 projects.

【0023】そして、光センサ8の投受光をモニター
し、ピストン6の前進により光センサ8の投光路が完全
に遮光されたとき、光ファイバ7の他端に接続される図
示しないレーザ光源のスイッチがOFFとし、ピストン
の後退により光センサ8の投光路が完全に解放されたと
き前記レーザ光源のスイッチがONとなるようセッティ
ングした。
Then, the light emitting and receiving of the light sensor 8 is monitored, and when the light emitting path of the light sensor 8 is completely shielded by the forward movement of the piston 6, a switch of a laser light source (not shown) connected to the other end of the optical fiber 7 Is set to OFF, and the laser light source switch is set to ON when the projection path of the optical sensor 8 is completely released due to the backward movement of the piston.

【0024】この測定装置を用い、バネの応答性を確認
するために、上記で得た11本の形状記憶性マイクロバ
ネそれぞれにつき、1分間のピストン6のストローク回
数(光センサ8における完全遮光回数)を計測した。そ
の結果を表1に示す。
Using this measuring device, in order to confirm the responsiveness of the spring, the number of strokes of the piston 6 per minute (the number of times of complete light shielding in the optical sensor 8) for each of the 11 shape memory microsprings obtained above was determined. ) Was measured. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上説明した通りの本発明の形状記憶性
マイクロバネ及びその製造方法によれば、温度変化を与
えたときのバネの伸長若しくは縮小の応答性に極めて優
れる形状記憶性マイクロバネを得ることができる。従っ
て、マイクロマシンや多機能カテーテル等に本発明のバ
ネを組み込んだ場合、各種動作を高速で行わせることが
可能となり、より高度で高機能なマイクロマシンや多機
能カテーテルを実現することができる。
As described above, according to the shape memory micro spring of the present invention and the method for manufacturing the same, it is possible to obtain a shape memory micro spring which is extremely excellent in response to expansion or contraction of the spring when a temperature change is applied. Obtainable. Therefore, when the spring of the present invention is incorporated into a micromachine, a multifunction catheter, or the like, various operations can be performed at high speed, and a more sophisticated and highly functional micromachine or multifunction catheter can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の形状記憶性マイクロバネを示す側面図
である。
FIG. 1 is a side view showing a shape memory micro spring of the present invention.

【図2】本発明の製造方法を実現する製造装置の一例を
示す斜視図である。
FIG. 2 is a perspective view showing an example of a manufacturing apparatus for realizing the manufacturing method of the present invention.

【図3】応答性を評価する測定装置の断面図である。FIG. 3 is a cross-sectional view of a measuring device for evaluating responsiveness.

【符号の説明】[Explanation of symbols]

1 芯線 2 形状記憶性金属からなる素線 20 形状記憶性マイクロバネ 31,32 チャック 1 Core Wire 2 Elemental Wire Made of Shape Memory Metal 20 Shape Memory Micro Spring 31, 32 Chuck

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 外径が100μm以下の形状記憶性金属
からなる素線を用いたコイル外径が500μm以下のマ
イクロバネであって、コイルピッチが素線外径の1〜1
0倍であり、かつコイル平均径をD0 、上記の素線径を
dとするときD0 /dで表されるバネ指数Cが1.5〜
10の範囲であることを特徴とする形状記憶性マイクロ
バネ。
1. A microspring having a coil outer diameter of 500 μm or less, which uses a wire made of a shape-memory metal having an outer diameter of 100 μm or less, and a coil pitch of 1 to 1 of the wire outer diameter.
When the coil average diameter is D 0 and the strand diameter is d, the spring index C represented by D 0 / d is 1.5 to 0.
A shape memory micro spring having a range of 10.
【請求項2】 上記形状記憶性金属が、Ni:49〜5
1at%、Ti:51〜49at%のNi−Ti合金か
らなることを特徴とする請求項1記載の形状記憶性マイ
クロバネ。
2. The shape memory metal is Ni: 49-5.
The shape memory micro spring according to claim 1, which is made of a Ni-Ti alloy containing 1 at% and Ti: 51 to 49 at%.
【請求項3】 上記形状記憶性金属が、Cu:10〜3
0重量%、Zn:3〜10重量%、残部AlのCu−Z
n−Al合金からなることを特徴とする請求項1記載の
形状記憶性マイクロバネ。
3. The shape memory metal is Cu: 10 to 3
0% by weight, Zn: 3 to 10% by weight, balance Cu-Z of Al
The shape memory micro spring according to claim 1, which is made of an n-Al alloy.
【請求項4】 バネの全長が3〜1000mmの範囲であ
る請求項1記載の形状記憶性マイクロバネ。
4. The shape memory micro spring according to claim 1, wherein the total length of the spring is in the range of 3 to 1000 mm.
【請求項5】 外径が500μm以下であってその軸線
を中心として回転する高強度芯線に、外径が100μm
以下の形状記憶性金属からなる素線を、1.5〜300
gfのバックテンションを加えつつ前記芯線の回転力に
て巻き付け、得られたコイルを熱処理することを特徴と
する形状記憶性マイクロバネの製造方法。
5. A high strength core wire having an outer diameter of 500 μm or less and rotating about its axis has an outer diameter of 100 μm.
A wire made of the following shape-memory metal is used for 1.5 to 300
A method for manufacturing a shape-memory microspring, which comprises winding with the rotational force of the core wire while applying a back tension of gf and heat-treating the obtained coil.
【請求項6】 同期回転する一対のチャック間に上記高
強度芯線を保持することにより、芯線を回転させること
を特徴とする請求項5記載の形状記憶性マイクロバネの
製造方法。
6. The method of manufacturing a shape memory microspring according to claim 5, wherein the core wire is rotated by holding the high-strength core wire between a pair of chucks that rotate synchronously.
【請求項7】 素線の芯線への巻き付けピッチを、素線
外径の1〜10倍の範囲において選択することを特徴と
する請求項5記載の形状記憶性マイクロバネの製造方
法。
7. The method for manufacturing a shape memory microspring according to claim 5, wherein the winding pitch of the wire around the core wire is selected within a range of 1 to 10 times the outer diameter of the wire.
JP8398294A 1994-03-29 1994-03-29 Shape memory micro spring Expired - Fee Related JP2975258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8398294A JP2975258B2 (en) 1994-03-29 1994-03-29 Shape memory micro spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8398294A JP2975258B2 (en) 1994-03-29 1994-03-29 Shape memory micro spring

Publications (2)

Publication Number Publication Date
JPH07269619A true JPH07269619A (en) 1995-10-20
JP2975258B2 JP2975258B2 (en) 1999-11-10

Family

ID=13817745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8398294A Expired - Fee Related JP2975258B2 (en) 1994-03-29 1994-03-29 Shape memory micro spring

Country Status (1)

Country Link
JP (1) JP2975258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272967A (en) * 2013-06-14 2013-09-04 沈阳飞机工业(集团)有限公司 Setting device and method for manufacturing of spring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272967A (en) * 2013-06-14 2013-09-04 沈阳飞机工业(集团)有限公司 Setting device and method for manufacturing of spring

Also Published As

Publication number Publication date
JP2975258B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
US6669794B1 (en) Method for treating an object with a laser
US5025799A (en) Steerable memory alloy guide wires
US5143085A (en) Steerable memory alloy guide wires
JP5073300B2 (en) Delivery of therapeutic devices
US5211183A (en) Steerable memory alloy guide wires
US6533752B1 (en) Variable shape guide apparatus
JP6866499B2 (en) Stiffness variable device, stiffness variable system and endoscope
US20140276224A1 (en) Sensor guide wire with shape memory tip
JP2010022863A (en) Retrieval device made of precursor alloy cable
JP2008023089A (en) Curve mechanism
KR20180126111A (en) Apparatus for manufacturing shape memory alloy spring continuously, method of manufacturing shape memory alloy spring continuoulsy and shape memory alloy spring manufactured thereby
US20020118090A1 (en) Shape memory alloy actuators activated by strain gradient variation during phase transformation
JPH07269619A (en) Shape memory micro spring and manufacture of it
JP2884320B2 (en) Actuator manufacturing method, manufacturing apparatus, and structure having the actuator
JP2000262464A (en) Multi-directional bending mechanism, and head oscillating structural body
EP0383914B1 (en) Catheter
KR101535520B1 (en) Wire rod having improved super-elastic characteristics and Tube continuum robot using the same
KR102442460B1 (en) Method of manufacturing shape memory alloy spring
JP3840192B2 (en) Manipulator with arm mechanism for hand
WO2002045770A2 (en) Medical guidewire and method for making
JP2001165036A (en) Shape memory alloy coil actuator and its use
JPS59202426A (en) Endoscope
JP2001123937A (en) Shape memory micro coil spring
JPH08296682A (en) Microspring
JPH05309067A (en) Curving device for flexible tube

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees