JPH07268627A - Heat treating method - Google Patents

Heat treating method

Info

Publication number
JPH07268627A
JPH07268627A JP8747294A JP8747294A JPH07268627A JP H07268627 A JPH07268627 A JP H07268627A JP 8747294 A JP8747294 A JP 8747294A JP 8747294 A JP8747294 A JP 8747294A JP H07268627 A JPH07268627 A JP H07268627A
Authority
JP
Japan
Prior art keywords
reaction tube
wafer
temperature
heat treatment
heating region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8747294A
Other languages
Japanese (ja)
Other versions
JP3507548B2 (en
Inventor
Yasushi Yagi
靖司 八木
Wataru Okase
亘 大加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Tokyo Electron Tohoku Ltd
Original Assignee
Tokyo Electron Ltd
Tokyo Electron Tohoku Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Tokyo Electron Tohoku Ltd filed Critical Tokyo Electron Ltd
Priority to JP08747294A priority Critical patent/JP3507548B2/en
Priority to US08/410,538 priority patent/US5662469A/en
Publication of JPH07268627A publication Critical patent/JPH07268627A/en
Application granted granted Critical
Publication of JP3507548B2 publication Critical patent/JP3507548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To rapidly raise the temp. of the body to be treated such as a semicon ductor wafer to a prescribed temp., furthermore executing heat treatment at a stable temp. and therefore subjecting the wafer to uniform heat treatment at the time of executing oxidizing treatment and diffusing treatment thereto. CONSTITUTION:A heat controlling sheet 3 provided in the upper direction of a reaction tube 1 is heated by a heating means 22 to form a primary heating area in which temp. is substantially uniform to the change of the position of the height on the upper part of the reaction tube and a secondary heating area in which temp. is mildly decreased as it proceeds to the lower direction. After the temp. of a wafer W is rapidly increased to the primary heating area, it is mildly decreased within the secondary heating area, and in the meantime, heat treatment is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱処理方法に関する。FIELD OF THE INVENTION The present invention relates to a heat treatment method.

【0002】[0002]

【従来の技術】半導体デバイスの超微細化、高集積化に
伴い、デバイスの各層の薄膜化が進む一方、半導体ウエ
ハ(以下「ウエハ」という)についても6インチサイズ
から8インチ、12インチサイズへと大口径化が進めら
れており、このため大面積の極薄膜技術の開発が重要な
課題となっている。また例えばキャパシタ絶縁膜の酸化
膜や、ゲート酸化膜の形成あるいは不純物イオンの拡散
処理では、膜質、膜厚や拡散深さがサーマルバジェット
(熱履歴)の影響を大きく受けるため、熱履歴をできる
だけ小さく抑えて熱処理を行うことが必要である。
2. Description of the Related Art As semiconductor devices become finer and more highly integrated, the thickness of each layer of the device is becoming thinner, while semiconductor wafers (hereinafter referred to as "wafers") are also changed from 6-inch size to 8-inch or 12-inch size. Therefore, the development of ultra-thin film technology for large areas has become an important issue. In addition, for example, in the oxide film of the capacitor insulating film, the formation of the gate oxide film, or the diffusion process of impurity ions, the film quality, the film thickness, and the diffusion depth are greatly affected by the thermal budget (thermal history). It is necessary to suppress the heat treatment.

【0003】ここで従来のバッチ式熱処理装置の一つで
ある縦型熱処理では、ヒータに囲まれた反応管内に、多
数のウエハを棚状に積層した保持具を搬入して熱処理を
行っているが、反応管の側方に配置されたヒータにより
ウエハを加熱しているため、ウエハを急速に加熱しよう
とするとウエハの中央部と周縁部との間に大きな温度勾
配が生じてしまうし、また反応管に先に入ったウエハと
最後に入ったウエハのサーマルバジェットに大きな差が
生じてしまい、同一バッチ内においても均質なサーマル
バジェットでプロセスを行うことが困難である。
Here, in the vertical heat treatment, which is one of the conventional batch heat treatment apparatuses, the heat treatment is carried out by carrying in a reaction vessel surrounded by heaters, a holder in which a large number of wafers are stacked in a rack shape. However, since the wafer is heated by the heater arranged on the side of the reaction tube, a large temperature gradient is generated between the central portion and the peripheral portion of the wafer when the wafer is heated rapidly. A large difference occurs in the thermal budget between the wafer that first enters the reaction tube and the wafer that finally enters the reaction tube, and it is difficult to perform a process with a uniform thermal budget even in the same batch.

【0004】このようなことから、本発明者は、縦型熱
処理装置の熱処理炉を改良し、反応管内に例えば1枚の
ウエハを保持具に載せて設定位置に搬入した後、加熱源
の温度を変化させてウエハの温度を制御する方法を検討
している。この方法によればウエハの面内温度について
高い均一性が得られるが、反面反応管やこれを囲む加熱
炉が大きいためウエハを急速に昇温させ、また急速に降
温させることが困難であり、熱履歴が大きくなる上高い
スループットが得られないという欠点があった。
From the above, the present inventor has improved the heat treatment furnace of the vertical heat treatment apparatus so that, for example, one wafer is placed on the holder in the reaction tube and carried into the set position, and then the temperature of the heating source is changed. We are studying a method of controlling the temperature of the wafer by changing the temperature. According to this method, it is possible to obtain high uniformity in the in-plane temperature of the wafer, but on the other hand, it is difficult to rapidly raise and lower the temperature of the wafer because the reaction tube and the heating furnace surrounding it are large. There is a drawback that the heat history becomes large and high throughput cannot be obtained.

【0005】そこで本発明者は、反応管の一端側に加熱
源を配置し、1枚のウエハを保持具に載せて反応管の他
端側から一端側の所定の加熱領域まで移動させて熱処理
を行う方法を検討している。この方法によれば、ウエハ
を急速に昇温させ、また急速に降温させることができ、
熱履歴を小さく抑えられる利点がある。
Therefore, the inventor of the present invention arranges a heating source on one end side of the reaction tube, places one wafer on a holder, and moves it from the other end side of the reaction tube to a predetermined heating region on the one end side for heat treatment. Are considering how to do. According to this method, the temperature of the wafer can be rapidly raised and lowered,
There is an advantage that the heat history can be kept small.

【0006】[0006]

【発明が解決しようとする課題】しかしながらウエハを
反応管内の所定の加熱領域に到達させただけでは、ウエ
ハの温度が設定温度に落ち着く前に設定温度付近で不安
定な時間帯が存在する。この温度不安定な時間帯はそれ
程長い時間ではなく、また温度のばらつき範囲も狭いも
のではあるが、例えば50オングストロームもの極薄酸
化膜を形成する場合、数オングストロームの膜厚のばら
つきが問題になるため、ウエハを単に所定の加熱領域に
到達させる方法では、予定の酸化膜を形成することがで
きない。従って反応管を用いた枚葉式の熱処理装置を使
用する場合、いかにして良好なウエハの温度プロファイ
ルを得るかが重要な課題の一つとなっている。
However, if the wafer is allowed to reach a predetermined heating region in the reaction tube, there is an unstable time zone around the set temperature before the temperature of the wafer settles down to the set temperature. This temperature instability time period is not so long and the temperature variation range is narrow. However, when forming an ultrathin oxide film of 50 angstroms, for example, a film thickness variation of several angstroms becomes a problem. Therefore, the intended oxide film cannot be formed by the method of merely reaching the predetermined heating region of the wafer. Therefore, when using a single-wafer type heat treatment apparatus using a reaction tube, one of the important issues is how to obtain a good wafer temperature profile.

【0007】本発明は、このような事情に基づいてなさ
れたものであり、被処理体の温度を短時間で安定させ、
これにより面内均一性の高い熱処理を行うことができる
熱処理方法を提供することにある。
The present invention has been made under these circumstances, and stabilizes the temperature of the object to be processed in a short time,
This is to provide a heat treatment method capable of performing heat treatment with high in-plane uniformity.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、反応
管の一端側に、反応管の長さ方向の位置に対して温度が
実質的に均一である第1の加熱領域と、この第1の加熱
領域に連続し、反応管の他端側に向かうにつれて温度が
緩やかに低くなる温度勾配をもった第2の加熱領域とを
形成し、被処理体を、反応管の他端側から移動させて前
記第1の加熱領域に位置させ、次いで前記第2の加熱領
域内を緩やかに反応管の他端側に移動させながら熱処理
することを特徴とする。
According to a first aspect of the present invention, there is provided a first heating region on one end side of a reaction tube in which a temperature is substantially uniform with respect to a position in a longitudinal direction of the reaction tube, and A second heating region that is continuous with the first heating region and has a temperature gradient in which the temperature gradually decreases toward the other end side of the reaction tube is formed, and the object to be treated is connected to the other end side of the reaction tube. The heat treatment is performed by moving the inside of the second heating region to the other end side of the reaction tube while moving the inside of the second heating region slowly.

【0009】請求項2の発明は、反応管の一端側に、反
応管の他端側に向かうにつれて温度が緩やかに低くなる
温度勾配をもった加熱領域を形成し、被処理体を、反応
管の他端側から移動させて前記加熱領域に位置させ、次
いでこの加熱領域内を緩やかに反応管の他端側に移動さ
せながら熱処理することを特徴とする。
According to the second aspect of the present invention, a heating region having a temperature gradient in which the temperature gradually decreases toward the other end of the reaction tube is formed at one end of the reaction tube, and the object to be treated is set to the reaction tube. It is characterized in that it is moved from the other end side to be positioned in the heating region, and then heat treatment is carried out while gradually moving inside this heating region to the other end side of the reaction tube.

【0010】請求項3の発明は、請求項1または2の発
明において、反応管は断熱体で取り囲まれ、反応管の一
端側の外部には、反応管の長さ方向と直交する熱制御板
が設けられ、加熱手段により前記熱規制板を介して反応
管内を加熱することを特徴とする。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the reaction tube is surrounded by a heat insulator, and a heat control plate is provided outside one end of the reaction tube and is orthogonal to the length direction of the reaction tube. Is provided, and the inside of the reaction tube is heated by the heating means via the heat regulation plate.

【0011】請求項4の発明は、請求項1、2または3
の発明において、被処理体が反応管の他端側に向かって
移動する加熱領域の温度勾配の平均は、20℃/cm以
下であることを特徴とする。
The invention of claim 4 is the invention of claim 1, 2 or 3.
In the invention, the average temperature gradient in the heating region in which the object to be processed moves toward the other end of the reaction tube is 20 ° C./cm or less.

【0012】[0012]

【作用】被処理体は第1の加熱領域内の所定位置に到達
することによりその位置までの熱履歴に応じて温度が上
昇していく。そして被処理体の温度は、更に上昇しよう
とするが、その後被処理体は温度の低い方へ向かって移
動するため、受ける熱エネルギーが少しづつ小さくな
り、このため被処理体の温度が速やかに所定温度に安定
する。この結果面内均一性の高い熱処理例えば極薄酸化
膜を形成でき、あるいは不純物の拡散を行うことができ
る。ただし被処理体は、第1の加熱領域内に到達させず
に、第2の加熱領域内の所定位置に到達させ、その後反
応管の他端側に移動させてもよい。第1あるいは第2の
加熱領域については、例えば熱制御板を用いることによ
り、これが反応管の一端側の加熱源として反応管の長さ
方向に向かう輻射熱を放射して反応管の横断面において
均一な加熱領域が形成される。
When the object to be processed reaches a predetermined position in the first heating area, the temperature of the object to be processed increases according to the heat history up to that position. Then, the temperature of the object to be processed further rises, but since the object to be processed moves toward the lower temperature, the thermal energy received is gradually decreased, and thus the temperature of the object to be processed is quickly increased. Stabilizes to a predetermined temperature. As a result, heat treatment with high in-plane uniformity, for example, an ultrathin oxide film can be formed or impurities can be diffused. However, the object may be moved to the other end of the reaction tube after reaching the predetermined position in the second heating area without reaching the first heating area. Regarding the first or second heating region, for example, by using a heat control plate, this radiates radiant heat directed in the length direction of the reaction tube as a heating source on one end side of the reaction tube and is uniform in the cross section of the reaction tube. A heated area is formed.

【0013】[0013]

【実施例】図1は本発明の実施例に用いられる熱処理装
置を示す断面図である。図1中1は石英からなる有底筒
状の反応管であり、この反応管1は開口端が下方側にな
るように筒状の断熱体21の中に配置されている。反応
管1の上方側には加熱手段22例えば抵抗発熱体が設け
られており、この抵抗発熱体としては、例えばニケイ化
モリブデン(MoSi2 )、鉄とクロムとアルミニウム
との合金線であるカンタル(商品名)線などの抵抗発熱
体により構成される。
1 is a sectional view showing a heat treatment apparatus used in an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a bottomed cylindrical reaction tube made of quartz, and the reaction tube 1 is arranged in a cylindrical heat insulator 21 with its open end facing downward. A heating means 22, for example, a resistance heating element is provided on the upper side of the reaction tube 1. The resistance heating element is, for example, molybdenum disilicide (MoSi 2 ), Kanthal (an alloy wire of iron, chromium and aluminum). Product name) Composed of resistance heating elements such as wires.

【0014】前記反応管1と加熱手段22との間には例
えば炭化ケイ素(SiC)からなる熱制御板3が後述の
ウエハWと対向するように配置されている。この熱制御
板3は前記加熱手段22から入射した輻射熱をウエハW
の被処理面に対して均質に入射させるためのものであ
り、ウエハWを全面に亘って均一に加熱するためには外
径がウエハWの2倍以上であることが好ましい。
A heat control plate 3 made of, for example, silicon carbide (SiC) is arranged between the reaction tube 1 and the heating means 22 so as to face a wafer W described later. The heat control plate 3 transfers the radiant heat from the heating means 22 to the wafer W.
In order to make the wafer W uniformly incident on the surface to be processed, it is preferable that the outer diameter of the wafer W is twice or more that of the wafer W in order to uniformly heat the entire surface of the wafer W.

【0015】前記断熱体21の下端部には、水などの冷
媒が通る冷媒流路をなす冷却手段11が設けられてお
り、この冷却手段11の下方側に反応管1の下端のフラ
ンジ部が取り付けられている。更に反応管1の下方側に
は、金属製のマニホールド12が設けられており、この
マニホールド12にはガス供給管41及び排気管42が
接続されている。ガス供給管41の内端側は反応管1内
にて上方に伸長して、供給口がウエハWの斜め上方に位
置している。またマニホールド12には、図示していな
いがシャッタにより開閉されるウエハ搬出入口が形成さ
れている。マニホールド12の下端側には被処理空間を
気密にシールする蓋体13が設けられている。
At the lower end of the heat insulating body 21, there is provided a cooling means 11 which forms a refrigerant flow path through which a refrigerant such as water flows, and a flange portion at the lower end of the reaction tube 1 is provided below the cooling means 11. It is installed. Further, a metal manifold 12 is provided below the reaction tube 1, and a gas supply pipe 41 and an exhaust pipe 42 are connected to the manifold 12. The inner end side of the gas supply pipe 41 extends upward in the reaction pipe 1, and the supply port is located diagonally above the wafer W. Further, the manifold 12 has a wafer loading / unloading port (not shown) which is opened and closed by a shutter. At the lower end side of the manifold 12, a lid 13 that hermetically seals the processing space is provided.

【0016】前記反応管1内にはウエハ保持具5が昇降
軸61の頂部に設けられている。このウエハ保持具5
は、例えば炭化ケイ素(SiC)からなり、ウエハWを
保持する保持突起が周縁部に例えば3〜4個形成されて
いる。前記昇降軸61は前記蓋体13を例えば磁気シー
ル部14を介して気密にかつ回転、昇降自在に貫通して
おり、昇降軸61の下端は、昇降アーム62に設けられ
た回転機構63に連結されている。前記昇降アーム62
は、モータ65により駆動されるボールネジ64に螺合
しており、ボールネジ64の回動により図示しないガイ
ド棒にガイドされつつ昇降できるように構成されてい
る。このモータ65は制御部60により、ウエハWが後
述する移動パターンで移動するように制御される。
A wafer holder 5 is provided in the reaction tube 1 at the top of an elevating shaft 61. This wafer holder 5
Is made of, for example, silicon carbide (SiC), and has, for example, 3 to 4 holding projections for holding the wafer W formed at the peripheral edge portion. The elevating shaft 61 penetrates the lid 13 airtightly, for example, via the magnetic seal portion 14 so as to rotate and elevate freely, and the lower end of the elevating shaft 61 is connected to a rotating mechanism 63 provided on the elevating arm 62. Has been done. The lifting arm 62
Is screwed into a ball screw 64 driven by a motor 65, and is configured to be able to move up and down while being guided by a guide rod (not shown) by the rotation of the ball screw 64. The motor 65 is controlled by the controller 60 so that the wafer W moves in a movement pattern described later.

【0017】次に上述の装置を用いて行われる本発明方
法の実施例について述べる。先ず反応管1内に例えばO
2 ガス及びN2 ガスを通流させておくと共に、ウエハ保
持具5を鎖線の如く反応管1の下方部に位置させてお
き、マニホールド12のウエハ搬出入口より被処理体で
あるウエハWを搬入してウエハ保持具5上に載置する。
ウエハの搬出入口が閉じられた後、ウエハWの表面に酸
化膜を形成するためにガス供給管41より例えばO2
ス及びHClガスを夫々900SCCM及び100SC
CMの流量で反応管1内に供給し、排気管42より排気
しながら反応管1内を常圧に維持する。
Next, an embodiment of the method of the present invention which is carried out by using the above apparatus will be described. First, in the reaction tube 1, for example, O
2 gas and N 2 gas are allowed to flow, the wafer holder 5 is positioned below the reaction tube 1 as shown by a chain line, and the wafer W, which is the object to be processed, is loaded from the wafer loading / unloading port of the manifold 12. Then, it is placed on the wafer holder 5.
After the wafer loading / unloading port is closed, for example, O 2 gas and HCl gas are supplied from the gas supply pipe 41 to form an oxide film on the surface of the wafer W at 900 SCCM and 100 SC, respectively.
It is supplied into the reaction tube 1 at a flow rate of CM, and the inside of the reaction tube 1 is maintained at normal pressure while being exhausted from the exhaust tube 42.

【0018】一方加熱手段22より熱制御板3を介して
反応管1内を加熱し、これにより反応管1内には図2に
示すような温度プロファイルをもった加熱領域が形成さ
れる。即ち反応管1の上部領域に、高さ位置の変化に対
して温度が実質的に変化しない第1の加熱領域と、この
第1の加熱領域の下方側に連続して、下方に向かうにつ
れて温度が緩やかに低くなる、例えば2〜5℃/cm程
度の温度勾配をもった第2の加熱領域とが形成される。
On the other hand, the inside of the reaction tube 1 is heated by the heating means 22 via the heat control plate 3, whereby a heating region having a temperature profile as shown in FIG. 2 is formed in the reaction tube 1. That is, in the upper region of the reaction tube 1, a first heating region in which the temperature does not substantially change with respect to a change in height position, and in a lower side of the first heating region, the temperature is continuously increased downward. Is gradually lowered, for example, a second heating region having a temperature gradient of about 2 to 5 ° C./cm is formed.

【0019】そしてモータ65の駆動によりボールネジ
64を介して昇降軸61を上昇させ、ウエハWを反応管
1の上部領域に移動させる。図3の実線はウエハWの移
動パターンの一例であり、先ずウエハWを第1の加熱領
域内の位置P1まで例えば50mm/secの速度で上
昇させる。この場合ウエハWは、等速度で上昇させても
よいが、途中速度を変えてもよいし、あるいは所定位置
で停止させて間欠的に上昇させるようにしてもよく、昇
温過程の熱履歴の影響を考慮した方法で上昇させればよ
い。
Then, the motor 65 is driven to raise the elevating shaft 61 via the ball screw 64 to move the wafer W to the upper region of the reaction tube 1. The solid line in FIG. 3 is an example of the movement pattern of the wafer W. First, the wafer W is raised to the position P1 in the first heating region at a speed of, for example, 50 mm / sec. In this case, the wafer W may be raised at a constant speed, but the speed may be changed midway, or the wafer W may be stopped at a predetermined position to be raised intermittently. It should be raised in a way that takes into account the impact.

【0020】ウエハWが位置P1に到達した後直ちにウ
エハWを第2の加熱領域の位置P2まで緩やかに下降さ
せる。この下降速度は例えば0.1mm/secに設定
され、P1とP2との高さ位置の差は例えば6mmに設
定される。その後ウエハWは位置P2から例えば100
mm/secの速度で図1の鎖線位置まで下降する。
Immediately after the wafer W reaches the position P1, the wafer W is gently lowered to the position P2 in the second heating area. This descending speed is set to, for example, 0.1 mm / sec, and the height difference between P1 and P2 is set to, for example, 6 mm. Thereafter, the wafer W is moved from the position P2 to, for example, 100
It descends to the position indicated by the chain line in FIG. 1 at a speed of mm / sec.

【0021】ウエハWをこのような移動パターンで移動
させることによりウエハWの表面温度のプロファイル
は、図3の点線に示すようになる。即ちウエハWを実線
のように位置P1まで急速に上昇させることにより、ウ
エハWの温度がウエハWの移動路の反応管1内の温度プ
ロファイルよりも遅れて上昇していく。ウエハWが位置
P1に到達したときウエハWの温度は、図2に示す温度
プロファイルの当該位置P1の温度よりも低く、仮にウ
エハWの高さ位置をP1に固定した場合、ウエハWの温
度は、位置P1に対応した温度に向かって上昇し続ける
が、ウエハWが緩やかに降下して第2の加熱領域に入
り、温度の低い方へ向かうため、温度上昇が抑えられ、
熱エネルギーの収支バランスに対応した所定の温度例え
ば1000℃に安定する。こうしてウエハWの表面に例
えば膜厚が50オングストロームの酸化膜が形成され
る。
By moving the wafer W in such a movement pattern, the surface temperature profile of the wafer W becomes as shown by the dotted line in FIG. That is, by rapidly raising the wafer W to the position P1 as indicated by the solid line, the temperature of the wafer W rises later than the temperature profile in the reaction tube 1 in the moving path of the wafer W. When the wafer W reaches the position P1, the temperature of the wafer W is lower than the temperature of the position P1 in the temperature profile shown in FIG. 2, and if the height position of the wafer W is fixed to P1, the temperature of the wafer W becomes , The temperature continues to rise toward the temperature corresponding to the position P1, but the wafer W gradually falls and enters the second heating region, and goes to the lower temperature, so the temperature rise is suppressed,
It stabilizes at a predetermined temperature corresponding to the balance of heat energy balance, for example, 1000 ° C. Thus, an oxide film having a film thickness of 50 Å is formed on the surface of the wafer W.

【0022】ところでウエハWの温度プロファイルを拡
大してみると、ウエハWが位置P1に到達した後下降し
始めたときに図4(a)に示すように温度が若干不安定
になる領域が存在する。この不安定領域ではウエハ面内
の各点の温度が斜線で示す範囲内に収まってはいるもの
の、この範囲内で面内において温度のばらつきがある。
しかしながらこの温度不安定領域は例えば2秒程度と非
常に短かく、この不安定領域を抜けた後温度は安定する
のでウエハWの面内では均一になる。従ってウエハWの
面内では熱履歴がほとんど実質的に同じになるため、酸
化膜の膜厚は均一になり、ウエハW間においても勿論均
一になる。
When the temperature profile of the wafer W is enlarged, when the wafer W reaches the position P1 and then begins to descend, there is a region where the temperature becomes slightly unstable as shown in FIG. 4 (a). To do. In this unstable region, the temperature at each point on the wafer surface is within the range indicated by the diagonal lines, but within this range there is temperature variation within the surface.
However, the temperature unstable region is very short, for example, about 2 seconds, and the temperature is stable after passing through the unstable region, so that it becomes uniform in the plane of the wafer W. Therefore, the thermal history is substantially the same in the plane of the wafers W, so that the film thickness of the oxide film is uniform and, of course, it is uniform between the wafers W.

【0023】またウエハWの上限位置は、第1の加熱領
域に限らず第2の加熱領域であってもよく、その上限位
置をどのポイントにするか、あるいはウエハWが上限位
置に到達した後直ちに下降させるのかそれとも若干停止
させておくかなどについては、ウエハWの上昇速度や処
理時間などに応じて適宜設定すればよい。またウエハが
緩やかに移動する領域、この例ではP1〜P2までの加
熱領域においては、温度勾配が大き過ぎるとウエハの温
度を高精度に制御することが困難になるため、温度勾配
は20℃/cm以下であることが好ましい。
The upper limit position of the wafer W is not limited to the first heating region but may be the second heating region. The upper limit position may be set at any point, or after the wafer W reaches the upper limit position. Whether it is immediately lowered or slightly stopped may be appropriately set according to the rising speed of the wafer W, the processing time, and the like. In the region where the wafer moves slowly, in this example, in the heating region from P1 to P2, if the temperature gradient is too large, it becomes difficult to control the temperature of the wafer with high accuracy. It is preferably not more than cm.

【0024】ここで上述実施例と比較する比較例とし
て、同じ装置を用いて図5の実線で示すようにウエハW
を例えば前記位置P1に到達した後そのまま位置P1に
停止させる移動パターンをとった場合についてウエハW
の温度(表面温度)を調べてみると、その温度プロファ
イルは点線で示すようになる。即ちウエハWの温度は、
図4(b)に示すように不安定領域(斜線部分)が存在
するが、この不安定領域の温度幅が大きくかつその時間
帯が例えば30秒と長いためウエハWの面内にて熱履歴
のばらつきが大きく、しかもウエハWの温度は徐々に上
昇しており、一定値に安定するまで例えば300秒もの
時間がかかるため、酸化膜の膜厚のコントロールが困難
な上、面内の均一性が実施例に比べて可成り低いものに
なってしまう。
As a comparative example to be compared with the above-described embodiment, the same apparatus is used and a wafer W is used as shown by the solid line in FIG.
Wafer W in the case where a movement pattern is taken to stop the position P1 as it is after reaching the position P1
When the temperature (surface temperature) of is examined, the temperature profile is as shown by the dotted line. That is, the temperature of the wafer W is
As shown in FIG. 4B, an unstable region (hatched portion) exists, but since the temperature width of this unstable region is large and its time zone is long, for example, 30 seconds, the thermal history in the plane of the wafer W is large. Is large, and the temperature of the wafer W is gradually increasing, and it takes, for example, 300 seconds to stabilize the temperature at a constant value. Therefore, it is difficult to control the thickness of the oxide film and the in-plane uniformity is high. Is much lower than that of the embodiment.

【0025】例えば1000℃の温度で酸化処理を行う
場合、0.5℃異なると1オングストロームの膜厚の差
が生じ、移動パターンは、極薄膜の形成にあたってウエ
ハの面内均一性を大きく左右し、実施例の方法が極薄膜
の形成に非常に有効であることが理解される。更に実施
例の方法によれば、ウエハを急速に目標温度まで昇温さ
せ、また熱処理後は急速に降温させることができるた
め、熱履歴が小さく、スループットも高い。
For example, when the oxidation treatment is performed at a temperature of 1000 ° C., a difference of 0.5 ° C. causes a film thickness difference of 1 angstrom, and the movement pattern greatly affects the in-plane uniformity of the wafer when forming an extremely thin film. It is understood that the method of the embodiment is very effective for forming an ultrathin film. Further, according to the method of the embodiment, the temperature of the wafer can be rapidly raised to the target temperature and the temperature can be rapidly lowered after the heat treatment, so that the thermal history is small and the throughput is high.

【0026】以上において、酸化処理によるゲート酸化
膜やキャパシタ絶縁膜などの極薄酸化膜の形成や、不純
物イオンの拡散処理の結果についてはウエハの温度制御
にほとんど依存するため、本発明はこれらの熱処理に対
して好適なものであるが、その他CVD処理、あるいは
アニール処理、アッシング処理などの熱処理を行う場合
に適用することができる。その場合ウエハの移動パター
ンは各処理に応じて適宜設定すればよく、例えば拡散処
理を行う場合、図6に示すようにウエハを間欠的に(時
間に対する移動パターンにおいて階段状)上昇させて、
不純物の拡散長を制御する上で重要な温度域T1〜T2
間において、ウエハの昇温速度を制御するようにするこ
ともできる。
In the above, the results of the formation of the ultra-thin oxide film such as the gate oxide film and the capacitor insulating film by the oxidation treatment and the diffusion treatment of the impurity ions depend almost on the temperature control of the wafer. Although it is suitable for heat treatment, it can be applied to other heat treatments such as CVD treatment, annealing treatment, and ashing treatment. In that case, the movement pattern of the wafer may be appropriately set according to each process. For example, when performing the diffusion process, the wafer is raised intermittently (stepwise in the movement pattern with respect to time) as shown in FIG.
An important temperature range T1 to T2 for controlling the diffusion length of impurities
In the meantime, it is possible to control the temperature rising rate of the wafer.

【0027】なお本発明で用いられる熱処理装置として
は、上述の構成に限らず、例えば抵抗発熱体を熱制御板
の上方側のみならず反応管の側周面を囲むように設けて
もよい。また熱制御板は、ウエハからみれば加熱源に相
当し、ウエハに対して均質に輻射熱を放射するので好ま
しいものであるが、加熱源としては他の構成であっても
よい。
The heat treatment apparatus used in the present invention is not limited to the above-mentioned configuration, and for example, a resistance heating element may be provided not only on the upper side of the heat control plate but also on the side peripheral surface of the reaction tube. The heat control plate corresponds to a heating source when viewed from the wafer, and is preferable because it uniformly radiates radiant heat to the wafer, but the heating source may have another configuration.

【0028】[0028]

【発明の効果】以上のように本発明によれば急速に被処
理体を所定温度まで昇温させかつ安定した温度で熱処理
を行うことができるため、被処理体に対して均一に熱処
理を行うことができる。
As described above, according to the present invention, since the object to be processed can be rapidly heated to a predetermined temperature and heat-treated at a stable temperature, the object is uniformly heat-treated. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施例に用いられる熱処理装置の
一例を示す断面図である。
FIG. 1 is a sectional view showing an example of a heat treatment apparatus used in an example of a method of the present invention.

【図2】反応管内の上部の温度プロファイルを示す特性
図である。
FIG. 2 is a characteristic diagram showing a temperature profile of an upper portion in a reaction tube.

【図3】実施例の方法においてウエハの移動パターンの
一例と温度変化とを示す特性図である。
FIG. 3 is a characteristic diagram showing an example of a movement pattern of a wafer and a temperature change in the method of the embodiment.

【図4】実施例に係る方法と比較例とについてウエハの
温度変化を拡大して示す説明図である。
FIG. 4 is an explanatory diagram showing an enlarged temperature change of a wafer in a method according to an example and a comparative example.

【図5】比較例の方法においてウエハの移動パターンと
温度変化とを示す特性図である。
FIG. 5 is a characteristic diagram showing a wafer movement pattern and a temperature change in the method of the comparative example.

【図6】ウエハの移動パターンの他の例と温度変化とを
示す特性図である。
FIG. 6 is a characteristic diagram showing another example of the movement pattern of the wafer and a temperature change.

【符号の説明】[Explanation of symbols]

1 反応管 21 断熱体 22 加熱手段 3 熱制御板 41 ガス供給管 42 排気管 5 ウエハ保持具 W ウエハ 60 制御部 61 昇降軸 DESCRIPTION OF SYMBOLS 1 Reaction tube 21 Insulator 22 Heating means 3 Thermal control plate 41 Gas supply pipe 42 Exhaust pipe 5 Wafer holder W Wafer 60 Control part 61 Elevating shaft

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大加瀬 亘 神奈川県津久井郡城山町町屋1丁目2番41 号 東京エレクトロン東北株式会社相模事 業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Wataru Okase 1-24-141, Machiya, Shiroyama-cho, Tsukui-gun, Kanagawa Prefecture Tokyo Electron Tohoku Co., Ltd. Sagami Business Office

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 反応管の一端側に、反応管の長さ方向の
位置に対して温度が実質的に均一である第1の加熱領域
と、この第1の加熱領域に連続し、反応管の他端側に向
かうにつれて温度が緩やかに低くなる温度勾配をもった
第2の加熱領域とを形成し、 被処理体を、反応管の他端側から移動させて前記第1の
加熱領域に位置させ、次いで前記第2の加熱領域内を緩
やかに反応管の他端側に移動させながら熱処理すること
を特徴とする熱処理方法。
1. A first heating region on one end side of the reaction tube where the temperature is substantially uniform with respect to a position in the lengthwise direction of the reaction tube, and a reaction tube which is continuous with the first heating region. A second heating region having a temperature gradient in which the temperature gradually decreases toward the other end side of the reaction tube, and the object to be treated is moved from the other end side of the reaction tube to the first heating region. A heat treatment method, characterized in that the heat treatment is carried out while being positioned and then slowly moving inside the second heating region to the other end side of the reaction tube.
【請求項2】 反応管の一端側に、反応管の他端側に向
かうにつれて温度が緩やかに低くなる温度勾配をもった
加熱領域を形成し、 被処理体を、反応管の他端側から移動させて前記加熱領
域に位置させ、次いでこの加熱領域内を緩やかに反応管
の他端側に移動させながら熱処理することを特徴とする
熱処理方法。
2. A heating region having a temperature gradient in which the temperature gradually decreases toward the other end of the reaction tube is formed at one end of the reaction tube, and the object to be treated is provided from the other end of the reaction tube. A heat treatment method, characterized in that the heat treatment is carried out by moving it to the heating region, and then gradually moving inside the heating region to the other end side of the reaction tube.
【請求項3】 反応管は断熱体で取り囲まれ、反応管の
一端側の外部には、反応管の長さ方向と直交する熱制御
板が設けられ、加熱手段により前記熱制御板を介して反
応管内を加熱することを特徴とする請求項1または2記
載の熱処理方法。
3. The reaction tube is surrounded by a heat insulator, and a heat control plate which is orthogonal to the length direction of the reaction tube is provided outside one end of the reaction tube, and the heat control plate is interposed by a heating means. The heat treatment method according to claim 1 or 2, wherein the inside of the reaction tube is heated.
【請求項4】 被処理体が反応管の他端側に向かって移
動する加熱領域の温度勾配の平均は、20℃/cm以下
であることを特徴とする請求項1、2または3記載の熱
処理方法。
4. The average temperature gradient of the heating region in which the object to be processed moves toward the other end side of the reaction tube is 20 ° C./cm or less, and the average temperature gradient is 20 ° C./cm or less. Heat treatment method.
JP08747294A 1991-12-13 1994-03-31 Heat treatment method Expired - Fee Related JP3507548B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08747294A JP3507548B2 (en) 1994-03-31 1994-03-31 Heat treatment method
US08/410,538 US5662469A (en) 1991-12-13 1995-03-24 Heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08747294A JP3507548B2 (en) 1994-03-31 1994-03-31 Heat treatment method

Publications (2)

Publication Number Publication Date
JPH07268627A true JPH07268627A (en) 1995-10-17
JP3507548B2 JP3507548B2 (en) 2004-03-15

Family

ID=13915862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08747294A Expired - Fee Related JP3507548B2 (en) 1991-12-13 1994-03-31 Heat treatment method

Country Status (1)

Country Link
JP (1) JP3507548B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019725A (en) * 2003-06-26 2005-01-20 Shinku Jikkenshitsu:Kk Annealing device and annealing method
JP2007521663A (en) * 2003-12-10 2007-08-02 アクセリス テクノロジーズ インコーポレーテッド A method for tracking and controlling the temperature of a wafer at a high ramp rate using a dynamically predicting thermal model
WO2009031450A1 (en) * 2007-09-03 2009-03-12 Canon Anelva Corporation Substrate heat-treating apparatus, and substrate heat-treating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019725A (en) * 2003-06-26 2005-01-20 Shinku Jikkenshitsu:Kk Annealing device and annealing method
JP2007521663A (en) * 2003-12-10 2007-08-02 アクセリス テクノロジーズ インコーポレーテッド A method for tracking and controlling the temperature of a wafer at a high ramp rate using a dynamically predicting thermal model
WO2009031450A1 (en) * 2007-09-03 2009-03-12 Canon Anelva Corporation Substrate heat-treating apparatus, and substrate heat-treating method
US8090245B2 (en) 2007-09-03 2012-01-03 Canon Anelva Corporation Apparatus for heat-treating substrate and method for heat-treating substrate

Also Published As

Publication number Publication date
JP3507548B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
KR101005953B1 (en) Insulating film forming method
US20120071005A1 (en) Heat treating apparatus, heat treating method and storage medium
JPH0897167A (en) Processing system and heat-treatment system
US5903711A (en) Heat treatment apparatus and heat treatment method
US5662469A (en) Heat treatment method
JPH07283160A (en) Heat treatment device
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
US5500388A (en) Heat treatment process for wafers
JP3188967B2 (en) Heat treatment equipment
US6537927B1 (en) Apparatus and method for heat-treating semiconductor substrate
JP2008047588A (en) Substrate processing apparatus and substrate processing method
JP3507548B2 (en) Heat treatment method
JPH08316222A (en) Method and apparatus for heat treatment
JP2009010144A (en) Substrate treating apparatus
JPH05206043A (en) Heat treatment method
TW200300982A (en) Method of manufacturing semiconductor device
JPH08335575A (en) Heat treatment equipment and its method
JP2008153592A (en) Substrate processing system, and substrate processing method
JP3510329B2 (en) Heat treatment equipment
JP2640269B2 (en) Processing method and processing apparatus
JPH0917739A (en) Manufacture of semiconductor device
JP3084232B2 (en) Vertical heat treatment equipment
JP3464505B2 (en) Heat treatment method
JP2000216095A (en) Single wafer processing type heat treating apparatus
JP2000077346A (en) Heat treatment apparatus

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031219

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees