JPH0726834B2 - Optical device for lead shape inspection of electronic parts and lead shape inspection device for electronic parts using the same - Google Patents
Optical device for lead shape inspection of electronic parts and lead shape inspection device for electronic parts using the sameInfo
- Publication number
- JPH0726834B2 JPH0726834B2 JP15750991A JP15750991A JPH0726834B2 JP H0726834 B2 JPH0726834 B2 JP H0726834B2 JP 15750991 A JP15750991 A JP 15750991A JP 15750991 A JP15750991 A JP 15750991A JP H0726834 B2 JPH0726834 B2 JP H0726834B2
- Authority
- JP
- Japan
- Prior art keywords
- lead
- electronic component
- light
- diffraction grating
- row
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Wire Bonding (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子部品のリード曲が
りや平坦度などその形状を検査するための装置に係り、
特に、リードの平坦度を検査するための光学装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for inspecting the shape of lead bends and flatness of electronic parts.
In particular, it relates to an optical device for inspecting the flatness of leads.
【0002】[0002]
【従来の技術】フラットパッケージ形のIC等をプリン
ト基板に実装する際には、プリント基板に形成されてい
る端子部との接合を良好なものとするため、ICリード
の形状に以下の不都合な点があるかどうかの検査を行
う。 (1) 図8に示すようなICリード31の局所的あるいは全
体的な曲がり、及びピッチPと、(2) 図9に示すような
ICリード31の平坦部の基準面Oからの浮き、である。
そのICリードの形状を検査するための各種の装置が提
案されている。以下に図面を参照しながら説明する。2. Description of the Related Art When a flat package type IC or the like is mounted on a printed circuit board, the connection with the terminal portion formed on the printed circuit board is made to be good, so that the shape of the IC lead has the following disadvantages. Inspect for points. (1) The local or total bending of the IC lead 31 as shown in FIG. 8 and the pitch P, and (2) the floating of the flat portion of the IC lead 31 from the reference plane O as shown in FIG. is there.
Various devices have been proposed for inspecting the shape of the IC lead. A description will be given below with reference to the drawings.
【0003】<第1従来例>図10はこの第1従来例に係
る装置の概略構成を示している。光を透過するガラスス
テージ31(裏面がスクリーン)の上にICを乗せ、その
ステージ面に対して90゜方向と45゜方向からICを
照明する。そして、裏面のスクリーンに映し出されたI
Cリード31の投影像をガラスステージ30の下方にある複
数台のCCDカメラ32で撮像する。得られた90゜照明
画像の画像データを画像処理部33で解析してその曲がり
を検査し、45°照明画像の画像データからICリード
の浮きの検査を行う。<First Conventional Example> FIG. 10 shows a schematic configuration of an apparatus according to the first conventional example. The IC is placed on the glass stage 31 (the back side is a screen) that transmits light, and the IC is illuminated from the 90 ° and 45 ° directions with respect to the stage surface. And I projected on the back screen
The projected image of the C lead 31 is picked up by a plurality of CCD cameras 32 below the glass stage 30. The image data of the obtained 90 ° illumination image is analyzed by the image processing unit 33 to inspect its bending, and the floating of the IC lead is inspected from the image data of the 45 ° illumination image.
【0004】しかしながら、近年におけるICの高密度
実装化に伴うICサイズの縮小化、さらにはこれに伴っ
てのリード間隔の縮小化が進み、最小のもので0.3mm ピ
ッチのリード間隔を有するICが開発されている。この
ようなファインピッチのICリードの形状測定に上記の
ような装置を用いると、45゜照明時でリードの投影像
が重なってしまいリードの浮き量の測定が不可能にな
る。そこで、次のような装置が提案された。However, with the recent high-density mounting of ICs, the IC size has been reduced, and the lead spacing has been reduced accordingly, and the smallest IC with a lead spacing of 0.3 mm pitch has been developed. Being developed. When the above-mentioned device is used for measuring the shape of such a fine pitch IC lead, the projected images of the leads overlap at the time of 45 ° illumination, and it becomes impossible to measure the floating amount of the leads. Therefore, the following device has been proposed.
【0005】<第2従来例>図11はこの第2従来例に係
る装置の概略構成を示している。この装置の特徴的な部
分は、リードの曲がりを測定するためにステージ面に対
して90゜方向に配された曲がり照明灯34に加えて、リ
ードの浮き量を測定する浮き照明灯35をステージ面の延
長面上に配したことである。これによると、浮き照明灯
35の光が、ガラスステージ30面とIC底面との間(この
距離をスタンドオフという)を通ってICリード31を水
平方向から照明する。そして、そのICリード31の投影
像をミラーmでCCDカメラ32に導き撮像する。ICリ
ード31を水平方向から照明するので、ファインピッチの
ICであってもリードの投影像が重なることなく、微妙
な浮き量を測定することができる。<Second Conventional Example> FIG. 11 shows a schematic configuration of an apparatus according to the second conventional example. The characteristic part of this device is that, in addition to the bending illumination lamp 34 arranged in a 90 ° direction with respect to the stage surface for measuring the bending of the lead, the floating illumination lamp 35 for measuring the floating amount of the lead is installed in the stage. It is arranged on the extension surface of the surface. According to this, the floating lighting
The light 35 passes through between the surface of the glass stage 30 and the bottom surface of the IC (this distance is called a standoff) and illuminates the IC lead 31 from the horizontal direction. Then, the projected image of the IC lead 31 is guided to the CCD camera 32 by the mirror m and picked up. Since the IC leads 31 are illuminated from the horizontal direction, even if the ICs have a fine pitch, the projected images of the leads do not overlap with each other and a subtle floating amount can be measured.
【0006】しかし、前記のスタンドオフがおよそ0.1m
m 程度の薄型のICでは、光が十分にその間を通らない
こととなり、鮮明なリードの水平方向の投影像を得るこ
とができず、測定も困難なものであった。また、一度の
測定で、一方向のICリードしか測定することができな
いため、ICの向きを180 °反転させるという手間もか
かる。However, the standoff is about 0.1 m.
With a thin IC having a size of about m 2, light does not sufficiently pass between them, and a clear horizontal projection image of the lead cannot be obtained, and measurement is difficult. Further, since it is possible to measure the IC lead in only one direction with one measurement, it takes time and effort to invert the IC direction by 180 °.
【0007】これを解消するには、ICの真下に照明灯
を設置し、各ICリード列を同時に水平方向から照明す
る手法が考えられる。だが、スタンドオフが0.1mm とい
う長さではこの間に照明灯を設置するわけにもいかな
い。そこで、次のような治具を使った装置が提案され
た。In order to solve this, a method of installing an illuminating lamp just below the IC and illuminating each IC lead row simultaneously from the horizontal direction can be considered. However, with a standoff length of 0.1 mm, it is not possible to install lighting between them. Therefore, an apparatus using the following jig has been proposed.
【0008】<第3従来例>図12はこの第3従来例に係
る主要部の概略構成を示している。ICリード31の基部
でこれを支持するように、左右端に立ち上がり部が形成
された治具36の中に照明灯37を設置する。照明灯37から
の光をミラー38で前記の立ち上がり部の頂上に導き、そ
こからICリード31に向けて直角方向に光を照射する。
この治具36を使えば、各ICリード列を同時に直角方向
から照明することができ、前記の第1,第2従来例の問
題点が解消される。<Third Conventional Example> FIG. 12 shows a schematic structure of a main part according to the third conventional example. An illuminating lamp 37 is installed in a jig 36 having rising portions formed at the left and right ends so that the base of the IC lead 31 is supported. The light from the illuminating lamp 37 is guided to the top of the rising portion by the mirror 38, and the light is emitted in the direction perpendicular to the IC lead 31 from there.
By using this jig 36, it is possible to illuminate each IC lead row at the same time from the right angle direction, and the problems of the first and second conventional examples are eliminated.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、第3従
来例のような治具36を使う場合、ICの各種サイズに応
じた治具36を用意する必要がある。すなわち、正確に左
右端の立ち上がり部でICリード31の基部を支持しなけ
ればならないからで、そのためにはIC本体の大きさ
(リード列同士の間隔)と、立ち上がり部の間隔とが一
致している必要がある。立ち上がり部の間隔は治具固有
のものであるから、ICの各種サイズに対応してこれを
支持することができず、測定の汎用性に欠ける。However, when using the jig 36 as in the third conventional example, it is necessary to prepare the jig 36 according to various sizes of the IC. That is, the bases of the IC leads 31 must be accurately supported by the rising portions at the left and right ends, and for this purpose, the size of the IC body (the distance between the lead rows) and the distance between the rising portions must match. Need to be Since the interval between the rising portions is peculiar to the jig, it is not possible to support the IC corresponding to various sizes of the IC, and the versatility of measurement is lacking.
【0010】本発明はこのような事情に鑑みてなされた
ものであって、リードピッチおよびスタンドオフが比較
的短い電子部品の各リード列を同時に検査することがで
きるとともに、各種サイズの電子部品のリード形状検査
に対応することができる電子部品のリード形状検査用光
学装置およびこれを用いた電子部品のリード形状検査装
置を提供することを目的とする。The present invention has been made in view of the above circumstances, and it is possible to simultaneously inspect each lead row of an electronic component having a relatively short lead pitch and standoff, and at the same time, to test electronic components of various sizes. It is an object of the present invention to provide an optical device for inspecting a lead shape of an electronic component that can deal with the lead shape inspection and a lead shape inspecting apparatus for an electronic component using the same.
【0011】[0011]
【課題を解決するための手段】本発明は上記の目的を達
成するために次のような構成をとる。すなわち、本発明
の電子部品のリード形状検査用光学装置は、(1) 電子部
品が載置される一部あるいは全体が透光性のステージ
と、(2) 前記電子部品の対向するリード列の間隙内で前
記ステージに付設されて前記リード列に沿う透光部と遮
光部とを1列又は交互に配列してなる回折格子と、(3)
前記回折格子を下方から照明する光源とを備えたことを
特徴とする。また、本発明の電子部品のリード形状検査
装置は、上記の構成に加えて、(4) 前記回折格子からの
回折光で照明された電子部品の各リード列の投影像をそ
れぞれに撮像する撮像手段を備えたことを特徴とする。The present invention has the following constitution in order to achieve the above object. That is, an optical device for inspecting a lead shape of an electronic component of the present invention includes (1) a partially or entirely translucent stage on which the electronic component is mounted, and (2) a lead row facing the electronic component. (3) A diffraction grating which is attached to the stage in the gap and has light-transmitting portions and light-shielding portions along the lead rows arranged in one row or alternately.
And a light source for illuminating the diffraction grating from below. Further, in addition to the above configuration, the lead shape inspection apparatus for an electronic component of the present invention is (4) an image pickup device that captures a projected image of each lead row of the electronic component illuminated by the diffracted light from the diffraction grating. It is characterized by having means.
【0012】[0012]
【作用】本発明の電子部品のリード形状検査用光学装置
によれば、光源から回折格子に入射する光の波長および
その入射角と、回折格子の透光部のピッチ間で決定され
る回折光の角度を、ステージ上の電子部品のリード列の
内側から外側へ水平に向かうように設定することで、各
リード列を一度にその回折光で鮮鋭に照明することがで
きる。この場合において、電子部品のサイズは少なくと
も回折格子を跨ぐだけの大きさがあればよく、1つの品
種に限られることはない。また、本発明の電子部品のリ
ード形状検査装置によると、前記回折光で照明された各
リード列の投影像をそれぞれに撮像手段で撮像するか
ら、検査に必要な各リード列の画像データが一度に得ら
れる。According to the optical device for inspecting the lead shape of the electronic component of the present invention, the diffracted light determined by the wavelength of the light incident on the diffraction grating from the light source and the incident angle thereof and the pitch of the light transmitting portion of the diffraction grating. The angle of is set so as to be directed horizontally from the inside to the outside of the lead row of the electronic component on the stage, whereby each lead row can be sharply illuminated with the diffracted light at once. In this case, the size of the electronic component may be at least large enough to straddle the diffraction grating, and is not limited to one type. Further, according to the lead shape inspection apparatus for an electronic component of the present invention, since the projection image of each lead row illuminated by the diffracted light is captured by the image pickup means, the image data of each lead row required for inspection is once obtained. Can be obtained.
【0013】[0013]
【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は、本発明のリード形状検査用光学装置を
用いたリード形状検査装置の概略構成を示している。そ
の光学装置は、ICリード1の照明用光源として配され
ている照明灯2の出力光を、レンズ3によって平行光線
束に変換し、これをガラス板4を介して回折格子5に導
く。そして、ここで略90°に光を回折し、ICが載置さ
れるガラスステージ6を通してICリード1の内側から
外方に向けてこれを照明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of a lead shape inspection device using the lead shape inspection optical device of the present invention. The optical device converts the output light of an illuminating lamp 2 arranged as a light source for illuminating the IC lead 1 into a bundle of parallel rays by a lens 3 and guides it to a diffraction grating 5 via a glass plate 4. Then, the light is diffracted at about 90 ° here, and the light is illuminated from the inside to the outside of the IC lead 1 through the glass stage 6 on which the IC is mounted.
【0014】回折格子5は、図2の平面図に示すよう
に、ガラス等の透明板7に多数の遮光性の線条8を所要
ピッチで形成し、遮光部と透光部とが一列又は交互に配
置されるように構成する。そして、回折格子5の線条8
にICリード1の列方向(X方向)が沿うように、また
両サイドのICリード1で回折格子5を跨ぐようにして
ICをガラスステージ6の上に置く。As shown in the plan view of FIG. 2, the diffraction grating 5 has a large number of light-shielding filaments 8 formed on a transparent plate 7 made of glass or the like at a required pitch so that the light-shielding portion and the light-transmitting portion are arranged in a line or. It is configured to be arranged alternately. And the filament 8 of the diffraction grating 5
The IC is placed on the glass stage 6 so that the column direction (X direction) of the IC leads 1 is aligned with and the IC leads 1 on both sides straddle the diffraction grating 5.
【0015】周知のように、回折格子5による回折光の
明るさの極大値が現れる位置は、次の (a)式を満足する
θ(回折角という)の方向となる。 d(sinθo + sinθ) =mλ ・・・・・・・・・・・・・(a) 上式において、符号dは回折格子5の透光部間(スリッ
ト間)のピッチ,θoは回折格子5への入射光角度,m
は整数値,λは入射光の波長である。いま、図3に示す
ように平行光線束に変換された入射光B1が、ガラスステ
ージ6の面に対して垂直な法線nと同じ角度で回折格子
5に入射する場合、 (a)式におけるθoは法線nとの偏
角で表すため「0°」となる。これを (a)式に代入して
書き換えると、 sinθ=mλ/d・・・・・・・・・・・・・・・・・・・(b) となる。As is well known, the position where the maximum value of the brightness of the diffracted light by the diffraction grating 5 appears is in the direction of θ (referred to as a diffraction angle) that satisfies the following expression (a). d (sinθo + sinθ) = mλ (a) In the above equation, the symbol d is the pitch between the light transmitting portions (slits) of the diffraction grating 5, and θo is the diffraction grating. Incident light angle to 5, m
Is an integer and λ is the wavelength of the incident light. Now, as shown in FIG. 3, when the incident light B1 converted into a parallel light flux is incident on the diffraction grating 5 at the same angle as the normal line n perpendicular to the surface of the glass stage 6, θo is “0 °” because it is expressed as a deviation angle from the normal line n. Substituting this into equation (a) and rewriting it yields sin θ = mλ / d ... (b).
【0016】つまり、この例のように、ガラス板4の直
下に照明灯2を設置した場合には、回折角は入射光の波
長と、回折格子5の透光部のピッチとで決定されるた
め、ICリード1の内側から外側に向けて回折光の明る
さの極大値が表れるようにこれらの値を設定すればよ
い。そうすると、ICリード1を鮮鋭に照明することが
でき、リード形状の検査に用いる投影像も鮮明なものが
得られる。That is, when the illuminating lamp 2 is installed just below the glass plate 4 as in this example, the diffraction angle is determined by the wavelength of the incident light and the pitch of the light transmitting portions of the diffraction grating 5. Therefore, these values may be set so that the maximum value of the brightness of the diffracted light appears from the inside to the outside of the IC lead 1. Then, the IC lead 1 can be illuminated sharply, and a sharp projection image used for inspecting the lead shape can be obtained.
【0017】なお、上記の構成では、回折格子5の上に
ガラスステージ6を設置しているが、このガラスステー
ジ6は回折格子5を保護する目的で配したものである。
したがって、特に必要なものでなく、これを廃してガラ
ス板4をICの検査ステージとしてもよい。この場合、
回折格子5はICの直下に位置することになるので、回
折角が丁度90°となるように前記の入射光の波長と、回
折格子5の透光部のピッチの値とを決定する。また、こ
の場合において、ガラス板4に回折格子5が入る縦長の
溝を形成し、溝の中に回折格子5を埋設した構成として
もよい。In the above structure, the glass stage 6 is installed on the diffraction grating 5, but the glass stage 6 is provided for the purpose of protecting the diffraction grating 5.
Therefore, it is not particularly necessary, and the glass plate 4 may be eliminated and used as an IC inspection stage. in this case,
Since the diffraction grating 5 is located directly below the IC, the wavelength of the incident light and the pitch value of the light transmitting portions of the diffraction grating 5 are determined so that the diffraction angle is just 90 °. Further, in this case, a vertically long groove into which the diffraction grating 5 is inserted may be formed in the glass plate 4, and the diffraction grating 5 may be embedded in the groove.
【0018】次に、上述した光学装置を用いてリード形
状の検査を行う検査装置について説明する。図1に示す
ように、この検査装置は上記の光学装置によって得られ
た回折光(ICリード1の投影像)の光路をハーフミラ
ー10で分割し、一方を浮き量測定用のレンズ系11に導
き、もう一方を反射ミラー20を介してピッチ測定用のレ
ンズ系12に導く。そして、浮き量測定用のレンズ系11か
らの出力光像をエリア形CCDセンサー13(CCDカメ
ラ)で撮像し、ピッチ測定用のレンズ系12からの出力光
像をリニア形CCDセンサー14で撮像し、それらの画像
データを図示を省略している画像処理部に送出して検査
するようになっている。Next, an inspection apparatus for inspecting the lead shape using the above-mentioned optical device will be described. As shown in FIG. 1, this inspection device divides the optical path of the diffracted light (projected image of the IC lead 1) obtained by the above optical device with a half mirror 10, and one of them is used as a lens system 11 for measuring the amount of floating. The other side is led to the lens system 12 for pitch measurement through the reflection mirror 20. Then, the area-type CCD sensor 13 (CCD camera) captures the output light image from the lens system 11 for measuring the floating amount, and the linear CCD sensor 14 captures the output light image from the lens system 12 for pitch measurement. The image data is sent to an image processing unit (not shown) for inspection.
【0019】なお、この検査装置は列配置されている各
ICリード1に対応して設置されるもので、図示のよう
にIC本体の両サイドにリード1の列を有しているもの
では、その左右に上記の構成部品が配される。This inspection device is installed corresponding to each IC lead 1 arranged in a row, and in the case where a row of leads 1 is provided on both sides of the IC body as shown in the figure, The above-mentioned components are arranged on the left and right sides thereof.
【0020】浮き量測定用のレンズ系11は、例えば図4
の斜視図に示すように、複数個の円柱レンズを絞り15を
挟んで前段側と後段側に配して構成される。前段側の円
柱レンズ群16は、その軸がX方向となるように配されて
おり、図のY方向にICリード1の投影像を拡大する。
一方の後段側の円柱レンズ群17は、その軸がY方向とな
るように配されており、前段側の円柱レンズ群16でY方
向に拡大された像をX方向に縮小する。The lens system 11 for measuring the floating amount is shown in FIG.
, A plurality of cylindrical lenses are arranged on the front stage side and the rear stage side with the diaphragm 15 interposed therebetween. The cylindrical lens group 16 on the front side is arranged so that its axis is in the X direction, and magnifies the projected image of the IC lead 1 in the Y direction in the drawing.
On the other hand, the cylindrical lens group 17 on the rear side is arranged such that its axis is in the Y direction, and the image magnified in the Y direction by the cylindrical lens group 16 on the front side is contracted in the X direction.
【0021】ここでICリード1の投影像が図5に示す
ようであったとする。斜線部分が影の部分である。この
投影像はまず、前段側の円柱レンズ16によってY方向に
拡大され図6に示すような像に変換される。このY方向
は、図5の基準線O(ガラスステージ6の基準面に相
当)からリード1の最下面への向きで、つまりはリード
1の浮き方向である。浮き方向が拡大された投影像は、
絞り15によって図6のDの範囲に絞られる。この範囲D
は、ちょうどリード1の浮き部分を含む最小の範囲に設
定されるのが好ましい。Here, it is assumed that the projected image of the IC lead 1 is as shown in FIG. The shaded area is the shadow area. This projected image is first magnified in the Y direction by the cylindrical lens 16 on the front side and converted into an image as shown in FIG. The Y direction is the direction from the reference line O (corresponding to the reference surface of the glass stage 6) in FIG. 5 to the bottom surface of the lead 1, that is, the floating direction of the lead 1. The projected image with the floating direction enlarged is
The diaphragm 15 narrows the range to D in FIG. This range D
Is preferably set to a minimum range including just the floating portion of the lead 1.
【0022】絞り込まれた像は、後段側の円柱レンズ17
でX方向に縮小され、結果、図7に示すような投影像S
が得られる。このように、投影像のサイズは絞り15と後
段側の円柱レンズ17によって縮小化されたものとなる
が、Y方向(浮き方向)の像は前段側の円柱レンズ16で
拡大されたままである。したがって、より高い精度が要
求される浮き量の測定を、その方向に拡大された像に基
づいて行うことができ、また、投影像のサイズそのもの
は縮小化されているので、これを撮像するCCDカメラ
13の設置個数が削減される。The focused image is a cylindrical lens 17 on the rear side.
In the X direction, and as a result, the projected image S as shown in FIG.
Is obtained. As described above, the size of the projected image is reduced by the diaphragm 15 and the cylindrical lens 17 on the rear side, but the image in the Y direction (floating direction) remains enlarged by the cylindrical lens 16 on the front side. Therefore, it is possible to measure the floating amount that requires higher accuracy based on the image magnified in that direction, and since the size of the projected image itself is reduced, a CCD that captures this image is used. camera
The number of installations of 13 is reduced.
【0023】例えば、ICの投影像をY方向に2.75倍に
拡大し、絞りの範囲Dを通常のCCDカメラ13の有効視
野の一辺の長さである約 6.6mmに設定する。CCDカメ
ラ13によるY方向の画素数は通常約 480個であるから、
1画素は約 13.75μm に相当する。これに対して浮き量
の測定の場合は5μmでの分解能が要求されている。す
なわち、等倍像の撮像では、有効視野の一辺の長さが
2.4mmのCCDカメラ13を用いる必要があり(2.4mm ÷4
80 =5μm)、その長さが短くなった分、CCDカメ
ラ13の設置個数が増加していた。しかし、本例のように
投影像をY方向に2.75倍に拡大すると、1画素当たりの
投影像の長さは、等倍像の1/2.75倍、すなわち、13.7
5 μm/2.75=5μmとなる。For example, the projected image of the IC is magnified 2.75 times in the Y direction, and the aperture range D is set to about 6.6 mm, which is the length of one side of the effective field of view of the ordinary CCD camera 13. Since the number of pixels in the Y direction by the CCD camera 13 is usually about 480,
One pixel corresponds to about 13.75 μm. On the other hand, when measuring the floating amount, a resolution of 5 μm is required. That is, when capturing a 1 × image, the length of one side of the effective field of view is
It is necessary to use a 2.4 mm CCD camera 13 (2.4 mm ÷ 4
80 = 5 μm), the number of CCD cameras 13 installed increased as the length decreased. However, if the projected image is magnified 2.75 times in the Y direction as in this example, the length of the projected image per pixel is 1 / 2.75 times that of the normal-sized image, that is, 13.7 times.
It becomes 5 μm / 2.75 = 5 μm.
【0024】つまり、通常のCCDカメラ13を用いて5
μmの分解能を実現でき、さらに、X方向への縮小を加
えることでCCDカメラ13の設置個数は大幅に削減する
のである。That is, using the ordinary CCD camera 13,
The resolution of μm can be realized, and the number of CCD cameras 13 to be installed can be greatly reduced by adding the reduction in the X direction.
【0025】一方のピッチ測定用のレンズ系12は、例え
ば、前記の後段側の円柱レンズ17をその軸がX方向とY
方向とにそれぞれ沿うように、2段に配して構成し、投
影像のサイズをX,Y方向に縮小化する。ピッチ測定
は、ICリード1のピッチ間を測定するものである。One of the pitch measuring lens systems 12 is, for example, the cylindrical lens 17 on the rear stage side whose axis is in the X direction and Y direction.
The size of the projected image is reduced in the X and Y directions by arranging it in two stages so as to follow each of the directions. The pitch measurement is to measure the pitch between the IC leads 1.
【0026】なお、上述の実施例では、ICの両サイド
にリード1を有するものを例示したが、このタイプのI
Cに限ることはなく、ICの全ての側面(4方向)から
リード1が延出しているタイプのICも同じ原理で検査
することが可能である。つまり、図2に示した回折格子
5の上方に、同じ回折格子5を直交させた姿勢で設置
し、その直交位置にICの中心位置がくるように、これ
をガラスステージ6の上に載置する。そして、上記のレ
ンズ系とCCDカメラ等からなる検査機構を4方向に配
して構成する。In the above-mentioned embodiment, the IC having the leads 1 on both sides of the IC is exemplified, but this type of I
The IC is not limited to C, and an IC of a type in which the lead 1 extends from all side surfaces (4 directions) of the IC can be inspected by the same principle. That is, the same diffraction grating 5 is installed above the diffraction grating 5 shown in FIG. 2 in an orthogonal posture, and is placed on the glass stage 6 so that the center position of the IC is located at the orthogonal position. To do. The inspection mechanism including the lens system and the CCD camera is arranged in four directions.
【0027】[0027]
【発明の効果】以上の説明から明らかなように、本発明
の電子部品のリード形状検査用光学装置は、電子部品が
載置される透光性のステージに回折格子を付設し、その
回折光を用いて電子部品のリードを照明するようにした
ため、回折光の角度を電子部品のリード列の内側から両
外側に向かうように設定することで、電子部品の各リー
ド列を一度にその回折光で鮮鋭に照明することができ
る。また、電子部品のサイズは少なくとも回折格子を跨
ぐだけの大きさがあればよく、1つの品種のものに限ら
ず、種々のサイズの電子部品に対応することができる。
また、本発明の電子部品のリード形状検査装置は、前記
回折光で照明された各リード列の投影像をそれぞれに撮
像手段で撮像するから、検査に必要な各リード列の画像
データを一度に得ることができ、検査時間の短縮化が図
られる。As is apparent from the above description, the optical device for inspecting the lead shape of an electronic component according to the present invention is provided with a diffraction grating on a translucent stage on which the electronic component is mounted, and the diffracted light Since the leads of the electronic component are illuminated by using, the angle of the diffracted light is set so as to go from the inside of the lead row of the electronic component to both outsides, and each lead row of the electronic component is Can be sharply illuminated with. Further, the size of the electronic component has only to be at least large enough to straddle the diffraction grating, and is not limited to one product type, and various sizes of electronic components can be supported.
Further, since the lead shape inspection apparatus for electronic parts of the present invention captures the projected image of each lead row illuminated by the diffracted light by the image pickup means, the image data of each lead row required for the inspection can be obtained at once. Therefore, the inspection time can be shortened.
【図1】本発明の一実施例に係る電子部品のリード形状
検査用光学装置およびこれを用いた電子部品のリード形
状検査装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an optical device for inspecting a lead shape of an electronic component and an apparatus for inspecting a lead shape of an electronic component using the same according to an embodiment of the present invention.
【図2】電子部品のリード形状検査用光学装置における
ICの平面図である。FIG. 2 is a plan view of an IC in an optical device for inspecting a lead shape of an electronic component.
【図3】電子部品のリード形状検査用光学装置の作用を
説明する一部正面図である。FIG. 3 is a partial front view illustrating the operation of the optical device for inspecting a lead shape of an electronic component.
【図4】電子部品のリード形状検査装置におけるレンズ
系の一構成例を示した斜視図である。FIG. 4 is a perspective view showing a configuration example of a lens system in a lead shape inspection device for an electronic component.
【図5】電子部品のリード形状検査用光学装置によるI
Cリードの投影像を示した図である。FIG. 5: I by an optical device for lead shape inspection of electronic parts
It is the figure which showed the projection image of C lead.
【図6】前記レンズ系で拡大された投影像の図である。FIG. 6 is a diagram of a projected image magnified by the lens system.
【図7】前記レンズ系を通して最終的に得られる投影像
の図である。FIG. 7 is a diagram of a projected image finally obtained through the lens system.
【図8】従来例においてICリードの曲がり具合を示し
た図である。FIG. 8 is a view showing how IC leads are bent in a conventional example.
【図9】従来例においてICリードの浮き具合を示した
図である。FIG. 9 is a diagram showing how the IC leads float in a conventional example.
【図10】第1従来例に係る装置の概略構成を示した図
である。FIG. 10 is a diagram showing a schematic configuration of an apparatus according to a first conventional example.
【図11】第2従来例に係る装置の概略構成を示した図
である。FIG. 11 is a diagram showing a schematic configuration of an apparatus according to a second conventional example.
【図12】第3従来例に係る装置の概略構成を示した図
である。FIG. 12 is a diagram showing a schematic configuration of an apparatus according to a third conventional example.
1・・・ICリード 2・・・照明灯(光源) 5・・・回折格子 13・・・CCDカメラ 14・・・リニア形CCDセンサー 1 ... IC lead 2 ... Illumination lamp (light source) 5 ... Diffraction grating 13 ... CCD camera 14 ... Linear CCD sensor
Claims (2)
が透光性のステージと、前記電子部品の対向するリード
列の間隙内で前記ステージに付設されて前記リード列に
沿う透光部と遮光部とを1列又は交互に配列してなる回
折格子と、前記回折格子を下方から照明する光源とを備
えたことを特徴とする電子部品のリード形状検査用光学
装置。1. A light-transmissive portion which is attached to the stage in a gap between a partially or entirely translucent stage on which an electronic component is mounted and a lead row facing the electronic component, and which extends along the lead column. An optical device for inspecting a lead shape of an electronic component, comprising: a diffraction grating in which a plurality of lines and light-shielding sections are arranged in a row or alternately and a light source that illuminates the diffraction grating from below.
投影像を画像処理装置で解析して各リードの曲がりや平
坦度などを検査する電子部品のリード形状検査装置にお
いて、電子部品が載置される一部あるいは全体が透光性
のステージと、前記電子部品の対向するリード列の間隙
内で前記ステージに付設されて前記リード列に沿う透光
部と遮光部とを1列又は交互に配列してなる回折格子
と、前記回折格子を下方から照明する光源と、前記回折
格子からの回折光で照明された電子部品の各リード列の
投影像をそれぞれに撮像する撮像手段とを備えたことを
特徴とする電子部品のリード形状検査装置。2. A lead shape inspection device for an electronic component, wherein a projection image obtained by illuminating a lead row of an electronic component is analyzed by an image processing device to inspect the bending and flatness of each lead. A partially or wholly transmissive stage to be placed, and a row of a light-transmitting portion and a light-shielding portion attached to the stage in the gap between the lead rows facing each other of the electronic component, or one row or A diffraction grating arranged alternately, a light source for illuminating the diffraction grating from below, and an imaging means for respectively capturing a projected image of each lead row of the electronic component illuminated by the diffracted light from the diffraction grating. A lead shape inspection device for electronic parts, characterized by being provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15750991A JPH0726834B2 (en) | 1991-05-31 | 1991-05-31 | Optical device for lead shape inspection of electronic parts and lead shape inspection device for electronic parts using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15750991A JPH0726834B2 (en) | 1991-05-31 | 1991-05-31 | Optical device for lead shape inspection of electronic parts and lead shape inspection device for electronic parts using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0626835A JPH0626835A (en) | 1994-02-04 |
JPH0726834B2 true JPH0726834B2 (en) | 1995-03-29 |
Family
ID=15651236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15750991A Expired - Lifetime JPH0726834B2 (en) | 1991-05-31 | 1991-05-31 | Optical device for lead shape inspection of electronic parts and lead shape inspection device for electronic parts using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0726834B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3457333B2 (en) | 1997-03-21 | 2003-10-14 | ザ、プロクター、エンド、ギャンブル、カンパニー | Absorbent article wrapper with side flap fastener cover |
US5910844A (en) * | 1997-07-15 | 1999-06-08 | Vistech Corporation | Dynamic three dimensional vision inspection system |
EP1032338A1 (en) | 1997-11-14 | 2000-09-06 | The Procter & Gamble Company | Absorbent article wrapper comprising a side flap fastener cover |
JP2000513989A (en) | 1998-04-28 | 2000-10-24 | ザ、プロクター、エンド、ギャンブル、カンパニー | Absorber wrapper with side flap zipper cover |
KR101289880B1 (en) * | 2011-12-27 | 2013-07-24 | 전자부품연구원 | Apparatus and method for measuring lead co-planarity of lead-type component |
-
1991
- 1991-05-31 JP JP15750991A patent/JPH0726834B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0626835A (en) | 1994-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4224863B2 (en) | Inspection apparatus, inspection method, and pattern substrate manufacturing method | |
US5774224A (en) | Linear-scanning, oblique-viewing optical apparatus | |
US7088477B2 (en) | Image reading apparatus and illumination apparatus | |
US6424735B1 (en) | High precision three dimensional mapping camera | |
JPH02251200A (en) | Board acsembling method, board inspection method and device | |
TW418320B (en) | Dynamic three dimentional vision inspection system | |
JP2013142644A (en) | Spectroscopic characteristic acquisition device and image forming apparatus | |
JPH0831137B2 (en) | Three-dimensional image forming method and apparatus | |
JP3105702B2 (en) | Optical defect inspection equipment | |
JPH0726834B2 (en) | Optical device for lead shape inspection of electronic parts and lead shape inspection device for electronic parts using the same | |
JPH10153413A (en) | Appearance and dimension inspection device for ic lead | |
JP4285613B2 (en) | Inspection apparatus, inspection method, and pattern substrate manufacturing method | |
JPH0730716A (en) | Original reader | |
US5293428A (en) | Optical apparatus for use in image recognition | |
CN110109322B (en) | System and method for performing mask pattern measurement using optical signal with compensation | |
JPH04356939A (en) | Inspecting apparatus for lead shape of electronic component | |
JPH0781849B2 (en) | Electronic parts lead shape inspection device | |
CN109270070A (en) | Imaging device and imaging method | |
JPH0756446B2 (en) | Inspection method for rod-shaped protrusions | |
EP1139090A2 (en) | Leaded integrated circuit inspection system | |
JP3341382B2 (en) | Apparatus for visual inspection of semiconductor devices | |
JP2000180373A (en) | Method and apparatus for inspection of defect | |
WO2024100475A1 (en) | Method and device for inspecting a moving apparatus | |
JP2001264268A (en) | Substrate inspecting device | |
CN1266608A (en) | Method and device for detecting the position and/or for testing coplanarity and/or testing the separation of connections of components |