JPH0726706U - Interferometer device - Google Patents

Interferometer device

Info

Publication number
JPH0726706U
JPH0726706U JP6478293U JP6478293U JPH0726706U JP H0726706 U JPH0726706 U JP H0726706U JP 6478293 U JP6478293 U JP 6478293U JP 6478293 U JP6478293 U JP 6478293U JP H0726706 U JPH0726706 U JP H0726706U
Authority
JP
Japan
Prior art keywords
optical path
measurement
prism
interferometer
prism member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6478293U
Other languages
Japanese (ja)
Inventor
正史 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6478293U priority Critical patent/JPH0726706U/en
Publication of JPH0726706U publication Critical patent/JPH0726706U/en
Priority to US08/532,267 priority patent/US5585922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

(57)【要約】 【目的】従来よりも高い精度な計測を実現できる干渉計
装置の提供にある。 【構成】被計測物体の変位量を計測する干渉計装置にお
いて、2つの直角プリズム(2a,2b)の内の一方の
斜面と他方の底面とを接合してこの接合面が偏光分離面
1 で形成された光学部材2を配置し、この光学部材2
によって測定用光路と参照用光路とを形成する構成とし
たことを特徴とする干渉計装置。
(57) [Abstract] [Purpose] An object of the present invention is to provide an interferometer device capable of realizing measurement with higher accuracy than ever before. In an interferometer device for measuring the amount of displacement of an object to be measured, one of the two right-angle prisms (2a, 2b) is joined to the other bottom surface, and the joint surface is a polarization separation surface S 1 The optical member 2 formed by
An interferometer device having a configuration in which a measurement optical path and a reference optical path are formed by.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上に利用分野】[Industrial application]

本考案は、被計測物体の変位量を計測する干渉計装置に関するものである。 The present invention relates to an interferometer device for measuring a displacement amount of an object to be measured.

【0002】[0002]

【従来の技術】[Prior art]

従来において、環境変化の1つとして空気の屈折率の変化を補正する干渉計装 置としては、例えば、特開昭60-263801 号が公知である。この特開昭60-263801 号に開示されている装置は、図6に示す如く、レーザ光源31からの光束は、ビ ームスプリッター32により2分割され、このビームスプリッター32を透過す る一方のビームL2 は、計測用ビームとして、図6の左右方向へ移動可能に設け られた計測側の反射部材34にて反射されて再びビームスプリッター32へ向か う。一方、ビームスプリッター32を反射する他方のビームL3 は、参照用ビー ムとして、反射鏡33を介して基台に固設された参照側の反射部材35を反射し 、再び反射鏡33を介してビームスプリッター32へ向かう。そして、ビームス プリッター32によって計測用ビームL2 と参照用ビームL3 とが一緒になり、 ビームL4 として光電検出器36にて受光され、被測定物としての反射部材34 の移動量が検出される。Conventionally, as an interferometer device that corrects a change in the refractive index of air as one of environmental changes, for example, JP-A-60-263801 is known. In the apparatus disclosed in Japanese Patent Laid-Open No. 60-263801, as shown in FIG. 6, the light beam from the laser light source 31 is divided into two by a beam splitter 32, and one beam L transmitted through this beam splitter 32 is transmitted. Reference numeral 2 is a measurement beam, which is reflected by a measurement-side reflecting member 34 movably provided in the left-right direction in FIG. 6 and travels toward the beam splitter 32 again. On the other hand, the other beam L 3 reflected by the beam splitter 32 is reflected by the reference side reflecting member 35 fixed to the base via the reflecting mirror 33 as a reference beam, and again passes through the reflecting mirror 33. Towards the beam splitter 32. Then, the beam splitter 32 combines the measurement beam L 2 and the reference beam L 3 and the light beam is received by the photoelectric detector 36 as the beam L 4 , and the movement amount of the reflection member 34 as the object to be measured is detected. It

【0003】 このとき、空気のゆらぎの影響を受ける部分での参照用光路長と計測用光路長 とが等しくなるように計測側の反射部材33と参照側の反射部材34とをほぼ等 しい位置に配置することにより、空気のゆらぎによる影響を補正している。At this time, the reflection member 33 on the measurement side and the reflection member 34 on the reference side are placed at substantially equal positions so that the reference optical path length and the measurement optical path length are equal in a portion affected by air fluctuations. The effect of air fluctuations is compensated for by arranging at.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところが、図6に示した従来の装置では、被測定物としての反射部材34が大 きく移動した場合には、計測用ビームL2 と参照用ビームL3 との光路長差が大 きくなる。この結果、測定誤差が無視できない程、大きくなるため、空気のゆら ぎ等による空気の屈折率変化の影響を根本的に解決できるものではなかった。However, in the conventional apparatus shown in FIG. 6, when the reflecting member 34 as the object to be measured moves largely, the optical path length difference between the measurement beam L 2 and the reference beam L 3 becomes large. As a result, the measurement error becomes so large that it cannot be ignored, so the effect of changes in the refractive index of air due to fluctuations in air, etc., could not be fundamentally resolved.

【0005】 そこで、本考案は、上記の問題を解決し、空気のゆらぎ等によって生ずる空気 の屈折率変化のよる計測誤差を補正して、常に高精度な計測を可能とし得る高性 能な干渉装置を提供することを目的としている。Therefore, the present invention solves the above problems and corrects a measurement error due to a change in the refractive index of air caused by fluctuations in the air, etc., and highly accurate interference that can always perform highly accurate measurement. The purpose is to provide a device.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

上記の目的を達成するために、第1の考案としては、例えば図1に示す如く、 計測物体の変位量を計測する干渉計装置において、2つの直角プリズムの内の一 方の斜面と他方の底面とを接合してこの接合面が偏光分離面で形成された光学部 材を配置し、該光学部材によって測定用光路と参照用光路とを形成する構成とし たものである。 In order to achieve the above object, as a first device, for example, as shown in FIG. 1, in an interferometer device for measuring a displacement amount of a measurement object, one of the two right-angle prisms and the other of the inclined surface The optical member is joined to the bottom surface and the joined surface is a polarization splitting surface, and the optical member forms a measurement optical path and a reference optical path.

【0007】 また、上記の目的を達成するために、第2の考案としては、例えば図1に示す 如く、計測方向に沿って一体的に移動可能に設けられた第1及び第2計測用反射 手段と、それぞれ所定の位置に固設された第1及び第2参照用反射手段と、光束 を供給する光源手段と、該光源手段からの光束に基づいて,前記第1計測用反射 手段を介して往復する第1計測光路と前記第1参照用反射手段を介して往復する 第1参照光路とを形成し,該第1計測光路及び第1参照光路を経由した各光束に よって第1測定出力を生成する第1干渉計手段と、前記光源手段からの光束に基 づいて,前記第2計測用反射手段を介して往復する第2計測光路と前記第2参照 用反射手段を介して往復する第2参照光路とを形成し,該第2計測光路及び第2 参照光路を経由した各光束によって第2測定出力を生成する第2干渉計手段と、 前記第1及び第2測定出力に基づいて所定の演算を行う演算手段とを有し、 前記第1干渉計手段から前記第1参照用反射手段までの前記第1参照光路は、 前記第2干渉計手段から前記第2参照用反射手段までの前記第2参照光路よりも 短い光学的光路長を有し、 前記第1干渉計手段から前記第1計測用反射手段の基準位置までの前記第1計 測光路の光学的光路長をlM1とし、前記第2干渉計手段から前記第2計測用反射 手段の基準位置までの前記第2計測光路の光学的光路長をlM2、前記第1干渉計 手段から前記第1参照用反射手段までの前記第1参照光路の光学的光路長をlR1 、前記第2干渉計手段から前記第2参照用反射手段までの前記第2参照光路の光 学的光路長をlR2、前記基準位置からの前記第1及び第2計測用反射手段の変位 をxとするとき、 前記第1及び第2計測用反射手段は、以下の範囲を少なくとも移動可能、もし くは以下の範囲の1部を少なくとも移動可能に構成されるようにした。In order to achieve the above-mentioned object, as a second invention, as shown in FIG. 1, for example, as shown in FIG. 1, first and second reflections for measurement provided integrally movable along the measurement direction. Means, first and second reference reflecting means fixed respectively at predetermined positions, light source means for supplying a light flux, and based on the light flux from the light source means, through the first measuring reflection means. Forming a first measurement optical path that reciprocates and a first reference optical path that reciprocates via the first reference reflecting means, and a first measurement output is obtained by each light flux that has passed through the first measurement optical path and the first reference optical path. And a second measuring optical path that reciprocates via the second measuring reflecting means and a second measuring optical path that reciprocates based on the luminous flux from the light source means. Forming a second reference optical path, and forming a second reference optical path and a second reference optical path. A second interferometer means for generating a second measurement output by each light flux passing through the illumination path; and a computing means for performing a predetermined computation based on the first and second measurement outputs, the first interferometer The first reference optical path from the means to the first reference reflecting means has a shorter optical path length than the second reference optical path from the second interferometer means to the second reference reflecting means, The optical path length of the first photometry path from the first interferometer means to the reference position of the first measurement reflection means is set to l M1, and the second interferometer means changes the optical path length from the second interferometer means to the second measurement reflection means. The optical optical path length of the second measurement optical path to the reference position is l M2 , the optical optical path length of the first reference optical path from the first interferometer means to the first reference reflecting means is l R1 , and the first optical path length is l R1 . 2 of the second reference optical path from the interferometer means to the second reference reflecting means When the optical path length is l R2 and the displacement of the first and second measuring reflecting means from the reference position is x, the first and second measuring reflecting means move at least in the following range. Possible, or at least part of the following range is configured to be movable.

【0008】 lR1−lM1≦x≦lR2−lM2 L R1 −l M1 ≦ x ≦ l R2 −l M2

【0009】[0009]

【作 用】[Work]

本考案は、計測物体の変位量を計測する2つの干渉計装置において、2つの直 角プリズムの内の一方の斜面と他方の底面とを接合してこの接合面が偏光分離面 で形成された光学部材を配置し、該光学部材によって測定用光路と参照用光路と を形成する構成とし、環境変化に伴う測定誤差の影響を軽減するようにしたもの である。 According to the present invention, in two interferometer devices for measuring the amount of displacement of a measurement object, one of the two prisms is joined to the inclined surface and the other is the bottom surface, and the joint surface is formed by a polarization splitting surface. An optical member is arranged, and a measuring optical path and a reference optical path are formed by the optical member so as to reduce the influence of measurement error due to environmental changes.

【0010】 また、本考案は、2つの干渉計手段により形成される各参照光路を所定の長さ だけ異ならせしめつつ、2つの干渉計手段により形成される各計測光路長と各参 照光路長とを少なくとも所定の関係のもとで2つの計測用反射手段を一体的に移 動させるという事に着目したものである。 これにより、空気等の気体中を通過する参照光路と計測光路において屈折率変 化が生じた場合でも、環境変化に伴う空気等の気体の屈折率変化の情報を含んだ 異なる2つの計測出力を得て、この2つの計測出力に基づいて所定の演算を行う ことにより、各光路中での屈折率の変化による計測誤差を除去することができる 。しかも、2つの計測用反射手段を所定の移動範囲もしくはその範囲の1部を少 なくとも移動可能に構成することにより、2つの干渉計手段自体が持つ量子化誤 差による影響を格段に軽減することができ、大幅に計測精度の向上を達成するこ とができる。Further, according to the present invention, the reference optical paths formed by the two interferometer means are different from each other by a predetermined length, and the measurement optical path length and the reference optical path length formed by the two interferometer means are different from each other. Attention is paid to the fact that the two measuring reflection means are integrally moved under at least a predetermined relationship. As a result, even if the refractive index changes in the reference optical path and the measurement optical path that pass through a gas such as air, two different measurement outputs containing information on the refractive index change of the gas such as air due to environmental changes Then, by performing a predetermined calculation based on these two measurement outputs, it is possible to remove the measurement error due to the change in the refractive index in each optical path. Moreover, by constructing the two measuring reflection means so that the predetermined movement range or at least a part of the range can be moved, the influence of the quantization error of the two interferometer means itself can be significantly reduced. Therefore, it is possible to significantly improve the measurement accuracy.

【0011】 なお、各干渉計手段により形成される各計測光路並びにその付近に局所的な空 気等の気体中の屈折率変化が生じる恐れがある場合には、各干渉計手段は、これ らによりそれぞれ形成される参照光路と計測光路とが互いに近接する構成とする ことが望ましい。 以下の図4を参照しながら本考案の原理について説明する。図4の(a)は本 考案の第1干渉計装置の構成を示す図であり、(b)は本考案の第2干渉計装置 の構成を示す図である。If there is a possibility that a local change in the refractive index of a gas such as air will occur in each measurement optical path formed by each interferometer means and in the vicinity thereof, each interferometer means uses these interferometer means. It is desirable that the reference optical path and the measurement optical path formed by the above are close to each other. The principle of the present invention will be described with reference to FIG. 4 below. FIG. 4A is a diagram showing the configuration of the first interferometer device of the present invention, and FIG. 4B is a diagram showing the configuration of the second interferometer device of the present invention.

【0012】 まず、図4(a)に示す如く、第1の光源11から供給される光束は、光分割 部材としてのビームスプリッター12により2光束に分割され、このビームスプ リッター12を透過する一方のビームL21は、計測用ビームとして、図4(a) の左右方向へ移動可能に設けられた計測用の反射部材14(計測用反射手段)に て反射されて再びビームスプリッター12に向かう。一方、ビームスプリッター 12を反射する他方のビームL31は、参照用ビームとして反射鏡13を反射し、 計測用ビームL21の光路と近接した空気等の気体中を計測用ビームL21と平行と なるように進行する。その後、ビームL31は基台に固設された参照用の反射部材 15(第1参照用反射手段)を反射し、再び計測用ビームL21の光路と近接した 空気等の気体中を計測用ビームL21と平行となるように進行し、反射鏡13を介 してビームスプリッター12へ向かう。そして、ビームスプリッター12によっ て計測用ビームL21と参照用ビームL31とが一緒になり、ビームL41として第1 のレシーバー16(第1検出器)にて受光され、被測定物としての反射部材14 の移動量が検出される。First, as shown in FIG. 4A, the light beam supplied from the first light source 11 is split into two light beams by a beam splitter 12 as a light splitting member, and one of the light beams passing through the beam splitter 12 is divided into two light beams. The beam L 21 is reflected as a measuring beam by a measuring reflecting member 14 (measuring reflecting means) movably provided in the left-right direction in FIG. 4A and travels toward the beam splitter 12 again. On the other hand, the other beam L 31 reflected by the beam splitter 12 is reflected by the reflecting mirror 13 as a reference beam, and the gas such as air in the vicinity of the optical path of the measurement beam L 21 becomes parallel to the measurement beam L 21. To proceed. After that, the beam L 31 is reflected by the reference reflection member 15 (first reference reflection means) fixedly mounted on the base, and again in the gas such as air, which is close to the optical path of the measurement beam L 21 , for measurement. It travels so as to be parallel to the beam L 21 and goes toward the beam splitter 12 via the reflecting mirror 13. Then, the measurement beam L 21 and the reference beam L 31 are combined by the beam splitter 12, and are received by the first receiver 16 (first detector) as the beam L 41 , which serves as an object to be measured. The amount of movement of the reflecting member 14 is detected.

【0013】 ここで、図4(a)に示す第1干渉計は、ビームスプリッター12と反射鏡1 3と第1のレシーバー16とで構成されており、参照用の反射部材15は、気体 中の参照用光路の光学的光路長がlR1となるように、第1干渉計に対して所定の 光学的距離lR1だけ隔てて基台に固設されている。また、計測用の反射部材14 は、これの基準位置における気体中の計測用光路の光学的光路長がlM1となるよ うに、第1干渉計から計測用の反射部材14の基準位置までの光学的距離がlM1 となるように移動可能に設定されている。Here, the first interferometer shown in FIG. 4A is composed of a beam splitter 12, a reflecting mirror 13 and a first receiver 16, and the reflecting member 15 for reference is in the gas. The reference optical path is fixed to the base with a predetermined optical distance l R1 from the first interferometer so that the optical path length of the reference optical path is l R1 . In addition, the measuring reflection member 14 is arranged so that the optical path length of the measuring optical path in the gas at the reference position is 1 M1 from the first interferometer to the reference position of the measuring reflection member 14. It is set to be movable so that the optical distance is l M1 .

【0014】 一方、図4(a)の紙面と垂直な方向には、図4(b)に示す如き第2干渉計 装置が並列的に配置されており、第2干渉計装置では、反射鏡23及び参照用の 反射部材25は、第2干渉計の気体中の参照用光路の光学的光路長lR2が第1干 渉計の気体中の参照用光路の光学的光路長lR1に対し異なるようにそれぞれ固設 されている。また、ビームスプリッター22及び計測用の反射部材24(計測用 反射手段)は、反射部材24の基準位置において、第2干渉計の気体中の測定用 光路の光学的光路長lM2が第2干渉計の気体中の参照用光路の光学的光路長lM1 に対し異なるようにそれぞれ設定、あるいは反射部材24の基準位置において、 第2干渉計の気体中の測定用光路の光学的光路長lM2が第2干渉計の気体中の参 照用光路の光学的光路長lM1と実質的に等しくなるようにそれぞれ設定されてお り、それ以外に関しては図4(a)に示す第1干渉計装置と基本的に同一である 。On the other hand, a second interferometer device as shown in FIG. 4B is arranged in parallel in a direction perpendicular to the paper surface of FIG. 4A, and in the second interferometer device, a reflecting mirror is used. 23 and the reflecting member 25 for reference have an optical optical path length l R2 of the reference optical path in the gas of the second interferometer with respect to an optical optical path length l R1 of the reference optical path in the gas of the first interferometer. They are fixed in different ways. Further, the beam splitter 22 and the measuring reflection member 24 (measuring reflection means) are arranged such that, at the reference position of the reflecting member 24, the optical path length l M2 of the measurement optical path in the gas of the second interferometer causes the second interference. The optical path length l M2 of the second interferometer is different from the optical path length l M1 of the reference optical path in the gas of the meter, or at the reference position of the reflecting member 24. Are set so as to be substantially equal to the optical path length l M1 of the reference optical path in the gas of the second interferometer, and other than that, the first interferometer shown in FIG. It is basically the same as the device.

【0015】 図4(b)に示す如く、第2の光源21から供給される光束は、光分割部材と してのビームスプリッター22により2光束に分割され、このビームスプリッタ ー22を透過する一方のビームL22は、計測用ビームとして、計測用の反射部材 24(計測用反射手段)に向かう。この反射部材24は、図4(a)に示した反 射部材14と同一の変位を持つように接合され、反射部材14と共に図4(b) の左右方向へ移動可能に設けられている。そして、計測用の反射部材24へ向か うビームL22は、この反射部材24にて反射されて再びビームスプリッター22 へ向かう。一方、ビームスプリッター22を反射する他方のビームL32は、参照 用ビームとして反射鏡23を反射し、計測用ビームL22の光路と近接した空気等 の気体中を計測用ビームL22と平行となるように進行する。その後、ビームL32 は基台に固設された参照用の反射部材25(第2参照用反射手段)を反射し、再 び計測用ビームL22の光路と近接した空気等の気体中を計測用ビームL22と平行 となるように進行し、反射鏡23を介してビームスプリッター22へ向かう。そ して、ビームスプリッター22によって計測用ビームL22と参照用ビームL32と が一緒になり、ビームL42として、第2のレシーバー26(第2検出器)にて受 光され、被測定物としての反射部材24の移動量が検出される。As shown in FIG. 4B, the light beam supplied from the second light source 21 is split into two light beams by a beam splitter 22 as a light splitting member and transmitted through the beam splitter 22. Beam L 22 of is directed to the measurement reflection member 24 (measurement reflection means) as a measurement beam. The reflecting member 24 is joined so as to have the same displacement as that of the reflecting member 14 shown in FIG. 4A, and is provided so as to be movable together with the reflecting member 14 in the left-right direction of FIG. 4B. Then, the beam L 22 traveling toward the reflecting member 24 for measurement is reflected by the reflecting member 24 and travels toward the beam splitter 22 again. On the other hand, the other beam L 32 which reflects the beam splitter 22, reflected by the reflection mirror 23 as a reference beam, and parallel to a gas such as air in close proximity to the optical path of the measuring beam L 22 and measuring beam L 22 To proceed. After that, the beam L 32 is reflected by the reference reflection member 25 (second reference reflection means) fixedly mounted on the base, and again measures in a gas such as air close to the optical path of the measurement beam L 22. It travels so as to be parallel to the beam L 22 for use, and goes toward the beam splitter 22 via the reflecting mirror 23. Then, the measurement beam L 22 and the reference beam L 32 are combined by the beam splitter 22 and received by the second receiver 26 (second detector) as the beam L 42 to be measured. The amount of movement of the reflecting member 24 is detected.

【0016】 なお、図4(b)に示す第2干渉計は、ビームスプリッター22と反射鏡23 と第2のレシーバー26とで構成されている。 以上の構成によって、被計測物としての反射部材14及び24が図4の紙面方 向へ一体的に移動すると、第1干渉装置の第1のレシーバー16と第2干渉装置 の第2のレシーバー26とからはそれぞれ異なる2つの検出信号が出力される。The second interferometer shown in FIG. 4B is composed of a beam splitter 22, a reflecting mirror 23, and a second receiver 26. With the above configuration, when the reflecting members 14 and 24 as the object to be measured move integrally in the direction of the paper surface of FIG. 4, the first receiver 16 of the first interfering device and the second receiver 26 of the second interfering device 26. Two different detection signals are output from and.

【0017】 今、第1干渉装置の第1のレシーバー16からの出力をXA 、第2干渉装置の 第2のレシーバー26からの出力をXB とし、測定開始時(リセット時)等の初 期の基準となる気体の屈折率をn、測定開始時(リセット時)等の初期の基準気 体の屈折率からの屈折率変化量をΔn、第1干渉計の参照光路中での気体の屈折 率の変化の影響を受ける部分の光学的光路の長さ(第1干渉計と第1参照用反射 手段との間の第1参照光路の光学的光路長)をlR1、第2干渉計の参照光路中で の気体の屈折率の変化の影響を受ける部分の光学的光路の長さ(第2干渉計と第 2参照用反射手段との間の第2参照光路の光学的光路長)をlR2、測定開始時( リセット時)等の初期の計測用反射手段の基準位置における第1干渉計の計測光 路中での気体の屈折率の変化の影響を受ける部分の光路の長さ(第1干渉計と計 測用反射手段の基準位置との間の第1計測光路の光学的光路長)をlM1、測定開 始時(リセット時)等の初期の計測用反射手段の基準位置における第2干渉計の 計測光路中での気体の屈折率の変化の影響を受ける部分の光路の長さ(第2干渉 計と計測用反射手段の基準位置との間の第2計測光路の光学的光路長)をlM2、 第1及び第2計測光路の各々において気体の屈折率の変化の影響を受ける部分で の光路の長さがそれぞれlM1,lM2となる時の被計測物体(第1及び第2計測用 反射手段)の基準位置(原点)からの変位をxとする。但し、この変位xは、被 計測物体が原点より右側へ移動する時を正、被計測物体が原点より左側へ移動す る時を負とする。Now, let X A be the output from the first receiver 16 of the first interfering device, and let X B be the output from the second receiver 26 of the second interfering device. N is the refractive index of the gas used as the reference of the period, Δn is the amount of change in the refractive index from the refractive index of the initial reference gas at the start of measurement (at reset), and the gas in the reference optical path of the first interferometer The optical path length (optical path length of the first reference optical path between the first interferometer and the first reference reflecting means) of the portion affected by the change in the refractive index is l R1 , and the second interferometer Of the optical path of the portion affected by the change in the refractive index of the gas in the reference optical path of (the optical path length of the second reference optical path between the second interferometer and the second reflecting means) L R2 , the measurement optical path of the first interferometer at the reference position of the initial measuring reflection means at the start of measurement (at reset) The length of the optical path of the portion affected by the change of the refractive index of the gas (optical optical path length of the first measuring optical path between the first interferometer and the reference position of the measuring reflection means) is defined as l M1 , The length of the optical path of the portion affected by the change in the refractive index of the gas in the measurement optical path of the second interferometer at the reference position of the initial measuring reflection means at the start of measurement (at the time of resetting) (second The optical path length of the second measurement optical path between the interferometer and the reference position of the measuring reflection means is set to l M2 , and the portion affected by the change in the refractive index of the gas in each of the first and second measurement optical paths. Let x be the displacement from the reference position (origin) of the object to be measured (first and second measuring reflection means) when the lengths of the optical paths are 1 M1 and 1 M2 , respectively. However, this displacement x is positive when the measured object moves to the right of the origin, and negative when the measured object moves to the left of the origin.

【0018】 ここで、第1干渉装置の第1のレシーバー16からの出力XA には、気体に露 出している参照光路の長さ(lR1)の分だけ気体の屈折率の変化の影響を受けた 情報と、気体に露出している計測光路の光学的長さ(lM1+x)の分だけ気体の 屈折率の変化の影響を受けた情報とを含んでいる。 一方、第2干渉装置の第2のレシーバー26からの出力XB には、気体に露出 している参照光路の長さ(lR2)の分だけ気体の屈折率の変化の影響を受けた情 報と、気体に露出している計測光路の光学的長さ(lM2+x)の分だけ気体の屈 折率の変化の影響を受けた情報とを含んでいる。Here, the output X A from the first receiver 16 of the first interference device is affected by the change in the refractive index of the gas by the length (l R1 ) of the reference optical path exposed to the gas. The received information and the information affected by the change in the refractive index of the gas by the optical length (l M1 + x) of the measurement optical path exposed to the gas are included. On the other hand, the output X B from the second receiver 26 of the second interferometer is affected by the change in the refractive index of the gas by the length (l R2 ) of the reference optical path exposed to the gas. And the information affected by the change in the refractive index of the gas by the optical length (l M2 + x) of the measurement optical path exposed to the gas.

【0019】 従って、この時、以下に示す(1)式及び(2)式の関係が成立する。Therefore, at this time, the relationships of the following expressions (1) and (2) are established.

【0020】[0020]

【数1】 [Equation 1]

【0021】[0021]

【数2】 [Equation 2]

【0022】 (1)式及び(2)式より以下の(3)式が導出される。The following expression (3) is derived from the expressions (1) and (2).

【0023】[0023]

【数3】 [Equation 3]

【0024】 そこで、各干渉計装置による量子化誤差により測定結果に加えられる誤差量を Δxとすると、上記(3)式より、以下の(4)式の如くなる。Therefore, assuming that the error amount added to the measurement result due to the quantization error by each interferometer device is Δx, the following expression (4) is obtained from the above expression (3).

【0025】[0025]

【数4】 [Equation 4]

【0026】 そして、上記(4)式を変形すると、以下の(5)式が得られる。Then, by modifying the above equation (4), the following equation (5) is obtained.

【0027】[0027]

【数5】 [Equation 5]

【0028】 ここで、(1)式、(2)式及び(5)式の関係の関係より、以下の(6)式 が導出される。Here, the following expression (6) is derived from the relationship among the expressions (1), (2), and (5).

【0029】[0029]

【数6】 [Equation 6]

【0030】 ここで、n+Δn≒1、(lM1−lR1)−(lM2−lR2)=αとすると、上記 (6)式は、最終的に以下の(7)式の如くなる。Here, assuming that n + Δn≈1 and (l M1 −l R1 ) − (l M2 −l R2 ) = α, the above equation (6) finally becomes the following equation (7).

【0031】[0031]

【数7】 [Equation 7]

【0032】 そこで、上式(7)に基づいて量子化誤差量Δxの最大値ΔxMAX について検 討する。今、α>0であるものとし、第1及び第2干渉計装置の量子化誤差(δ A ,δB )の最大値と最小値をそれぞれe,−e、各干渉計装置の量子化誤差が 、−e≦δA ≦e,−e≦δB ≦eの範囲を取り得る時、上記(7)式による量 子化誤差量の最大値|ΔxMAX |は以下の(i)〜(iii)の3通りに場合分け できる。(i)lR1−lM1≦x≦lR2−lM2の場合 この場合には、lM1−lR1+x≧0,lM2−lR2+x≦0となり、量子化誤差 量の最大値|ΔxMAX |は、上記(7)式より、次式(8)の如くなる。Therefore, the maximum value Δx of the quantization error amount Δx is calculated based on the above equation (7).MAXExamine. Now, assuming that α> 0, the quantization error of the first and second interferometer devices (δ A , ΔB), The maximum value and the minimum value of e are respectively −e, and the quantization error of each interferometer device is −e ≦ δA≤e, -e≤δBWhen the range of ≦ e can be taken, the maximum value of the quantization error amount | Δx according to the above equation (7)MAX| Can be classified into the following three cases (i) to (iii).(I) In the case of l R1 −l M1 ≦ x ≦ l R2 −l M2  In this case, lM1-LR1+ X ≧ 0, lM2-LR2+ X ≦ 0, and the maximum value of the quantization error amount | ΔxMAX| Is given by the following equation (8) from the above equation (7).

【0033】[0033]

【数8】 [Equation 8]

【0034】(ii)x>lR2−lM2の場合 この場合には、lM1−lR1+x>0,lM2−lR2+x>0となり、量子化誤差 量の最大値|ΔxMAX |は、上記(7)式より、次式(9)の如くなる。 (Ii) In the case of x> l R2 −l M2 In this case, l M1 −l R1 + x> 0, l M2 −l R2 + x> 0, and the maximum value of the quantization error amount | Δx MAX | Is expressed by the following expression (9) from the above expression (7).

【0035】[0035]

【数9】 [Equation 9]

【0036】(iii)x<lR1−lM1の場合 この場合には、lM1−lR1+x<0,lM2−lR2+x<0となり、量子化誤差 量の最大値|ΔxMAX |は、上記(7)式より、次式(10)の如くなる。 (Iii) In the case of x <l R1 −l M1 In this case, l M1 −l R1 + x <0, l M2 −l R2 + x <0, and the maximum value of the quantization error amount | Δx MAX | Is expressed by the following expression (10) from the above expression (7).

【0037】[0037]

【数10】 [Equation 10]

【0038】 そこで、上記(8)式〜(10)式を用いて、図4に示した干渉計装置全体と して高精度を保証するための計測用の反射部材(14,24)の最適な移動範囲 xについて検討する。 空気等の気体の揺らぎ等による気体の屈折率変化の影響を補正しつつ、干渉計 装置として高精度を保証するためには、現実的に、干渉計装置の計測出力に加わ る量子化誤差の最大値(|ΔxMAX |)を4e以下に抑えることが好ましい。従 って、以下において、干渉計装置の計測出力に加わる量子化誤差eを4倍〜1倍 以下にそれぞれ抑えた場合における計測用の反射部材(14,24)の最適な移 動範囲xについて説明する。(I)量子化誤差の最大値|ΔxMAX |を4e以下に抑えた場合 この場合における計測用の反射部材(14,24)の最適な移動範囲x(但し 、x≧0)は、(8)式〜(10)式より、以下の(11)式の如くなる。Therefore, by using the above formulas (8) to (10), it is possible to optimize the reflection member (14, 24) for measurement in order to ensure high accuracy for the entire interferometer device shown in FIG. Examine the range of movement x. In order to guarantee high accuracy as an interferometer while compensating for the effect of changes in the refractive index of gas due to fluctuations of gas such as air, the quantization error added to the measurement output of the interferometer is realistic. It is preferable to suppress the maximum value (| Δx MAX |) to 4e or less. Therefore, in the following, regarding the optimum movement range x of the reflection member (14, 24) for measurement when the quantization error e added to the measurement output of the interferometer device is suppressed to 4 times to 1 time or less, respectively. explain. (I) When the maximum value of the quantization error | Δx MAX | is suppressed to 4e or less In this case, the optimum moving range x (where x ≧ 0) of the measuring reflection member (14, 24) is (8 From equations (10) to (10), the following equation (11) is obtained.

【0039】[0039]

【数11】 [Equation 11]

【0040】 一例として、図4(a)に示した第1干渉計装置と図4(b)に示した第2干 渉計装置との量子化誤差e(又は分解能)をそれぞれ0.5nmとし、lR1=1.0m、 lR2=1.5m、lM1=lM2=0.5mとした場合及びlR1=1.0m、lR2=1.5m、lM1= 0.3m、lM2=0.5mとした場合について、干渉計装置の計測出力に加わる量子化誤 差の最大値(|ΔxMAX |)を4e以下に抑えられる計測用の反射部材(14, 24)の移動範囲xについて見る。As an example, the quantization error e (or resolution) between the first interferometer device shown in FIG. 4A and the second interferometer device shown in FIG. 4B is set to 0.5 nm. , L R1 = 1.0 m, l R2 = 1.5 m, l M1 = l M2 = 0.5 m, and l R1 = 1.0 m, l R2 = 1.5 m, l M1 = 0.3 m, l M2 = 0.5 m Regarding the case, the moving range x of the reflection member (14, 24) for measurement in which the maximum value of the quantization error (| Δx MAX |) added to the measurement output of the interferometer device can be suppressed to 4e or less will be examined.

【0041】 lR1=1.0m、lR2=1.5m、lM1=lM2=0.5mとした場合には、上記(11)式 より計測用の反射部材(14,24)の移動範囲xは-0.25 〜1.75m となり、干 渉計装置全体としては2.0nm (=4e)の精度が保証されながら、広い計測範囲 を確保できることが理解できる。また、lR1=1.0m、lR2=1.5m、lM1=0.3m、 lM2=0.5mとした場合には、上記(11)式より計測用の反射部材(14,24 )の移動範囲xは0.25m 〜1.45m となり、干渉計装置全体としては2.0nm (=4 e)の精度が保証されながら、比較的広い計測範囲を確保できることが理解でき る。(II)量子化誤差の最大値|ΔxMAX |を3e以下に抑えた場合 この場合における計測用の反射部材(14,24)の最適な移動範囲x(但し 、x≧0)は、(8)式〜(10)式より、以下の(12)式の如くなる。When l R1 = 1.0 m, l R2 = 1.5 m, and l M1 = l M2 = 0.5 m, the moving range x of the reflecting member (14, 24) for measurement is calculated from the above formula (11). It becomes -0.25 to 1.75m, and it can be understood that a wide measuring range can be secured while the accuracy of 2.0nm (= 4e) is guaranteed for the whole interferometer. Further, when l R1 = 1.0 m, l R2 = 1.5 m, l M1 = 0.3 m, and l M2 = 0.5 m, the moving range of the reflecting member (14, 24) for measurement is calculated from the equation (11). Since x is 0.25 m to 1.45 m, it can be understood that a relatively wide measurement range can be secured while the accuracy of 2.0 nm (= 4 e) is guaranteed for the interferometer device as a whole. (II) When the maximum value of the quantization error | Δx MAX | is suppressed to 3e or less In this case, the optimum moving range x (where x ≧ 0) of the measuring reflection member (14, 24) is (8 From formulas (10) to (10), the following formula (12) is obtained.

【0042】[0042]

【数12】 [Equation 12]

【0043】 一例として、図4(a)に示した第1干渉計装置と図4(b)に示した第2干 渉計装置との量子化誤差e(又は分解能)をそれぞれ0.5nmとし、lR1=1.0m、 lR2=1.5m、lM1=lM2=1.25m とした場合及びlR1=1.0m、lR2=1.5m、lM1 =2.0m、lM2=1.5mとした場合について、干渉計装置の計測出力に加わる量子化 誤差の最大値(|ΔxMAX |)を3e以下に抑えられる計測用の反射部材(14 ,24)の移動範囲xについて見る。As an example, the quantization error e (or resolution) between the first interferometer device shown in FIG. 4A and the second interferometer device shown in FIG. 4B is set to 0.5 nm. , L R1 = 1.0 m, l R2 = 1.5 m, l M1 = l M2 = 1.25 m, and l R1 = 1.0 m, l R2 = 1.5 m, l M1 = 2.0 m, l M2 = 1.5 m Regarding the case, the moving range x of the reflection member (14, 24) for measurement in which the maximum value (| Δx MAX |) of the quantization error added to the measurement output of the interferometer device can be suppressed to 3e or less will be examined.

【0044】 lR1=1.0m、lR2=1.5m、lM1=lM2=1.25m とした場合には、上記(12) 式より計測用の反射部材(14,24)の移動範囲xは-0.75m〜0.75m となり、 干渉計装置全体としては1.5nm (=3e)の精度が保証されながら、広い計測範 囲を確保できることが理解できる。また、lR1=1.0m、lR2=1.5m、lM1=2.0m 、lM2=1.5mとした場合には、上記(12)式より計測用の反射部材(14,2 4)の移動範囲xは-2.0m 〜1.0mとなり、干渉計装置全体としては1.5nm (=3 e)の精度が保証されながら、比較的広い計測範囲を確保できることが理解でき る。(III)量子化誤差の最大値|ΔxMAX |を2e以下に抑えた場合 この場合における計測用の反射部材(14,24)の最適な移動範囲x(但し 、x≧0)は、(8)式〜(10)式より、以下の(13)式の如くなる。When l R1 = 1.0 m, l R2 = 1.5 m and l M1 = l M2 = 1.25 m, the moving range x of the reflecting member (14, 24) for measurement is calculated from the above formula (12). It becomes -0.75m to 0.75m, and it can be understood that a wide measurement range can be secured while the accuracy of 1.5nm (= 3e) is guaranteed for the interferometer device as a whole. When l R1 = 1.0 m, l R2 = 1.5 m, l M1 = 2.0 m, and l M2 = 1.5 m, the movement of the reflecting member (14, 24) for measurement is calculated from the above formula (12). The range x is -2.0 m to 1.0 m, and it can be understood that a relatively wide measurement range can be secured while the accuracy of the entire interferometer device is guaranteed to be 1.5 nm (= 3 e). (III) When the maximum value of the quantization error | Δx MAX | is suppressed to 2e or less In this case, the optimum moving range x (where x ≧ 0) of the measuring reflection member (14, 24) is (8 From equations (10) to (10), the following equation (13) is obtained.

【0045】[0045]

【数13】 [Equation 13]

【0046】 一例として、図4(a)に示した第1干渉計装置と図4(b)に示した第2干 渉計装置との量子化誤差e(又は分解能)をそれぞれ0.5nmとし、lR1=1.0m、 lR2=1.5m、lM1=lM2=2.0mとした場合及びlR1=1.0m、lR2=1.5m、lM1= 1.75m 、lM2=2.0mとした場合について、干渉計装置の計測出力に加わる量子化 誤差の最大値(|ΔxMAX |)を2e以下に抑えられる計測用の反射部材(14 ,24)の移動範囲xについて見る。As an example, the quantization error e (or resolution) between the first interferometer device shown in FIG. 4A and the second interferometer device shown in FIG. 4B is set to 0.5 nm. , L R1 = 1.0 m, l R2 = 1.5 m, l M1 = l M2 = 2.0 m, and l R1 = 1.0 m, l R2 = 1.5 m, l M1 = 1.75 m, l M2 = 2.0 m Regarding the case, the moving range x of the reflecting member (14, 24) for measurement in which the maximum value of the quantization error (| Δx MAX |) added to the measurement output of the interferometer device can be suppressed to 2e or less will be examined.

【0047】 lR1=1.0m、lR2=1.5m、lM1=lM2=2.0mとした場合には、上記(13)式 より計測用の反射部材(14,24)の移動範囲xは-1.25m〜-0.25mとなり、干 渉計装置全体としては1.0nm (=2e)の精度が保証されながら、広い計測範囲 を確保できることが理解できる。また、lR1=1.0m、lR2=1.5m、lM1=1.75m 、lM2=2.0mとした場合には、上記(13)式より計測用の反射部材(14,2 4)の移動範囲xは-0.875m 〜-0.375m となり、干渉計装置全体としては1.0nm (=2e)の精度が保証されながら、比較的広い計測範囲を確保できることが理 解できる。(IV)量子化誤差の最大値ΔxMAX をe以下に抑えた場合 この場合における計測用の反射部材(14,24)の最適な移動範囲x(但し 、x≧0)は、(8)式〜(10)式より、次式(14)の如くなる。When l R1 = 1.0 m, l R2 = 1.5 m, and l M1 = l M2 = 2.0 m, the moving range x of the reflection member (14, 24) for measurement is calculated from the above equation (13). It becomes -1.25m to -0.25m, and it can be understood that a wide measuring range can be secured while the accuracy of 1.0nm (= 2e) is guaranteed for the whole interferometer. When l R1 = 1.0 m, l R2 = 1.5 m, l M1 = 1.75 m, and l M2 = 2.0 m, the movement of the reflecting member (14, 24) for measurement is calculated from the above equation (13). The range x is -0.875 m to -0.375 m, and it can be understood that a relatively wide measurement range can be secured while the accuracy of 1.0 nm (= 2e) is guaranteed for the interferometer device as a whole. (IV) When the maximum value Δx MAX of the quantization error is suppressed to e or less, the optimum moving range x (where x ≧ 0) of the reflecting member (14, 24) for measurement in this case is expressed by the formula (8). From the equations (10) to (10), the following equation (14) is obtained.

【0048】[0048]

【数14】 [Equation 14]

【0049】 一例として、図4(a)に示した第1干渉計装置と図4(b)に示した第2干 渉計装置との量子化誤差e(又は分解能)をそれぞれ0.5nmとし、lR1=0.5m、 lR2=1.5m、lM1=lM2=1.0mとした場合及びlR1=1.0m、lR2=2.0m、lM1= 2.0m、lM2=1.5mとした場合について、干渉計装置の計測出力に加わる量子化誤 差の最大値(|ΔxMAX |)をe以下に抑えられる計測用の反射部材(14,2 4)の移動範囲xについて見る。As an example, the quantization error e (or resolution) between the first interferometer device shown in FIG. 4A and the second interferometer device shown in FIG. 4B is set to 0.5 nm. , L R1 = 0.5 m, l R2 = 1.5 m, l M1 = l M2 = 1.0 m, and l R1 = 1.0 m, l R2 = 2.0 m, l M1 = 2.0 m, l M2 = 1.5 m Regarding the case, let us look at the moving range x of the reflection member (14, 24) for measurement in which the maximum value of the quantization error (| Δx MAX |) added to the measurement output of the interferometer device can be suppressed to e or less.

【0050】 lR1=0.5m、lR2=1.5m、lM1=lM2=1.0mとした場合には、上記(14)式 より計測用の反射部材(14,24)の移動範囲xは-0.5m 〜0.5mとなり、また 、lR1=1.0m、lR2=2.0m、lM1=2.0m、lM2=1.5mとした場合には、上記(1 4)式より計測用の反射部材(14,24)の移動範囲xは-1.0m 〜0.5mとなり 、干渉計装置全体としては0.5nm (=e)の精度が保証されながら、広い計測範 囲を確保できることが理解できる。When l R1 = 0.5 m, l R2 = 1.5 m, and l M1 = l M2 = 1.0 m, the moving range x of the reflection member (14, 24) for measurement is calculated from the above equation (14). -0.5m to 0.5m, and when l R1 = 1.0m, l R2 = 2.0m, l M1 = 2.0m, l M2 = 1.5m, the reflection for measurement from the above formula (14) The movement range x of the members (14, 24) is -1.0 m to 0.5 m, and it can be understood that a wide measurement range can be secured while the accuracy of 0.5 nm (= e) is guaranteed for the entire interferometer device.

【0051】 以上の如く、本考案によれば、環境変化に伴う気体の屈折率が変化しても高精 度のもとで安定した計測が実現できることが理解できる。しかも、本考案では、 被計測物体(第1及び第2計測用反射手段)を(14)式を満足する範囲におい て移動させれば、原理的に、2つの干渉計の量子化誤差e(又は分解能)を1倍 以下に抑えられる事が可能となり、極めて安定した高精度な計測が達成できる。 なお、2つの干渉計の量子化誤差e(又は分解能)の1倍以下の精度が要求され ない場合には、被計測物体(第1及び第2計測用反射手段)は、上記(14)式 を満足する範囲もしくはその1部を少なくとも移動可能に設けられれば良い。As described above, according to the present invention, it can be understood that stable measurement can be realized with high accuracy even if the refractive index of gas changes due to environmental changes. Moreover, in the present invention, if the object to be measured (the first and second measuring reflection means) is moved within the range satisfying the expression (14), the quantization error e ( (Or resolution) can be suppressed to 1 time or less, and extremely stable and highly accurate measurement can be achieved. In addition, when the accuracy of 1 times or less of the quantization error e (or resolution) of the two interferometers is not required, the object to be measured (the first and second measuring reflection means) has the above formula (14). It suffices if at least part of the range satisfying the above condition is provided so as to be movable.

【0052】 以上においては、本考案の原理について述べたが、本考案の理解をさらに深め るために別の見方による原理の解析を図5を参照しながら以下において述べる。 但し、この解析は、第1及び第2干渉計の参照光路長が互いに異なり、かつ第1 及び第2干渉計の参照光路長が互いに等しいものとした時のものである。 まず、lM1=lM2=0とし、lR1=a、lR2=b、第1干渉計から計測用の反 射部材14(または第2干渉計から計測用の反射部材24)までの光学的光路長 (または距離)をxとした時を考える。Although the principle of the present invention has been described above, in order to further deepen the understanding of the present invention, an analysis of the principle from another viewpoint will be described below with reference to FIG. However, this analysis is performed when the reference optical path lengths of the first and second interferometers are different from each other and the reference optical path lengths of the first and second interferometers are equal to each other. First, with l M1 = l M2 = 0, l R1 = a, l R2 = b, and the optics from the first interferometer to the measurement reflection member 14 (or from the second interferometer to the measurement reflection member 24). Consider the case where the target optical path length (or distance) is x.

【0053】 これを換言すれば、第1干渉装置の第1のレシーバー16からの出力をXA 、 第2干渉装置の第2のレシーバー26からの出力をXB とし、測定開始時(リセ ット時)等の初期の基準となる気体の屈折率をn、第1干渉計の参照光路におい て気体の屈折率の変化の影響を受ける部分での光学的光路の長さ(第1干渉計と 第1参照用反射手段との間の第1参照光路の光学的光路長)をa、第2干渉計の 参照光路において気体の屈折率の変化の影響を受ける部分での光学的光路の長さ (第2干渉計と第2参照用反射手段との間の第2参照光路の光学的光路長)をb 、第1干渉計(又は第2干渉計)の計測光路において気体の屈折率の変化の影響 を受ける部分での光路の長さ(第1干渉計と計測用反射手段との間の第1計測光 路の光学的光路長、又は第2干渉計と計測用反射手段との間の第2計測光路の光 学的光路長)をxとする。In other words, the output from the first receiver 16 of the first interfering apparatus is X A , the output from the second receiver 26 of the second interfering apparatus is X B, and at the start of measurement (reset N is the refractive index of the gas that serves as the initial reference, and the length of the optical optical path in the portion affected by the change in the refractive index of the gas in the reference optical path of the first interferometer (the first interferometer). The optical path length of the first reference light path between the first reference reflection means and the first reference reflection means), and the length of the optical light path in the reference light path of the second interferometer at the portion affected by the change in the refractive index of the gas. (The optical optical path length of the second reference optical path between the second interferometer and the second reference reflection means) is b, and the refractive index of the gas in the measurement optical path of the first interferometer (or the second interferometer) is The length of the optical path at the portion affected by the change (the first measuring optical path between the first interferometer and the measuring reflection means). Optical light path length, or optical histological optical path length of the second measuring optical path between the second interferometer and measurement reflection means) is defined as x.

【0054】 ここで、第1干渉装置の第1のレシーバー16からの出力XA には、気体に露 出している参照光路の長さaの分だけ気体の屈折率の変化の影響を受けた情報と 、気体に露出している計測光路の光学的長さxの分だけ気体の屈折率の変化の影 響を受けた情報とを含んでいる。 一方、第2干渉装置の第2のレシーバー26からの出力XB には、気体に露出 している参照光路の長さbの分だけ気体の屈折率の変化の影響を受けた情報と、 気体に露出している計測光路の光学的長さxの分だけ気体の屈折率の変化の影響 を受けた情報とを含んでいる。Here, the output X A from the first receiver 16 of the first interference device is affected by the change in the refractive index of the gas by the length a of the reference optical path exposed to the gas. The information and the information affected by the change in the refractive index of the gas by the optical length x of the measurement optical path exposed to the gas are included. On the other hand, in the output X B from the second receiver 26 of the second interference device, information affected by the change in the refractive index of the gas by the length b of the reference optical path exposed to the gas, and the gas It includes the information affected by the change in the refractive index of the gas by the optical length x of the measurement optical path exposed at.

【0055】 従って、参照光と計測光とが気体の屈折率の変化を受ける影響を等しくなるよ うな比率で各レシーバー(16,26)からの出力(XA ,XB )を平均化する ことが望ましい。この時、以下に示す(15)式及び(16)式の関係が成立し ている。Therefore, the outputs (X A , X B ) from the respective receivers (16, 26) are averaged at such a ratio that the reference light and the measurement light have the same influence of the change in the refractive index of the gas. Is desirable. At this time, the relationships of the expressions (15) and (16) shown below are established.

【0056】[0056]

【数15】 [Equation 15]

【0057】[0057]

【数16】 [Equation 16]

【0058】 そして、(15)式及び(16)式より次の(17)式が得られる。Then, the following expression (17) is obtained from the expressions (15) and (16).

【0059】[0059]

【数17】 [Equation 17]

【0060】 よって、各レシーバー(16,26)からの出力(XA ,XB )を演算手段に おいて、上式(17)の演算を行うことにより気体の屈折率の変化の影響を除去 することができる。 次に、本考案の干渉計による量子化誤差について検討する。今、第1干渉計装 置の量子化誤差(又は分解能)をδA 、第2干渉計装置の量子化誤差(又は分解 能)をδB とすると、図5(a)に示す第1干渉計装置からの計測出力は、本来 の計測信号XA に量子化誤差δA が加えられたものとなり、図5(b)に示す第 2干渉計装置からの計測出力は、本来の計測信号XB に量子化誤差δB が加えら れたものとなる。そこで、各干渉計装置の量子化誤差により計測結果に加えられ る誤差量をΔxとすると、上式(17)は次式(18)の如くなる。Therefore, the output (X A , X B ) from each receiver (16, 26) is calculated by the calculation means, and the calculation of the above formula (17) is performed to remove the influence of the change in the refractive index of the gas. can do. Next, the quantization error by the interferometer of the present invention will be examined. Assuming that the quantization error (or resolution) of the first interferometer device is δ A and the quantization error (or resolution capability) of the second interferometer device is δ B , the first interference shown in FIG. The measurement output from the measuring device is the original measurement signal X A plus the quantization error δ A, and the measurement output from the second interferometer device shown in FIG. 5B is the original measurement signal X A. The quantization error δ B is added to B. Therefore, assuming that the error amount added to the measurement result due to the quantization error of each interferometer device is Δx, the above equation (17) becomes the following equation (18).

【0061】[0061]

【数18】 [Equation 18]

【0062】 そして、上式(18)を変形すると、次式(19)の如くなる。When the above equation (18) is modified, the following equation (19) is obtained.

【0063】[0063]

【数19】 [Formula 19]

【0064】 今、図5に示す第1及び第2干渉計装置の各参照光路と各計測光路とが空気中 を通過し、各干渉計装置の参照光路長と計測光路長との差の光路長には、空気の 揺らぎ等により空気の屈折率がΔnだけ変化するものとすると、第1及び第2干 渉計装置による出力はそれぞれXA =(x−a)Δn,XB =(x−b)Δnと なるため、この関係及び上式(19)より、次式(20)が導出される。Now, each reference optical path and each measurement optical path of the first and second interferometer devices shown in FIG. 5 pass through the air, and the optical path of the difference between the reference optical path length and the measurement optical path length of each interferometer device. In the long term, assuming that the refractive index of air changes by Δn due to fluctuation of air, the outputs from the first and second interferometers are X A = (x−a) Δn and X B = (x Since −b) Δn, the following equation (20) is derived from this relationship and the above equation (19).

【0065】[0065]

【数20】 [Equation 20]

【0066】 ここで、n+Δn≒1とすると、上式(20)は、最終的に次式(21)の如 くなる。Here, assuming that n + Δn≈1, the above equation (20) finally becomes like the following equation (21).

【0067】[0067]

【数21】 [Equation 21]

【0068】 そこで、上式(21)に基づいて量子化誤差量Δxの最大値ΔxMAX について 検討する。今、第1及び第2干渉計装置の量子化誤差(δA ,δB )の最大値と 最小値をそれぞれe,−eとし、各干渉計装置の量子化誤差が、−e≦δA ≦e ,−e≦δB ≦eの範囲を取り得る時、上記(21)式による量子化誤差量の最 大値|ΔxMAX |は以下の(i)〜(iii)の3通りに場合分けできる。(i)a≦x≦bの場合(但し、a<b) a≦x≦bの場合には、x−a≧0,x−b≦0となり、量子化誤差量の最大 値|ΔxMAX |は、上記(21)式より、次式(22)の如くなる。Therefore, the maximum value Δx MAX of the quantization error amount Δx will be examined based on the above equation (21). Now, let the maximum value and the minimum value of the quantization error (δ A , δ B ) of the first and second interferometer devices be respectively e and −e, and the quantization error of each interferometer device is −e ≦ δ A When the range of ≦ e, −e ≦ δ B ≦ e can be taken, the maximum value of the quantization error amount | Δx MAX | by the above equation (21) is one of the following three cases (i) to (iii). Can be divided. (I) When a ≦ x ≦ b (however, a <b) When a ≦ x ≦ b, x−a ≧ 0 and x−b ≦ 0, and the maximum value of the quantization error amount | Δx MAX | Is given by the following equation (22) from the above equation (21).

【0069】[0069]

【数22】 [Equation 22]

【0070】(ii)x>bの場合(但し、a<b) x>bの場合には、x−a>0,x−b>0となり、量子化誤差量の最大値| ΔxMAX |は、上記(21)式より、次式(23)の如くなる。 (Ii) When x> b (however, a <b) When x> b, x−a> 0 and x−b> 0, and the maximum value of the quantization error amount | Δx MAX | Is given by the following equation (23) from the above equation (21).

【0071】[0071]

【数23】 [Equation 23]

【0072】(iii)x<aの場合(但し、a<b) x<aの場合には、x−a<0,x−b<0となり、量子化誤差量の最大値| ΔxMAX |は、上記(21)式より、次式(24)の如くなる。 (Iii) When x <a (however, a <b) When x <a, x−a <0 and x−b <0, and the maximum value of the quantization error amount | Δx MAX | Is given by the following equation (24) from the above equation (21).

【0073】[0073]

【数24】 [Equation 24]

【0074】 そこで、上記(22)式〜(24)式を用いて、図5に示した干渉計装置全体 として高精度を保証するための計測用の反射部材(14,24)の最適な移動範 囲xについて検討する。 空気等の気体の揺らぎ等による気体の屈折率変化の影響を補正しつつ、干渉計 装置として高精度を保証するためには、現実的に、干渉計装置の計測出力に加わ る量子化誤差の最大値(|ΔxMAX |)を4e以下に抑えることが好ましい。従 って、以下において、干渉計装置の計測出力に加わる量子化誤差eを4倍〜1倍 以下にそれぞれ抑えた場合における計測用の反射部材(14,24)の最適な移 動範囲xについて説明する。(I)量子化誤差の最大値|ΔxMAX |を4e以下に抑えた場合 この場合における計測用の反射部材(14,24)の最適な移動範囲x(但し 、x≧0)は、(22)式〜(24)式より、以下の(25)式又は(26)の 如くなる。Therefore, by using the above equations (22) to (24), the optimal movement of the reflecting member (14, 24) for measurement for ensuring high accuracy of the entire interferometer device shown in FIG. Consider range x. In order to guarantee high accuracy as an interferometer while compensating for the effect of changes in the refractive index of gas due to fluctuations of gas such as air, the quantization error added to the measurement output of the interferometer is realistic. It is preferable to suppress the maximum value (| Δx MAX |) to 4e or less. Therefore, in the following, regarding the optimum movement range x of the reflection member (14, 24) for measurement when the quantization error e added to the measurement output of the interferometer device is suppressed to 4 times to 1 time or less, respectively. explain. (I) When the maximum value of the quantization error | Δx MAX | is suppressed to 4e or less In this case, the optimum moving range x (where x ≧ 0) of the measuring reflection member (14, 24) is (22 From equations (4) to (24), the following equation (25) or (26) is obtained.

【0075】[0075]

【数25】 [Equation 25]

【0076】[0076]

【数26】 [Equation 26]

【0077】 なお、この(25)式及び(26)式の関係について、上記(11)式に対応 させて示せば、(11)式中の第1干渉計の計測光路長lM1と第2干渉計の計測 光路長lM2とを互いに等しくした場合(lM1=lM2=lM とした場合)と等価で ある。 一例として、図5(a)に示した第1干渉計装置と図5(b)に示した第2干 渉計装置との量子化誤差e(又は分解能)をそれぞれ0.5nmとし、a=0.5m、b =1.0mとした場合及びa=0.7m、b=1.0mとした場合について、干渉計装置の計 測出力に加わる量子化誤差の最大値(|ΔxMAX |)を4e以下に抑えられる計 測用の反射部材(14,24)の移動範囲xについて見る。Regarding the relationship between the equations (25) and (26), if it is shown in correspondence with the equation (11), the measurement optical path length l M1 of the first interferometer in the equation (11) and the second This is equivalent to the case where the measurement optical path length l M2 of the interferometer is equal to each other (when l M1 = l M2 = l M ). As an example, the quantization error e (or resolution) between the first interferometer device shown in FIG. 5 (a) and the second interferometer device shown in FIG. 5 (b) is 0.5 nm, and a = When 0.5m, b = 1.0m and a = 0.7m, b = 1.0m, the maximum value of the quantization error (| Δx MAX |) added to the measurement output of the interferometer device should be 4e or less. Look at the movement range x of the reflection member (14, 24) for measurement that can be suppressed.

【0078】 a=0.5m、b=1.0mとした場合には、上記(25)式より計測用の反射部材( 14,24)の移動範囲xは0m〜1.75m となり、干渉計装置全体としては2.0nm (=4e)の精度が保証されながら、広い計測範囲を確保できることが理解でき る。また、a=0.7m、b=1.0mとした場合には、上記(26)式より計測用の反 射部材(14,24)の移動範囲xは0.25m 〜1.45m となり、干渉計装置全体と しては2.0nm (=4e)の精度が保証されながら、比較的広い計測範囲を確保で きることが理解できる。(II)量子化誤差の最大値|ΔxMAX |を3e以下に抑えた場合 この場合における計測用の反射部材(14,24)の最適な移動範囲x(但し 、x≧0)は、(22)式〜(24)式より、以下の(27)式又は(28)式 の如くなる。When a = 0.5 m and b = 1.0 m, the moving range x of the reflecting member (14, 24) for measurement is 0 m to 1.75 m from the above formula (25), and the interferometer apparatus as a whole is It can be understood that can secure a wide measurement range while guaranteeing an accuracy of 2.0 nm (= 4e). When a = 0.7 m and b = 1.0 m, the moving range x of the reflecting member (14, 24) for measurement is 0.25 m to 1.45 m from the above formula (26), and the whole interferometer device is Therefore, it can be understood that a relatively wide measurement range can be secured while guaranteeing the accuracy of 2.0 nm (= 4e). (II) When the maximum value of the quantization error | Δx MAX | is suppressed to 3e or less In this case, the optimum moving range x (where x ≧ 0) of the measuring reflection member (14, 24) is (22 From equations (4) to (24), the following equation (27) or equation (28) is obtained.

【0079】[0079]

【数27】 [Equation 27]

【0080】[0080]

【数28】 [Equation 28]

【0081】 なお、この(27)式及び(28)式の関係について、上記(12)式に対応 させて示せば、(12)式中の第1干渉計の計測光路長lM1と第2干渉計の計測 光路長lM2とを互いに等しくした場合(lM1=lM2=lM とした場合)と等価で ある。 一例として、図5(a)に示した第1干渉計装置と図5(b)に示した第2干 渉計装置との量子化誤差e(又は分解能)をそれぞれ0.5nmとし、a=0.4m、b =1.0mとした場合及びa=0.6m、b=1.0mとした場合について、干渉計装置の計 測出力に加わる量子化誤差の最大値(|ΔxMAX |)を3e以下に抑えられる計 測用の反射部材(14,24)の移動範囲xについて見る。Regarding the relationship between the equations (27) and (28), the measurement optical path length l M1 of the first interferometer in the equation (12) and the second equation This is equivalent to the case where the measurement optical path length l M2 of the interferometer is equal to each other (when l M1 = l M2 = l M ). As an example, the quantization error e (or resolution) between the first interferometer device shown in FIG. 5 (a) and the second interferometer device shown in FIG. 5 (b) is 0.5 nm, and a = 0.4 m, if the b = 1.0 m and a = 0.6 m, the case of the b = 1.0 m, the maximum value of the quantization error applied to the total measurement output of the interferometer device (| Δx MAX |) to 3e below Look at the movement range x of the reflection member (14, 24) for measurement that can be suppressed.

【0082】 a=0.4m、b=1.0mとした場合には、上記(27)式より計測用の反射部材( 14,24)の移動範囲xは0m〜1.6mとなり、干渉計装置全体としては1.5nm ( =3e)の精度が保証されながら、広い計測範囲を確保できることが理解できる 。また、a=0.6m、b=1.0mとした場合には、上記(28)式より計測用の反射 部材(14,24)の移動範囲xは0.2m〜1.4mとなり、干渉計装置全体としては 1.5nm (=3e)の精度が保証されながら、比較的広い計測範囲を確保できるこ とが理解できる。(III)量子化誤差の最大値|ΔxMAX |を2e以下に抑えた場合 この場合における計測用の反射部材(14,24)の最適な移動範囲x(但し 、x≧0)は、(22)式〜(24)式より、以下の(29)式又は(30)式 の如くなる。When a = 0.4 m and b = 1.0 m, the moving range x of the reflecting member (14, 24) for measurement is 0 m to 1.6 m according to the above equation (27), and the interferometer apparatus as a whole. It can be understood that a wide measurement range can be secured while guaranteeing an accuracy of 1.5 nm (= 3e). Further, when a = 0.6 m and b = 1.0 m, the moving range x of the reflecting member (14, 24) for measurement is 0.2 m to 1.4 m from the above formula (28), and the interferometer device as a whole is It can be understood that a relatively wide measurement range can be secured while guaranteeing an accuracy of 1.5 nm (= 3e). (III) When the maximum value of the quantization error | Δx MAX | is suppressed to 2e or less In this case, the optimum moving range x (where x ≧ 0) of the measuring reflection member (14, 24) is (22 From equations (24) to (24), the following equation (29) or equation (30) is obtained.

【0083】[0083]

【数29】 [Equation 29]

【0084】[0084]

【数30】 [Equation 30]

【0085】 なお、この(29)式及び(30)式の関係について、上記(13)式に対応 させて示せば、(13)式中の第1干渉計の計測光路長lM1と第2干渉計の計測 光路長lM2とを互いに等しくした場合(lM1=lM2=lM とした場合)と等価で ある。 一例として、図5(a)に示した第1干渉計装置と図5(b)に示した第2干 渉計装置との量子化誤差e(又は分解能)をそれぞれ0.5nmとし、a=0.2m、b =1.0mとした場合及びa=0.5m、b=1.0mとした場合について、干渉計装置の計 測出力に加わる量子化誤差の最大値(|ΔxMAX |)を2e以下に抑えられる計 測用の反射部材(14,24)の移動範囲xについて見る。Regarding the relationship between the equations (29) and (30), if it is shown in correspondence with the equation (13), the measurement optical path length l M1 of the first interferometer in the equation (13) and the second This is equivalent to the case where the measurement optical path length l M2 of the interferometer is equal to each other (when l M1 = l M2 = l M ). As an example, the quantization error e (or resolution) between the first interferometer device shown in FIG. 5 (a) and the second interferometer device shown in FIG. 5 (b) is 0.5 nm, and a = The maximum value of the quantization error (| Δx MAX |) added to the measurement output of the interferometer device should be 2e or less when 0.2m, b = 1.0m and when a = 0.5m and b = 1.0m. Look at the movement range x of the reflection member (14, 24) for measurement that can be suppressed.

【0086】 a=0.2m、b=1.0mとした場合には、上記(29)式より計測用の反射部材( 14,24)の移動範囲xは0m〜1.4mとなり、干渉計装置全体としては1.0nm ( =2e)の精度が保証されながら、広い計測範囲を確保できることが理解できる 。また、a=0.5m、b=1.0mとした場合には、上記(30)式より計測用の反射 部材(14,24)の移動範囲xは0.25m 〜1.25m となり、干渉計装置全体とし ては1.0nm (=2e)の精度が保証されながら、比較的広い計測範囲を確保でき ることが理解できる。(IV)量子化誤差の最大値ΔxMAX をe以下に抑えた場合 この場合における計測用の反射部材(14,24)の最適な移動範囲x(但し 、x≧0)は、(22)式〜(24)式より、次式(31)の如くなる。When a = 0.2 m and b = 1.0 m, the moving range x of the reflection member (14, 24) for measurement is 0 m to 1.4 m from the above formula (29), and the interferometer device as a whole is It can be understood that a wide measurement range can be secured while the accuracy of 1.0 nm (= 2e) is guaranteed. Further, when a = 0.5 m and b = 1.0 m, the moving range x of the reflecting members (14, 24) for measurement is 0.25 m to 1.25 m from the above formula (30), and the whole interferometer device is It can be understood that a relatively wide measurement range can be secured while ensuring an accuracy of 1.0 nm (= 2e). (IV) When the maximum value Δx MAX of the quantization error is suppressed to e or less, the optimum moving range x (where x ≧ 0) of the reflecting member (14, 24) for measurement in this case is expressed by the formula (22). From the equations (24) to (24), the following equation (31) is obtained.

【0087】[0087]

【数31】 [Equation 31]

【0088】 なお、この(31)式の関係について、上記(14)式に対応させて示せば、 (14)式中の第1干渉計の計測光路長lM1と第2干渉計の計測光路長lM2とを 互いに等しくした場合(lM1=lM2=lM とした場合)と等価である。 一例として、図5(a)に示した第1干渉計装置と図5(b)に示した第2干 渉計装置との量子化誤差e(又は分解能)をそれぞれ0.5nmとし、a=0.5m、b =1.0mとするとき、上記(31)式より計測用の反射部材(14,24)の移動 範囲xは0.5m〜1.0mとなり、干渉計装置全体としては0.5nm (=e)の精度が保 証されながら、広い計測範囲を確保できることが理解できる。Regarding the relationship of the equation (31), the measurement optical path length l M1 of the first interferometer in the equation (14) and the measurement optical path of the second interferometer in the equation (14) can be shown. This is equivalent to the case where the lengths l M2 and l M2 are equal to each other (l M1 = l M2 = l M ). As an example, the quantization error e (or resolution) between the first interferometer device shown in FIG. 5 (a) and the second interferometer device shown in FIG. 5 (b) is 0.5 nm, and a = When 0.5 m and b = 1.0 m, the moving range x of the reflecting member (14, 24) for measurement is 0.5 m to 1.0 m according to the above formula (31), and the interferometer apparatus as a whole has 0.5 nm (= e It can be understood that a wide measurement range can be secured while the accuracy of) is guaranteed.

【0089】 以上の如く、本考案によれば、環境変化に伴う気体の屈折率が変化しても広い 計測範囲を確保しながら高精度のもとで安定した計測が実現できることが理解で きる。しかも、本考案では、原理的に、図5(a)に示した第1干渉計装置又は 図5(b)に示した第2干渉計装置の量子化誤差e(又は分解能)を1倍以下に 抑えられる広い計測範囲xを確保できるため、極めて安定した高精度な計測が達 成できる。As described above, according to the present invention, it can be understood that stable measurement can be realized with high accuracy while ensuring a wide measurement range even if the refractive index of gas changes due to environmental changes. Moreover, in the present invention, in principle, the quantization error e (or resolution) of the first interferometer device shown in FIG. 5A or the second interferometer device shown in FIG. Since a wide measurement range x that can be suppressed can be secured, extremely stable and highly accurate measurement can be achieved.

【0090】 なお、本考案による座標原点は、計測用の反射部材(14,24)の移動する 範囲であれば、原理的に何処にでも設定できることは言うまでもない。It is needless to say that the coordinate origin according to the present invention can be set in principle anywhere in the range where the reflection member (14, 24) for measurement moves.

【0091】[0091]

【実施例】【Example】

以下、本発明による第1実施例の干渉計の構成について図1を参照して説明す る。本例では第1干渉計と第2干渉計との計測光路が共用する複合型干渉計を用 いて、この共用する計測光路を1つの計測用反射手段(移動鏡3)を介して往復 させる構成としたものである。 The configuration of the interferometer of the first embodiment according to the present invention will be described below with reference to FIG. In this example, a compound interferometer in which the measurement optical paths of the first interferometer and the second interferometer are shared is used, and the shared measurement optical path is reciprocated via one measuring reflection means (moving mirror 3). It is what

【0092】 図1に示す第1実施例では、計測方向Xに移動可能に設けられた計測用反射手 段(移動鏡3)と、それぞれ所定の位置に固設された第1参照用反射手段(密閉 管3, 固定鏡6)と第2参照用反射手段(固定鏡6)と、コヒーレントな光束を 供給する光源手段1と、この光源手段1からの光束に基づいて,計測用反射手段 (移動鏡3)を介して計測方向Xに沿って往復する第1計測光路OPM と第1参 照用反射手段(密閉管3及び固定鏡6)を介して往復する第1参照光路OPR1と を形成し,第1計測光路OPM 及び第1参照光路OPR1を経由した各光束によっ て第1測定出力XA を生成する第1干渉計(プリズム部材2,1/4波長板(8a 1 ,8a2,8b1,8b2),1/2波長板9,偏向プリズム4,第1検出器7a)と、光源 手段1からの光束に基づいて,計測用反射手段(移動鏡3)を介して計測方向X に沿って往復して第1計測光路OPM と共用する第2計測光路と第2参照用反射 手段(固定鏡6)を介して往復する第2参照光路OPR2とを形成し,第2計測光 路(第1計測光路OPM )及び第2参照光路OPR2を経由した各光束によって第 2測定出力XB を生成する第2干渉計(プリズム部材2,1/4波長板(8a1,8a 2 ,8b3,8b4),1/2波長板9,偏向プリズム4,第2検出器7b)と、第1及び 第2測定出力(XA ,XB )に基づいて所定の演算を行う演算処理部10とを配 置し、その第1参照反射手段(密閉管3, 固定鏡6)と第2参照反射手段(固定 鏡6)とを、計測方向に沿って光学的に所定の距離だけ隔てて配置し、各光路( OPM ,OPR1,OPR2)を平行かつ近接する構成としたものである。In the first embodiment shown in FIG. 1, the measuring reflection means (movable mirror 3) provided so as to be movable in the measuring direction X, and the first reference reflecting means fixed at respective predetermined positions. (Sealed tube 3, fixed mirror 6), second reference reflection means (fixed mirror 6), light source means 1 for supplying a coherent light beam, and reflection means for measurement based on the light beam from this light source means 1 ( First measurement optical path OP reciprocating along the measurement direction X via the movable mirror 3)MAnd the first reference optical path OP that reciprocates via the first referential reflecting means (the closed tube 3 and the fixed mirror 6).R1And form the first measurement optical path OPMAnd the first reference optical path OPR11st measurement output X by each luminous flux which passed throughAFor generating the first interferometer (prism member 2, quarter wave plate (8a 1 , 8a2, 8b1, 8b2), The half-wave plate 9, the deflection prism 4, the first detector 7a), and the light beam from the light source means 1, and reciprocates along the measurement direction X 1 via the measurement reflection means (moving mirror 3). Then the first measurement optical path OPMA second reference optical path OP that reciprocates via a second measurement optical path that is shared with the second reference reflection means (fixed mirror 6).R2And the second measurement optical path (first measurement optical path OPM) And the second reference optical path OPR22nd measurement output X by each luminous flux passing throughBSecond interferometer (prism member 2, quarter wave plate (8a1, 8a 2 , 8b3, 8bFour), The half-wave plate 9, the deflection prism 4, the second detector 7b), and the first and second measurement outputs (XA, XB) Is arranged and the first reference reflection means (sealed tube 3, fixed mirror 6) and the second reference reflection means (fixed mirror 6) are arranged in the measurement direction. Optically separated by a specified distance along each optical path (OPM, OPR1, OPR2) Are parallel and close to each other.

【0093】 図1は本例のレーザー干渉計装置の要部を示し、この図1において、2は第1 の直角プリズム2aと第2の直角プリズム2bとを貼り合わせてなる光学部材( 以下、プリズム部材2と称する。)である。このプリズム部材2は、図2(a) に示すように、直交する辺の長さがd1で45°傾いた斜辺を持つ直角プリズム 2aの斜辺と、長さがd2(=2・d1)の45°傾いた斜辺を持つ直角プリズ ム2bの直交する2辺の内の1辺とを貼り合わせたものである。そして、その貼 り合わせ面(直角プリズム2bの直交する2辺の内の一方の辺側の面)は偏光分 離面(偏光ビームスプリッター面)S1 で形成され、直角プリズム2bの直交す る2辺の内の他方の辺側の面は反射面R1 で形成されている。なお、この反射面 R1 には反射膜を設けることなく、この面R1 は光を全反射させるように構成さ れても良い。FIG. 1 shows a main part of a laser interferometer device of this example. In FIG. 1, 2 is an optical member (hereinafter, referred to as an optical member formed by bonding a first rectangular prism 2a and a second rectangular prism 2b). It is referred to as a prism member 2.). As shown in FIG. 2 (a), this prism member 2 has a diagonal side of a right-angled prism 2a having a diagonal side inclined by 45 ° at the length of the orthogonal side and a length d2 (= 2 · d1). One of two orthogonal sides of a right-angle prism 2b having a hypotenuse inclined at 45 ° is pasted together. The laminating surface (the surface on one side of the two orthogonal sides of the right-angle prism 2b) is formed by the polarization separation surface (polarization beam splitter surface) S 1 and is orthogonal to the right-angle prism 2b. The surface on the other side of the two sides is formed by the reflecting surface R 1 . Incidentally, without providing a reflection film on the reflecting surface R 1, the surface R 1 may be configured so as to totally reflect the light.

【0094】 ここで、プリズム部材2は原理的に偏光分離面S1 と反射面R1 とが直交して 配置されたものであれば良く、直角プリズム2bのみで構成しても良い。また、 例えば、図2(d)に示すように、3個の直角プリズム20a〜20cを貼り合 わせてプリズム部材20を構成し、直角プリズム20aと20bとの貼り合わせ 面を偏光分離面S1 で形成し、直角プリズム20cの外部の面を反射面R1 とす れば、このプリズム体20をプリズム体2の代わりに使用することができる。Here, the prism member 2 may in principle have the polarization separation surface S 1 and the reflection surface R 1 arranged orthogonally to each other, and may be constituted by only the right-angle prism 2b. Further, for example, as shown in FIG. 2 (d), 3 pieces of constitute a prism member 20 Te bonded Align the right-angle prism 20 a to 20 c, the polarization splitting surface S 1 of the bonding surface of the right-angle prism 20a and 20b The prism body 20 can be used in place of the prism body 2 if the outer surface of the rectangular prism 20c is formed as the reflecting surface R 1 .

【0095】 さて、図1に戻って説明すると、まず、コヒーレントな光束を供給する光源手 段としてのレーザー光源1から光束が射出される方向をX方向とすると、プリズ ム部材2は、これの偏光分離面S1 がX方向に対して45°で傾くように配置さ れており、このプリズム部材2に対向して、計測用反射手段としての移動鏡3と 参照用反射手段としての固定鏡6とがそれぞれ配置されている。この移動鏡3は 、不図示の被計測物体に固定され、X方向に沿って移動自在で平面鏡より構成さ れており、固定鏡6は、プリズム部材2に対してX方向に所定の距離bだけ隔て た位置に固定されており、移動鏡3と固定鏡6とはX方向に垂直な方向にずらし て配置されている。Now, returning to FIG. 1, first, assuming that the direction in which a light beam is emitted from the laser light source 1 as a light source means for supplying a coherent light beam is the X direction, the prism member 2 is The polarization splitting surface S 1 is arranged so as to be inclined at 45 ° with respect to the X direction, and facing the prism member 2, a movable mirror 3 as a measuring reflection means and a fixed mirror as a reference reflection means. 6 and 6 are arranged respectively. The movable mirror 3 is fixed to an object to be measured (not shown), is movable along the X direction, and is composed of a plane mirror. The fixed mirror 6 has a predetermined distance b in the X direction with respect to the prism member 2. The movable mirror 3 and the fixed mirror 6 are arranged so as to be displaced in the direction perpendicular to the X direction.

【0096】 プリズム部材2中の直角プリズム2bの直交する2辺(S1 ,R1 )に対して 等しい角度を成す斜辺を形成する透過面T近傍にはそれぞれ6個の1/4波長板 (8a1 ,8a2 ,8b1 〜8b4 )がそれぞれ並列的に配置されており、この 内の2個の1/4波長板(8b3 ,8b4 )と固定鏡6との間には、後で詳述す るが、2個の1/4波長板(8b3 ,8b4 )を各々介して固定鏡6で反射往復 する2つの往復光路の所定の長さだけ周囲と隔離する密閉管60(補正部材)が 配置されている。Six quarter-wave plates (6) are respectively provided in the vicinity of the transmission surface T forming a hypotenuse forming an angle equal to two sides (S 1 , R 1 ) of the right-angle prism 2b in the prism member 2 which intersect at right angles. 8a 1 , 8a 2 , 8b 1 to 8b 4 ) are arranged in parallel, and between the two quarter-wave plates (8b 3 , 8b 4 ) and the fixed mirror 6, As will be described later in detail, a sealed tube that separates from the surroundings by a predetermined length of two reciprocating optical paths that are reflected and reciprocated by the fixed mirror 6 via two quarter-wave plates (8b 3 and 8b 4 ), respectively. 60 (correction member) is arranged.

【0097】 この密閉管60は、少なくとも両端が透明でx方向において所定の長さLを持 つ中空状の円筒で構成される部材であり、この内部は真空となっている。このた め、2個の1/4波長板(8b3 ,8b4 )を各々介して固定鏡6で反射往復す る各往復光路の気体(空気等)にさらされている部分の光路長Dは、プリズム部 材2から固定鏡までのx方向に沿った長さをb、図1に示す干渉計装置がさらさ れている気体の屈折率をnとするとき、D=(b−L)nとなる。従って、この 密閉管60の配置によって、実質的に、固定鏡6を密閉管60の長さLの分だけ x方向に沿ってプリズム部材2側に配置した事と等しくしている。なお、この密 封管に所定の屈折率を持つ気体、液体、固体等の媒質を封入しても良い。The closed tube 60 is a member formed of a hollow cylinder having at least both ends transparent and having a predetermined length L in the x direction, and the inside thereof has a vacuum. For this reason, the optical path length D of the part exposed to the gas (air, etc.) in each round-trip optical path that is reflected and reciprocated by the fixed mirror 6 through each of the two quarter-wave plates (8b 3 and 8b 4 ). Is D = (b−L), where b is the length from the prism part 2 to the fixed mirror along the x direction and n is the refractive index of the gas exposed to the interferometer device shown in FIG. n. Therefore, the arrangement of the closed tube 60 is substantially equivalent to the fixed mirror 6 being arranged on the prism member 2 side along the x direction by the length L of the closed tube 60. The sealed tube may be filled with a medium having a predetermined refractive index, such as gas, liquid, or solid.

【0098】 さて、プリズム部材2の偏光分離面S1 でレーザー光源1からのレーザービー ムが反射される方向には、偏光分離面S1 から射出する光を180°偏向させる 偏向部材としての偏向プリズム(直角プリズム)4が配置されている。この場合 、偏向プリズム4内の2回の全反射によりレーザービームがその偏光分離面S1 へ再び戻されるものとして、プリズム部材2の偏光分離面S1 と反射面R1 との 稜線に対してプリズム部材2により偏向される光路を含む面が平行となるように 、その偏向プリズム4の位置決めがされている。Now, in the direction in which the laser beam from the laser light source 1 is reflected by the polarization splitting surface S 1 of the prism member 2, the light emitted from the polarization splitting surface S 1 is deflected by 180 °. A prism (right angle prism) 4 is arranged. In this case, it is assumed that the laser beam is returned to the polarization splitting surface S 1 by the two total reflections in the deflecting prism 4, and the ridgeline between the polarization splitting surface S 1 and the reflecting surface R 1 of the prism member 2 is assumed. The deflecting prism 4 is positioned so that the surface including the optical path deflected by the prism member 2 becomes parallel.

【0099】 プリズム部材2と偏向プリズム4との間の下方の光路の途中には、1/2波長 板9が配置されており、プリズム部材2と偏向プリズム4との間の上方の光路の 途中には、プリズム部材2と類似した形状を有する光学部材(以下、プリズム部 材5と称する。)が設けられている。このプリズム部材5は、2つの直角プリズ ム(5a,5b)が貼り合わされて構成されており、その貼り合わせ面(直角プ リズム5bの直交する2辺の内の一方の辺側の面)は光分割面(ビームスプリッ ター面)S2 で形成され、直角プリズム5bの直交する2辺の内の他方の辺側の 面は反射面R2 で形成されている。A half-wave plate 9 is disposed in the middle of the lower optical path between the prism member 2 and the deflecting prism 4, and in the middle of the upper optical path between the prism member 2 and the deflecting prism 4. An optical member (hereinafter, referred to as a prism member 5) having a shape similar to that of the prism member 2 is provided in the. The prism member 5 is configured by bonding two right-angle prisms (5a, 5b), and the bonding surface (the surface on one side of the two orthogonal sides of the right-angle prism 5b) is The light splitting surface (beam splitter surface) S 2 is formed, and the surface on the other side of the two orthogonal sides of the rectangular prism 5b is formed by the reflecting surface R 2 .

【0100】 また、偏向プリズム4からのレーザービームがプリズム部材5により分割・偏 向(光分割面S2 で反射された後、反射面R2 で反射)された後、プリズム部材 2の偏光分離面P1 で反射される方向には、第1検出器としての第1のレシーバ 7aが配置されており、偏向プリズム4からのレーザービームがプリズム部材5 の光分割面S2 を通過した後、プリズム部材2の偏光分離面S1 で反射される方 向には第2の検出器としての第1のレシーバ7bが配置されている。Further, after the laser beam from the deflecting prism 4 is split and deflected by the prism member 5 (reflected by the light splitting surface S 2 and then by the reflecting surface R 2 ), the polarization separation of the prism member 2 is performed. A first receiver 7a as a first detector is arranged in the direction reflected by the surface P 1 , and after the laser beam from the deflection prism 4 has passed through the light splitting surface S 2 of the prism member 5, A first receiver 7b as a second detector is arranged in the direction reflected by the polarization splitting surface S 1 of the prism member 2.

【0101】 図1に示す如く、第1及び第2レシーバ(7a,7b)は演算手段としての演 算部10に対して電気的に接続されており、各レシーバ(7a,7b)からの出 力に基づいて、例えば、上記(3)式の如き演算が演算処理部10にて行われ、 演算結果が不図示の表示部に出力される。 なお、1/2波長板9の代わりに、偏向プリズム4の入射面及び射出面又はプ リズム部材2の偏向プリズム4側の面の全面をカバーするような1枚の1/4波 長板を配置しても良く、この場合、偏向プリズム4の入射面及び射出面又はプリ ズム部材2の偏向プリズム4側の面に1/4波長板を直接的に接合しても良い。 さらには、プリズム部材2と偏向プリズム4との光路間又は偏向プリズム4とプ リズム部材5との光路間に1/4波長板を配置すると共に、プリズム部材5とプ リズム部材2との間に形成される2つの光路中に1/4波長板を配置する構成と しても良い。As shown in FIG. 1, the first and second receivers (7a, 7b) are electrically connected to an arithmetic unit 10 as an arithmetic means, and outputs from the respective receivers (7a, 7b). Based on the force, for example, a calculation such as the above formula (3) is performed in the calculation processing unit 10, and the calculation result is output to a display unit (not shown). Instead of the half-wave plate 9, a single quarter-wave plate that covers the entire incident surface and exit surface of the deflection prism 4 or the surface of the prism member 2 on the deflection prism 4 side is used. It may be arranged, and in this case, a quarter wavelength plate may be directly bonded to the incident surface and the exit surface of the deflecting prism 4 or the surface of the prism member 2 on the deflecting prism 4 side. Further, a quarter wavelength plate is arranged between the optical paths of the prism member 2 and the deflecting prism 4 or between the optical paths of the deflecting prism 4 and the prism member 5, and between the prism member 5 and the prism member 2. It is also possible to adopt a configuration in which a quarter-wave plate is arranged in the two formed optical paths.

【0102】 次に、本例の動作につき説明する。先ず、コヒーレントな光束を供給する光源 手段としてのレーザー光源1は第1周波数f1 のビーム(以下、第1ビームと称 する。)と第2周波数f2 のビーム(以下、第2ビームと称する。)を供給し、 この第1及び第2ビームは、プリズム部材2の偏光分離面S1 に対し45°の入 射角で入射する。Next, the operation of this example will be described. First, a laser light source 1 as a light source means for supplying a coherent light beam has a beam having a first frequency f 1 (hereinafter referred to as a first beam) and a beam having a second frequency f 2 (hereinafter referred to as a second beam). .) Is supplied, and the first and second beams are incident on the polarization splitting surface S 1 of the prism member 2 at an incident angle of 45 °.

【0103】 ここで、このレーザー光源1から供給される2つのビームの内の一方の第1ビ ームは、偏光分離面S1 の入射面内を振動する直線偏光の光(以下、P偏光と称 する。)であり、他方の第2ビームは、偏光分離面S1 の入射面と垂直な面内を 振動する直線偏光の光(以下、S偏光と称する。)である。 まず、レーザー光源1から供給されるP偏光の第1ビームについて説明すると 、このP偏光の第1ビームは、プリズム部材2の偏光分離面S1 をそのまま通過 して1/4波長板8a1 を介して円偏光に変換された後、移動鏡3にて反射され 、再び1/4波長板8a1 を通過してS偏光に変換される。そして、このS偏光 の第1ビームは、プリズム部材2の偏光分離面S1 を反射し、プリズム部材2の 反射面R1 で90°反射偏向される。その後、S偏光の第1ビームは、1/4波 長板8a2 を通過して円偏光に変換されて、移動鏡3により反射されて再び1/ 4波長板8a2 へ向かう。そして、この1/4波長板8a2 を再び通過した第1 ビームは、P偏光に変換された後、再び反射面R1 を反射して偏光分離面S1 を 通過する。この偏光分離面S1 を通過したP偏光の第1ビームは、1/2波長板 9を通過して、偏光面が90°回転されてP偏光からS偏光に変換される。1/ 2波長板9によってS偏光に変換された第1ビームは、偏向プリズム4により1 80°反射偏向されて、プリズム部材5の光分割面S2 で2分割される。Here, the first beam of one of the two beams supplied from the laser light source 1 is a linearly polarized light (hereinafter, P-polarized light) oscillating in the incident plane of the polarization separation surface S 1. The other second beam is linearly polarized light (hereinafter referred to as S-polarized light) that oscillates in a plane perpendicular to the incident surface of the polarization separation surface S 1 . First, the P-polarized first beam supplied from the laser light source 1 will be described. The P-polarized first beam passes through the polarization splitting surface S 1 of the prism member 2 as it is and passes through the quarter-wave plate 8a 1 . After being converted into circularly polarized light via the same, it is reflected by the movable mirror 3 and again passes through the quarter-wave plate 8a 1 to be converted into S-polarized light. Then, the first beam of S-polarized light is reflected by the polarization separation surface S 1 of the prism member 2 and is reflected and deflected by 90 ° at the reflection surface R 1 of the prism member 2. Thereafter, the first beam of S-polarized light passes through the quarter-wave plate 8a 2 and is converted into circularly polarized light, reflected by the movable mirror 3 and headed again to the quarter-wave plate 8a 2 . The first beam having passed through the quarter-wave plate 8a 2 again, after being converted into P-polarized light, passes through the polarization splitting surface S 1 and reflected by the reflection surface R 1 again. The first beam of P-polarized light that has passed through the polarization splitting surface S 1 passes through the ½ wavelength plate 9 and the polarization plane is rotated by 90 ° to be converted from P-polarized light to S-polarized light. The first beam converted to S-polarized light by the half-wave plate 9 is reflected and deflected by 180 ° by the deflecting prism 4, and is split into two by the light splitting surface S 2 of the prism member 5.

【0104】 まず、プリズム部材5の光分割面S2 を反射する一方のS偏光の第1ビームは 、プリズム部材5の反射面R2 で90°反射偏向され、プリズム部材2の偏光分 離面S1 を反射した後、第1のレシーバ7aで受光される。 一方、プリズム部材5の光分割面S2 を通過する他方のS偏光の第1ビームは 、プリズム部材2の偏光分離面S1 で反射されて、第2のレシーバ7bで受光さ れる。First, one S-polarized first beam that reflects the light splitting surface S 2 of the prism member 5 is reflected and deflected by 90 ° at the reflecting surface R 2 of the prism member 5, and the polarization splitting surface of the prism member 2 is reflected. After reflecting S 1 , it is received by the first receiver 7a. On the other hand, the other S-polarized first beam passing through the light splitting surface S 2 of the prism member 5 is reflected by the polarization splitting surface S 1 of the prism member 2 and received by the second receiver 7b.

【0105】 次に、レーザー光源1から供給されるS偏光の第2ビームについて説明すると 、このS偏光の第2ビームは、プリズム部材2の偏光分離面S1 で反射されて1 /2波長板9に向かう。この1/2波長板9を通過した第2ビームは、偏光面が 90°回転されてS偏光からP偏光に変換された後、偏向プリズム4により18 0°反射偏向されて、プリズム部材5の光分割面S2 で2分割される。Next, the S-polarized second beam supplied from the laser light source 1 will be described. The S-polarized second beam is reflected by the polarization splitting surface S 1 of the prism member 2 to form a 1/2 wavelength plate. Go to 9. The second beam that has passed through the half-wave plate 9 has its polarization plane rotated by 90 ° and converted from S-polarized light to P-polarized light, and then is reflected and deflected by 180 ° by the deflecting prism 4 to be reflected by the prism member 5. It is divided into two at the light dividing surface S 2 .

【0106】 まず、プリズム部材5の光分割面S2 を反射する一方のP偏光の第2ビームは 、プリズム部材5の反射面R2 で90°反射偏向され、プリズム部材2の偏光分 離面S1 をそのまま通過する。この偏光分離面S1 を通過した第2ビームは、反 射面R1 で90°反射偏向された後、1/4波長板8b1 を通過して円偏光に変 換される。その後、円偏光に変換された第2ビームは、x方向(計測方向)に所 定の長さLを持つ密閉管60を通過し、固定鏡6で反射された後、再び密閉管6 0を通過して1/4波長板8b1 を通過して、S偏光に変換される。このS偏光 に変換された第2ビームは、プリズム部材2の反射面R1 で反射され、プリズム 部材2の偏光分離面S1 で反射されて1/4波長板8b2 へ向かう。この1/4 波長板8b2 を通過した第2ビームは、円偏光に変換された後、密閉管60を通 過して固定鏡6で反射されて再び密閉管60に向かう。この密閉管60を通過し た第2ビームは、1/4波長板8b2 を通過してP偏光に変換され、プリズム部 材2の偏光分離面S1 を透過して第1のレシーバ7aで受光される。First, one P-polarized second beam that reflects the light splitting surface S 2 of the prism member 5 is reflected and deflected by 90 ° at the reflecting surface R 2 of the prism member 5, and the polarization splitting surface of the prism member 2 is reflected. Continue to pass S 1 . The second beam that has passed through the polarization splitting surface S 1 is reflected and deflected by 90 ° at the reflecting surface R 1 , and then passes through the ¼ wavelength plate 8b 1 to be converted into circularly polarized light. After that, the second beam converted into the circularly polarized light passes through the sealed tube 60 having a predetermined length L in the x direction (measurement direction), is reflected by the fixed mirror 6, and then again passes through the sealed tube 60. It passes through the quarter-wave plate 8b 1 and is converted into S-polarized light. The second beam converted into the S-polarized light is reflected by the reflection surface R 1 of the prism member 2 and is reflected by the polarization separation surface S 1 of the prism member 2 and travels to the quarter-wave plate 8b 2 . The second beam that has passed through the quarter-wave plate 8b 2 is converted into circularly polarized light, then passes through the closed tube 60, is reflected by the fixed mirror 6, and heads for the closed tube 60 again. The second beam that has passed through the closed tube 60 passes through the quarter-wave plate 8b 2 and is converted into P-polarized light, passes through the polarization splitting surface S 1 of the prism member 2, and is transmitted by the first receiver 7a. Received light.

【0107】 一方、プリズム部材5の光分割面S2 を通過する他方のP偏光の第2ビームは 、プリズム部材2の偏光分離面S1 をそのまま通過し、反射面R1 で90°反射 偏向されて、1/4波長板8b3 へ向かう。この1/4波長板8b3 を通過した 第2ビームは、円偏光に変換されて、固定鏡6により反射されて再び1/4波長 板8b3 を通過し、S偏光に変換される。このS偏光に変換された第2ビームは 、プリズム部材2の反射面R1 を反射し、偏光分離面S1 を反射して1/4波長 板8b4 に向かう。この1/4波長板8b4 を通過した第2ビームは円偏光に変 換された後、固定鏡6により反射されて再び1/4波長板8b4 を通過して、P 偏光に変換される。この1/4波長板8b4 を通過してP偏光に変換された第2 ビームは、偏光分離面S1 をそのまま通過して第2のレシーバ7bで受光される 。On the other hand, the other P-polarized second beam passing through the light splitting surface S 2 of the prism member 5 passes through the polarization splitting surface S 1 of the prism member 2 as it is, and is reflected and deflected by 90 ° at the reflecting surface R 1. Then, it goes to the quarter-wave plate 8b 3 . The second beam that has passed through the quarter-wave plate 8b 3 is converted into circularly polarized light, reflected by the fixed mirror 6, passes through the quarter-wave plate 8b 3 again, and is converted into S-polarized light. The second beam converted into the S-polarized light is reflected by the reflection surface R 1 of the prism member 2 and reflected by the polarization separation surface S 1 and heads for the quarter-wave plate 8b 4 . The second beam that has passed through the quarter-wave plate 8b 4 is converted into circularly polarized light, reflected by the fixed mirror 6, passes through the quarter-wave plate 8b 4 again, and is converted into P-polarized light. . The second beam, which has passed through the quarter-wave plate 8b 4 and has been converted into P-polarized light, passes through the polarization separation surface S 1 as it is and is received by the second receiver 7b.

【0108】 さて、第1のレシーバ7aにおいては、プリズム部材2と移動鏡3との間の空 気等の気体中を経由する長さx(プリズム部材2の面Tから移動鏡3までのX方 向に沿った距離)の計測光路OPM を進行する第1ビームと、この計測光路OP M と近接してプリズム部材2と固定鏡6との間の空気等の気体中及び密閉管60 を経由する長さb(プリズム部材2の面Tから固定鏡6までのX方向に沿った距 離)の第1参照光路OPR1を進行する第2ビームとが内部のアナライザにより偏 光方向が揃えられて内部の受光素子に入射する。In the first receiver 7a, the length x (X from the surface T of the prism member 2 to the movable mirror 3) passing through a gas such as air between the prism member 2 and the movable mirror 3. Measuring optical path OP along the direction)MBeam that travels through the M And a distance b between the prism member 2 and the fixed mirror 6 in a gas such as air and through the closed tube 60 (the distance from the surface T of the prism member 2 to the fixed mirror 6 in the X direction). ) First reference optical path OPR1And the second beam propagating in the same direction are aligned in the polarization direction by the internal analyzer and are incident on the internal light receiving element.

【0109】 ここで、第1参照光路OPR1中には密閉管60が配置されているため、密閉管 60のX方向における長さをLとすると、前述の如く、空気等の気体の屈折率変 化に対しては、密閉管60の長さLの分だけ固定鏡6をプリズム部材2側へずら して配置した事と等しくなる。従って、第1のレシーバ10aの受光素子には、 実質的に、プリズム部材2と移動鏡3との間の空気等の気体中を経由する長さx (プリズム部材2の面Tから移動鏡3までのX方向に沿った距離)の計測光路O PM を進行する第1ビームと、この計測光路OPM と近接してプリズム部材2と 固定鏡6との間の空気等の気体中を経由する長さa(=b−L)の第1参照光路 OPR1を進行する第2ビームとが入射することとなる。Since the closed tube 60 is disposed in the first reference optical path OP R1 , assuming that the length of the closed tube 60 in the X direction is L, as described above, the refractive index of gas such as air is The change is equivalent to arranging the fixed mirror 6 so as to be shifted to the prism member 2 side by the length L of the closed tube 60. Therefore, in the light receiving element of the first receiver 10a, the length x (from the surface T of the prism member 2 to the moving mirror 3 is substantially passed through a gas such as air between the prism member 2 and the moving mirror 3). a first beam propagating through the measurement optical path O P M of the distance) in the X direction up, via a gas such as air between the prism member 2 in close proximity to the measurement optical path OP M and the fixed mirror 6 The second beam traveling along the first reference optical path OP R1 having the length a (= b−L) is incident.

【0110】 このため、第1レシーバ7aの受光素子からは、移動鏡3が固定鏡6に対して 停止している状態では、周波数が(f1−f2)のビート信号が出力され、移動 鏡3がX方向へ移動すると周波数が変調されたビート信号が出力される。従って 、この周波数の変化を積算することにより、移動鏡3と固定鏡6とのX方向の相 対的な移動量を検出することができる。よって、空気等の気体中を通過する計測 光路OPM の長さ(あるいは干渉計のプリズム部材2から移動鏡6までの計測光 路OPM の光学的光路長)をx、空気等の気体中を通過する第1参照光路OPR1 の長さ(あるいは干渉計のプリズム部材2から固定鏡6までの第1参照光路OP R1 の光学的光路長)をa、測定開始時(リセット時)等の初期の空気等の気体の 屈折率をn、空気等の気体の屈折率の変化をΔnとすると、第1レシーバ7aで は、nx+(x−a)Δnに相当する信号XA が演算処理部10へ出力される。Therefore, the light receiving element of the first receiver 7a outputs a beat signal having a frequency of (f1-f2) when the movable mirror 3 is stopped with respect to the fixed mirror 6, and the movable mirror 3 When moves in the X direction, a beat signal whose frequency is modulated is output. Therefore, it is possible to detect the relative movement amount of the movable mirror 3 and the fixed mirror 6 in the X direction by integrating the change in the frequency. Therefore, the measurement optical path OP that passes through a gas such as airM(Or the measurement optical path OP from the prism member 2 of the interferometer to the movable mirror 6)MOptical path length of x), and the first reference optical path OP that passes through a gas such as airR1 (Or the first reference optical path OP from the prism member 2 of the interferometer to the fixed mirror 6) R1 Optical optical path length of a), a refractive index of gas such as air at the start of measurement (at the time of resetting) is n, and a change in refractive index of gas such as air is Δn, the first receiver 7a , Nx + (x−a) Δn corresponding to the signal XAIs output to the arithmetic processing unit 10.

【0111】 一方、第2レシーバ7bにおいては、プリズム部材2と移動鏡3との間の空気 等の気体中を経由する長さx(プリズム部材2の面Tから移動鏡3までのX方向 に沿った距離)の計測光路OPM を進行する第1ビームと、この計測光路OPM と近接してプリズム部材2と固定鏡6との間の空気等の気体中を経由する長さb (プリズム部材2の面Tから固定鏡6までのX方向に沿った距離)の第2参照光 路OPR2を進行する第2ビームとが内部のアナライザにより偏光方向が揃えられ て内部の受光素子に入射する。On the other hand, in the second receiver 7b, the length x (in the X direction from the surface T of the prism member 2 to the movable mirror 3) passing through a gas such as air between the prism member 2 and the movable mirror 3. first beam and the length b (prism via a gas such as air between the fixed mirror 6 and the prism member 2 in close proximity to the measurement optical path OP M traveling through the measurement optical path OP M of along distance) The polarization direction of the second beam traveling along the second reference optical path OP R2 at the distance from the surface T of the member 2 to the fixed mirror 6 along the X direction) is incident on the internal light receiving element with the polarization direction aligned by the internal analyzer. To do.

【0112】 ここで、第2レシーバ7bの受光素子からは、第1レシーバ7aと同様に、移 動鏡3が固定鏡6に対して停止している状態では、周波数が(f1−f2)のビ ート信号が出力され、移動鏡3がX方向へ移動すると周波数が変調されたビート 信号が出力される。従って、この周波数の変化を積算することにより、移動鏡3 と固定鏡6とのX方向の相対的な移動量を検出することができる。よって、空気 等の気体中を通過する計測光路OPM の長さ(あるいは干渉計のプリズム部材2 から移動鏡6までの計測光路OPM の光学的光路長)をx、空気等の気体中を通 過する第2参照光路OPR2の長さ(あるいは干渉計のプリズム部材2から固定鏡 6までの第2参照光路OPR2の光学的光路長)をb、測定開始時(リセット時) 等の初期の空気等の気体の屈折率をn、空気等の気体の屈折率の変化をΔnとす ると、第2レシーバ7bでは、nx+(x−b)Δnに相当する信号XB が演算 処理部10へ出力される。Here, from the light receiving element of the second receiver 7b, similarly to the first receiver 7a, when the moving mirror 3 is stopped with respect to the fixed mirror 6, the frequency is (f1-f2). A beat signal is output, and when the movable mirror 3 moves in the X direction, a beat signal whose frequency is modulated is output. Therefore, by accumulating the change in the frequency, the relative movement amount of the movable mirror 3 and the fixed mirror 6 in the X direction can be detected. Therefore, the length of the measurement optical path OP M that passes through a gas such as air (or the optical optical path length of the measurement optical path OP M from the prism member 2 of the interferometer to the movable mirror 6) is x, and the inside of a gas such as air is The length of the second reference optical path OP R2 that passes through (or the optical optical path length of the second reference optical path OP R2 from the prism member 2 of the interferometer to the fixed mirror 6) is denoted by b, and at the start of measurement (at reset), etc. Assuming that the initial refractive index of a gas such as air is n and the change in the refractive index of a gas such as air is Δn, a signal X B corresponding to nx + (x−b) Δn is calculated in the second receiver 7b. It is output to the unit 10.

【0113】 さて、演算処理部10には、所定の演算式がメモリーされており、例えば、上 記(3)の如き演算式がメモリーされている。従って、演算処理部10は、第1 及び第2のレシーバ(7a,7b)からの出力信号(XA ,XB )、及び計測開 始時での初期の気体の屈折率nを検出するための不図示の屈折率検出器からの出 力nに基づいて、上記(3)式に示す如き演算を実行し、気体の揺らぎ等が起因 して生ずる気体の屈折率変化に伴う計測誤差が補正された演算結果が不図示の表 示部を介して出力される。The arithmetic processing unit 10 stores a predetermined arithmetic expression, for example, the arithmetic expression as described in (3) above. Therefore, the arithmetic processing unit 10 detects the output signals (X A , X B ) from the first and second receivers (7a, 7b) and the initial refractive index n of the gas at the start of measurement. Based on the output n from the refractive index detector (not shown), the calculation as shown in the above equation (3) is executed, and the measurement error due to the change in the refractive index of the gas caused by the fluctuation of the gas is corrected. The calculated result is output via a display unit (not shown).

【0114】 そして、上記(11)式〜(14)式、又は上記(25)式〜(31)式を満 足するように第1移動鏡及び第2移動鏡(3)をそれぞれ一体的に移動させれば 、干渉計装置の出力に加算される量子化誤差eをそれぞれ4倍〜1倍以下に抑え ることが可能となる。 以上の如く本実施例によれば、干渉計によって計測光路と各参照光路とを近接 するように構成しているため、計測光路中にて生ずる気体の屈折率変化による測 定誤差を補正し、精度良く移動鏡3の移動量や位置を検出することができる。Then, the first movable mirror and the second movable mirror (3) are integrally formed so as to satisfy the expressions (11) to (14) or the expressions (25) to (31). If moved, the quantization error e added to the output of the interferometer device can be suppressed to 4 times to 1 times or less. As described above, according to the present embodiment, since the measurement optical path and each reference optical path are arranged close to each other by the interferometer, the measurement error due to the change in the refractive index of the gas occurring in the measurement optical path is corrected, It is possible to accurately detect the movement amount and position of the movable mirror 3.

【0115】 しかも、本例によれば、2つの固定鏡との間の距離に対して移動鏡が内分する ように、2つの固定鏡との間に形成される空間に沿って移動鏡を移動させること ができるため、極めて高い精度な計測が保証される。 ところで、本例では、プリズム部材2の内部を通過する計測光路長と各参照光 路長とが共に等しくなるように干渉計装置を構成し、プリズム部材2に温度変化 が生じても高精度な計測が行えるようになっている。Moreover, according to this example, the movable mirror is arranged along the space formed between the two fixed mirrors so that the movable mirror is internally divided with respect to the distance between the two fixed mirrors. Since it can be moved, extremely accurate measurement is guaranteed. By the way, in this example, the interferometer device is configured such that the measurement optical path length passing through the inside of the prism member 2 and each reference optical path length are equal, and even if the prism member 2 changes in temperature, it is highly accurate. It can be measured.

【0116】 この事について具体的に説明するに当たって、まず、第1のレシーバ7aにそ れぞれ入射する計測用の第1ビームと参照用の第2ビームとがプリズム部材2の 内部を通過する光路について、図2(a)及び図2(b)を参照しながら説明す る。 プリズム部材2内の下部を通過する計測用の第1ビームは、図2(a)の実線 で示す如く、直角プリズム2a内では光路A11と直角プリズム2b内では光路B 11 とを通過し、プリズム部材2内の上部を通過する計測用の第1ビームは、図2 (b)の実線で示す如く、直角プリズム2a内のみの光路A12を通過する。In specifically explaining this, first, the first beam for measurement and the second beam for reference, which are respectively incident on the first receiver 7a, pass through the inside of the prism member 2. The optical path will be described with reference to FIGS. 2 (a) and 2 (b). The first beam for measurement that passes through the lower portion of the prism member 2 has an optical path A within the rectangular prism 2a as shown by the solid line in FIG.11And the optical path B in the right-angled prism 2b 11 The first beam for measurement that passes through and the upper part of the prism member 2 has an optical path A only in the right-angle prism 2a as shown by the solid line in FIG.12Pass through.

【0117】 一方、プリズム部材2内の下部を通過する参照用の第2ビームは、図2(a) の点線で示す如く、直角プリズム2a内のみの光路A21を通過し、プリズム部材 2内の上部を通過する計測用の第2ビームは、図2(b)の点線で示す如く、直 角プリズム2a内では光路A22を通過し、直角プリズム2b内では光路B22を通 過する。On the other hand, the second reference beam passing through the lower part of the prism member 2 passes through the optical path A 21 only in the right-angle prism 2a as shown by the dotted line in FIG. The second beam for measurement passing through the upper part of the beam passes through the optical path A 22 in the rectangular prism 2a and the optical path B 22 in the rectangular prism 2b as shown by the dotted line in FIG. 2 (b).

【0118】 従って、プリズム部材2内を通過する計測用の第1ビームと参照用の第2ビー ムとの光路長は、それぞれA11+B11+A12,A21+A22+B22となり、図2( a)及び図2(b)から明らかな如く、A11=A12=A21=A22=d1 とB11= B22=d2 との関係が成立しているため、プリズム部材2内を通過する計測用の 第1ビームと参照用の第2ビームとの光路長は等しくなる。Therefore, the optical path lengths of the first beam for measurement and the second beam for reference that pass through the inside of the prism member 2 are A 11 + B 11 + A 12 , A 21 + A 22 + B 22 , respectively. As is clear from (a) and FIG. 2 (b), since the relationship of A 11 = A 12 = A 21 = A 22 = d 1 and B 11 = B 22 = d 2 is established, the prism member 2 The optical path lengths of the measurement first beam and the reference second beam passing through the inside are equal.

【0119】 次に、第2のレシーバ7bにそれぞれ入射する計測用の第1ビームと参照用の 第2ビームとがプリズム部材2の内部を通過する光路について図2(a)及び図 2(c)を参照しながら説明する。 プリズム部材2内の下部を通過する計測用の第1ビームは、図2(a)の実線 で示す如く、直角プリズム2a内では光路A11と直角プリズム2b内では光路B 11 とを通過し、プリズム部材2内の上部を通過する計測用の第1ビームは、図2 (c)の実線で示す如く、直角プリズム2a内のみの光路A12を通過する。Next, regarding the optical paths through which the first beam for measurement and the second beam for reference, which respectively enter the second receiver 7b, pass through the inside of the prism member 2 are shown in FIGS. 2 (a) and 2 (c). ) Will be described. The first beam for measurement that passes through the lower portion of the prism member 2 has an optical path A within the rectangular prism 2a as shown by the solid line in FIG.11And the optical path B in the right-angled prism 2b 11 The first beam for measurement that passes through and the upper part of the prism member 2 has an optical path A only in the right-angle prism 2a as shown by the solid line in FIG.12Pass through.

【0120】 一方、プリズム部材2内の下部を通過する参照用の第2ビームは、図2(a) の点線で示す如く、直角プリズム2a内のみの光路A21を通過し、プリズム部材 2内の上部を通過する計測用の第2ビームは、図2(c)の点線で示す如く、直 角プリズム2a内では光路A32を通過し、直角プリズム2b内では光路B31を通 過する。On the other hand, the second reference beam passing through the lower part of the prism member 2 passes through the optical path A 21 only in the right-angle prism 2a as shown by the dotted line in FIG. The second beam for measurement passing through the upper part of the beam passes through the optical path A 32 in the rectangular prism 2a and the optical path B 31 in the rectangular prism 2b as shown by the dotted line in FIG. 2 (c).

【0121】 従って、プリズム部材2内を通過する計測用の第1ビームと参照用の第2ビー ムとの光路長は、それぞれA11+B11+A12,A21+A32+B32となり、図2( a)及び図2(b)から明らかな如く、A11=A12=A21=A32=d1 とB11= B32=d2 との関係が成立しているため、プリズム部材2内を通過する計測用の 第1ビームと参照用の第2ビームとの光路長は等しくなる。Therefore, the optical path lengths of the first beam for measurement and the second beam for reference that pass through the inside of the prism member 2 are A 11 + B 11 + A 12 , A 21 + A 32 + B 32 , respectively. As is clear from (a) and FIG. 2 (b), since the relationship of A 11 = A 12 = A 21 = A 32 = d 1 and B 11 = B 32 = d 2 is established, the prism member 2 The optical path lengths of the measurement first beam and the reference second beam passing through the inside are equal.

【0122】 従って、仮に、直角プリズム2aと直角プリズム2bとの間に温度差が生じて も、第1ビームと第2ビームとの光路長の差は変化しなため、移動鏡3のX方向 での移動量を常に高精度のもとで計測することができる。 なお、図1に示した第1実施例では、1/4波長板(8a1 ,8a2 ,8b1 〜8b4 )を6枚で構成した場合について説明したが、これらを一体化して1枚 の1/4波長板で構成しても良く、さらには、この1枚の1/4波長板をプリズ ム部材2の面Tに接合して一体的に構成しても良い。Therefore, even if a temperature difference occurs between the right-angled prism 2a and the right-angled prism 2b, the difference in optical path length between the first beam and the second beam does not change, so that the movable mirror 3 moves in the X direction. It is possible to always measure the amount of movement at high accuracy. In the first embodiment shown in FIG. 1, 1/4-wave plate (8a 1, 8a 2, 8b 1 ~8b 4) The case has been described composed of six, one integrated these No. 1/4 wavelength plate, or the one quarter wavelength plate may be joined to the surface T of the prism member 2 to be integrally formed.

【0123】 また、図1に示した第1実施例では、互いに直交した2つの面を持つ直角プリ ズム2aの第1の面側にレーザー光源1と2つのレシーバ(7a,7b)とが配 置され、第2の面側に1/2波長板9,プリズム部材5と直角プリズム4とが配 置されている。しかしながら、この配置構成に限ることなく、この直角プリズム 2aの第2の面側にレーザー光源1と2つのレシーバ(7a,7b)とを配置し 、直角プリズム2aの第1の面側に1/2波長板9,プリズム部材5及び直角プ リズム4とを配置しても良い。Further, in the first embodiment shown in FIG. 1, the laser light source 1 and the two receivers (7a, 7b) are arranged on the first surface side of the right angle prism 2a having two surfaces orthogonal to each other. The half-wave plate 9, the prism member 5 and the right-angle prism 4 are arranged on the second surface side. However, the arrangement is not limited to this arrangement, and the laser light source 1 and the two receivers (7a, 7b) are arranged on the second surface side of the right-angle prism 2a, and the laser light source 1 and the two receivers (7a, 7b) are arranged on the first surface side of the right-angle prism 2a. The two-wave plate 9, the prism member 5 and the right angle prism 4 may be arranged.

【0124】 次に、本発明の第2実施例による干渉計装置について図3を参照しながら説明 する。図3に示す第2実施例は、図1の第1実施例を変形したものであり、図3 には、図1と同一の機能を有する部材には同一符号を付してある。 図3に示す如く、本実施例が第1実施例と大きく異なる所は、まず、図1の第 1実施例に示した偏光プリズム4とプリズム部材2との間に配置されたプリズム 部材5をレーザー光源1とプリズム部材2との間に配置し、棒状部材61を介し てX方向に沿って異なる位置に参照用の2つの固定鏡(6a,6b)を配置した 点である。さらに、本実施例が第1実施例と相違する所は、第1実施例では、プ リズム部材2と移動鏡4との間に2つの1/4波長板(8a1 ,8a2 )を配置 し、プリズム部材2と偏向プリズム4との間に1つの1/2波長板9を配置して いるのに対し、図3の第2実施例では、プリズム部材2と移動鏡4との間に4つ の1/4波長板(8a1 〜8a4 )を配置し、プリズム部材2と偏向プリズム4 との間に2つの1/4波長板(9a,9b)を配置している点である。Next, an interferometer device according to a second embodiment of the present invention will be described with reference to FIG. The second embodiment shown in FIG. 3 is a modification of the first embodiment shown in FIG. 1. In FIG. 3, members having the same functions as those in FIG. 1 are designated by the same reference numerals. As shown in FIG. 3, the main difference of this embodiment from the first embodiment is that the prism member 5 disposed between the polarizing prism 4 and the prism member 2 shown in the first embodiment of FIG. The point is that it is arranged between the laser light source 1 and the prism member 2, and two fixed mirrors (6a, 6b) for reference are arranged at different positions along the X direction via the rod-shaped member 61. Further, the difference of this embodiment from the first embodiment is that in the first embodiment, two quarter-wave plates (8a 1 , 8a 2 ) are arranged between the prism member 2 and the movable mirror 4. However, while one half-wave plate 9 is arranged between the prism member 2 and the deflecting prism 4, in the second embodiment of FIG. 3, it is arranged between the prism member 2 and the movable mirror 4. four quarter-wave plate (8a 1 ~8a 4) arranged, in that are arranged two quarter wave plates (9a, 9b) between the prism member 2 and the deflection prism 4 .

【0125】 なお、棒状部材61は所定の長さを持ち熱膨張率の極めて小さな部材で構成さ れている。 図3に示す第2実施例の構成を簡単に説明すると、本実施例では、計測方向X に移動可能に設けられた移動鏡3と、それぞれ所定の位置に固設された第1固定 鏡6aと第2固定鏡6bと、コヒーレントな光束を供給する光源手段(レーザ光 源1,プリズム部材5)と、この光源手段(1,5)からの光束に基づいて,移 動鏡3を介して計測方向Xに沿って往復する第1計測光路OPM1と第1固定鏡6 aを介して往復する第1参照光路OPR1とを形成し,第1計測光路OPM1及び第 1参照光路OPR1を経由した各光束によって第1測定出力XA を生成する第1干 渉計(プリズム部材2,1/4波長板(8a1,8a2,8b1,8b2),1/2波長板9a, 偏向プリズム4,第1検出器7a)と、光源手段(1,5)からの光束に基づい て,移動鏡3を介して計測方向Xに沿って往復する第2計測光路OPM2と第2固 定鏡6bを介して往復する第2参照光路OPR2とを形成し,第2計測光路OPM2 及び第2参照光路OPR2を経由した各光束によって第2測定出力XB を生成する 第2干渉計(プリズム部材2,1/4波長板(8a3,8a4,8b3,8b4),1/2波長板 9b,偏向プリズム4,第2検出器7b)と、第1及び第2測定出力(XA ,X B )に基づいて所定の演算を行う演算処理部10とを配置し、その第1固定鏡6 aと第2固定鏡6bとを計測方向に沿って所定の距離だけ隔てて配置し、各光路 (OPM1,OPM2,OPR1,OPR2)を平行にする構成としたものである。The rod-shaped member 61 is made of a member having a predetermined length and an extremely small coefficient of thermal expansion. The structure of the second embodiment shown in FIG. 3 will be briefly described. In the present embodiment, the movable mirror 3 provided so as to be movable in the measurement direction X 1 and the first fixed mirror 6a fixed at predetermined positions. And a second fixed mirror 6b, a light source means (laser light source 1, prism member 5) for supplying a coherent light flux, and a light flux from the light source means (1, 5), through a moving mirror 3. First measurement optical path OP reciprocating along the measurement direction XM1And the first reference optical path OP reciprocating via the first fixed mirror 6a.R1To form the first measurement optical path OPM1And the first reference optical path OPR1First measurement output X by each luminous flux passing throughAGenerating the first interferometer (prism member 2, quarter wave plate (8a1, 8a2, 8b1, 8b2), The half-wave plate 9a, the deflection prism 4, the first detector 7a), and the first and second light beams from the light source means (1, 5) which reciprocate along the measurement direction X via the movable mirror 3. 2 measurement optical path OPM2And the second reference optical path OP reciprocating via the second fixed mirror 6b.R2To form the second measurement optical path OPM2 And the second reference optical path OPR22nd measurement output X by each luminous flux which passed throughBSecond interferometer (prism member 2, quarter wave plate (8a3, 8aFour, 8b3, 8bFour), A half-wave plate 9b, a deflection prism 4, a second detector 7b), and first and second measurement outputs (XA, X B ) Is arranged and the first fixed mirror 6a and the second fixed mirror 6b are arranged at a predetermined distance along the measurement direction, and each optical path ( OPM1, OPM2, OPR1, OPR2) Is a parallel configuration.

【0126】 次に、図3に基づいて本例の引き回し光路について説明する。先ず、レーザー 光源1は第1周波数f1 のビーム(以下、第1ビームと称する。)と第2周波数 f2 のビーム(以下、第2ビームと称する。)を供給し、この第1及び第2ビー ムは、プリズム部材5の光分割面S2 に対し45°の入射角で入射する。 ここで、このレーザー光源1から供給される2つのビームの内の一方の第1ビ ームは、光分割面S1 の入射面内を振動する直線偏光の光(以下、P偏光と称す る。)であり、他方の第2ビームは、光分割面S1 の入射面と垂直な面内を振動 する直線偏光の光(以下、S偏光と称する。)である。Next, the routing optical path of this example will be described with reference to FIG. First, the laser light source 1 supplies a beam having a first frequency f 1 (hereinafter, referred to as a first beam) and a beam having a second frequency f 2 (hereinafter, referred to as a second beam). The two beams are incident on the light splitting surface S 2 of the prism member 5 at an incident angle of 45 °. Here, one of the two beams supplied from the laser light source 1 is a linearly polarized light (hereinafter referred to as P-polarized light) that vibrates in the incident surface of the light splitting surface S 1. ), And the other second beam is linearly polarized light (hereinafter referred to as S-polarized light) that oscillates in a plane perpendicular to the incident surface of the light splitting surface S 1 .

【0127】 第1及び第2ビームは、光源からのビームを2分割する光分割手段として機能 するプリズム部材5の光分割面(半透過面)S2 によってそれぞれ2分割され、 この光分割面S2 を反射する第1及び第2ビームは、プリズム部材5の反射面R 2 を介して、プリズム部材2に入射し、この光分割面S2 を通過する第1及び第 2ビームは、そのままプリズム部材2に入射する。The first and second beams are the light splitting surface (semi-transmissive surface) S of the prism member 5 that functions as a light splitting unit that splits the beam from the light source into two.2The light splitting surface S2The first and second beams that reflect light are reflected by the reflecting surface R of the prism member 5. 2 Is incident on the prism member 2 via the2The first and second beams passing through the beam enter the prism member 2 as they are.

【0128】 まず、プリズム部材5の光分割面S2 及び反射面R2 を介してプリズム部材2 に向かう第1及び第2ビームについて説明する。 プリズム部材5の光分割面S2 及び反射面R2 を介した第1及び第2ビームは 、プリズム部材2の偏光分離面S1 に対し45°の入射角で入射する。ここで、 第1ビームは、偏光分離面S1 に対する入射面内を直線偏光するP偏光の光であ り、第2ビームは、偏光分離面S1 に対する入射面と垂直な面内を直線偏光する S偏光の光であるため、P偏光の第1ビームは偏光分離面S1 をそのまま透過し 、S偏光の第2ビームは偏光分離面S1 を反射する。First, the first and second beams directed to the prism member 2 via the light splitting surface S 2 and the reflecting surface R 2 of the prism member 5 will be described. The first and second beams passing through the light splitting surface S 2 and the reflecting surface R 2 of the prism member 5 are incident on the polarization splitting surface S 1 of the prism member 2 at an incident angle of 45 °. Here, the first beam, the light Der P-polarized light to linearly polarize the incident plane with respect to the polarization splitting surface S 1 is, the second beam is linearly polarized light incident surface and a plane perpendicular with respect to the polarization splitting surface S 1 Since it is S-polarized light, the P-polarized first beam passes through the polarization splitting surface S 1 as it is, and the S-polarized second beam reflects off the polarization splitting surface S 1 .

【0129】 まず、偏光分離面S1 を透過したP偏光の第1ビームは、1/4波長板8a1 を介して円偏光に変換された後、移動鏡3にて反射され、再び1/4波長板8a 1 を通過してS偏光に変換される。そして、このS偏光の第1ビームは、プリズ ム部材2の偏光分離面S1 を反射し、プリズム部材2の反射面R1 で90°反射 偏向される。その後、S偏光の第1ビームは、1/4波長板8a2 を通過して円 偏光に変換されて、移動鏡3により反射されて再び1/4波長板8a2 へ向かう 。そして、この1/4波長板8a2 を再び通過した第1ビームは、P偏光に変換 された後、再び反射面R1 を反射して偏光分離面S1 を通過する。この偏光分離 面S1 を通過したP偏光の第1ビームは、1/2波長板9aを通過して、偏光面 が90°回転されてP偏光からS偏光に変換される。1/2波長板9aによって S偏光に変換された第1ビームは、偏向プリズム4により180°反射偏向され た後、偏光分離面S1 で反射されて第1のレシーバ7aで受光される。First, the polarization separation surface S1The first beam of P-polarized light that has passed through the1 After being converted into circularly polarized light via, the light is reflected by the movable mirror 3 and again the quarter wavelength plate 8a. 1 And is converted into S-polarized light. Then, the S-polarized first beam is transmitted through the polarization splitting surface S of the prism member 2.1To reflect the reflection surface R of the prism member 2.1Is reflected and deflected by 90 °. Then, the first beam of S-polarized light is transmitted through the quarter-wave plate 8a.2Is converted into circularly polarized light, is reflected by the movable mirror 3, and is again converted into quarter-wave plate 8a.2Head to. And this quarter wave plate 8a2After passing through the first beam again, it is converted into P-polarized light and then reflected again on the reflecting surface R1To separate the polarized light separation surface S1Pass through. This polarization separation surface S1The first beam of P-polarized light that has passed through passes through the half-wave plate 9a, is rotated by 90 ° in the plane of polarization, and is converted from P-polarized light to S-polarized light. The first beam, which has been converted into S-polarized light by the half-wave plate 9a, is reflected and deflected by 180 ° by the deflecting prism 4, and then the polarization separation surface S1And is received by the first receiver 7a.

【0130】 一方、プリズム部材5の光分割面S2 及び反射面R2 を介してプリズム部材2 の偏光分離面S1 を反射するS偏光の第2ビームは、1/2波長板9aを透過し て、偏光面が90°回転されてS偏光からP偏光に変換された後、偏向プリズム 4により180°反射偏向されて、プリズム部材5の偏光分離面S1 を通過する 。そして、偏光分離面S1 を通過したP偏光の第2ビームは、反射面R1 で90 °反射偏向された後、1/4波長板8b1 を通過して円偏光に変換される。その 後、円偏光に変換された第2ビームは、プリズム部材の面Tに対してX方向に沿 って所定の距離aだけ隔てて固定された第1固定鏡6aを反射して、再び1/4 波長板8b1 を通過して、S偏光に変換される。このS偏光に変換された第2ビ ームは、プリズム部材2の反射面R1 で反射され、プリズム部材2の偏光分離面 S1 で反射されて1/4波長板8b2 へ向かう。この1/4波長板8b2 を通過 した第2ビームは、円偏光に変換された後、第1固定鏡6aで反射されて1/4 波長板8b2 を通過し、P偏光に変換される。そして、P偏光に変換された第2 ビームは、プリズム部材2の偏光分離面S1 を透過して第1のレシーバ7aで受 光される。On the other hand, the S-polarized second beam reflected by the polarization splitting surface S 1 of the prism member 2 through the light splitting surface S 2 and the reflecting surface R 2 of the prism member 5 passes through the half-wave plate 9a. Then, after the polarization plane is rotated by 90 ° and converted from S polarization to P polarization, it is reflected and deflected by 180 ° by the deflection prism 4 and passes through the polarization separation surface S 1 of the prism member 5. Then, the second beam of P-polarized light that has passed through the polarization splitting surface S 1 is reflected and deflected by 90 ° at the reflecting surface R 1 , and then passes through the ¼ wavelength plate 8b 1 to be converted into circularly polarized light. After that, the second beam converted into the circularly polarized light is reflected by the first fixed mirror 6a fixed at a predetermined distance a along the X direction with respect to the surface T of the prism member, and is again reflected by the first fixed mirror 6a. / 4 Passes through the wavelength plate 8b 1 and is converted into S-polarized light. The second beam converted into the S-polarized light is reflected by the reflection surface R 1 of the prism member 2 and is reflected by the polarization separation surface S 1 of the prism member 2 toward the quarter-wave plate 8b 2 . The second beam that has passed through the quarter-wave plate 8b 2 is converted into circularly polarized light, is then reflected by the first fixed mirror 6a, passes through the quarter-wave plate 8b 2, and is converted into P-polarized light. . Then, the second beam converted into P-polarized light passes through the polarization splitting surface S 1 of the prism member 2 and is received by the first receiver 7a.

【0131】 次に、プリズム部材5の光分割面S2 を透過するレーザ光源1からの第1及び 第2ビームについて説明する。 プリズム部材5の光分割面S2 を介した第1及び第2ビームは、プリズム部材 2の偏光分離面S1 に対し45°の入射角で入射する。ここで、第1ビームは、 偏光分離面S1 に対する入射面内を直線偏光するP偏光の光であり、第2ビーム は、偏光分離面S1 に対する入射面と垂直な面内を直線偏光するS偏光の光であ るため、P偏光の第1ビームは偏光分離面S1 をそのまま透過し、S偏光の第2 ビームは偏光分離面S1 を反射する。Next, the first and second beams from the laser light source 1 that pass through the light splitting surface S 2 of the prism member 5 will be described. The first and second beams passing through the light splitting surface S 2 of the prism member 5 are incident on the polarization splitting surface S 1 of the prism member 2 at an incident angle of 45 °. Here, the first beam is P-polarized light that is linearly polarized in the plane of incidence with respect to the polarization separation plane S 1 , and the second beam is linearly polarized in the plane perpendicular to the plane of incidence with respect to the polarization separation plane S 1 . Since it is S-polarized light, the P-polarized first beam passes through the polarization splitting surface S 1 as it is, and the S-polarized second beam reflects off the polarization splitting surface S 1 .

【0132】 まず、偏光分離面S1 を透過したP偏光の第1ビームは、1/4波長板8a3 を介して円偏光に変換された後、移動鏡3にて反射され、再び1/4波長板8a 3 を通過してS偏光に変換される。そして、このS偏光の第1ビームは、プリズ ム部材2の偏光分離面S1 を反射し、プリズム部材2の反射面R1 で90°反射 偏向される。その後、S偏光の第1ビームは、1/4波長板8a4 を通過して円 偏光に変換されて、移動鏡3により反射されて再び1/4波長板8a4 へ向かう 。そして、この1/4波長板8a4 を再び通過した第1ビームは、P偏光に変換 された後、再び反射面R1 を反射して偏光分離面S1 を通過する。この偏光分離 面S1 を通過したP偏光の第1ビームは、1/2波長板9bを通過して、偏光面 が90°回転されてP偏光からS偏光に変換される。1/2波長板9bによって S偏光に変換された第1ビームは、偏向プリズム4により180°反射偏向され た後、偏光分離面S1 で反射されて第2のレシーバ7bで受光される。First, the polarization separation surface S1The first beam of P-polarized light that has passed through the3 After being converted into circularly polarized light via, the light is reflected by the movable mirror 3 and again the quarter wavelength plate 8a. 3 And is converted into S-polarized light. Then, the S-polarized first beam is transmitted through the polarization splitting surface S of the prism member 2.1To reflect the reflection surface R of the prism member 2.1Is reflected and deflected by 90 °. Then, the first beam of S-polarized light is transmitted through the quarter-wave plate 8a.FourIs converted into circularly polarized light, is reflected by the movable mirror 3, and is again converted into quarter-wave plate 8a.FourHead to. And this quarter wave plate 8aFourAfter passing through the first beam again, it is converted into P-polarized light and then reflected again on the reflecting surface R1To separate the polarized light separation surface S1Pass through. This polarization separation surface S1The first beam of P-polarized light that has passed through passes through the half-wave plate 9b, the polarization plane is rotated by 90 °, and converted from P-polarized light to S-polarized light. The first beam, which has been converted into S-polarized light by the half-wave plate 9b, is reflected and deflected by 180 ° by the deflecting prism 4, and then the polarization separation surface S1And is received by the second receiver 7b.

【0133】 一方、プリズム部材5の光分割面S2 を透過してプリズム部材2の偏光分離面 S1 を反射するS偏光の第2ビームは、1/2波長板9bを透過して、偏光面が 90°回転されてS偏光からP偏光に変換された後、偏向プリズム4により18 0°反射偏向されて、プリズム部材5の偏光分離面S1 を通過する。そして、偏 光分離面S1 を通過したP偏光の第2ビームは、反射面R1 で90°反射偏向さ れた後、1/4波長板8b3 を通過して円偏光に変換される。その後、円偏光に 変換された第2ビームは、プリズム部材の面Tに対してX方向に沿って所定の距 離bだけ隔てて固定された第2固定鏡6bを反射して、再び1/4波長板8b3 を通過して、S偏光に変換される。このS偏光に変換された第2ビームは、プリ ズム部材2の反射面R1 で反射され、プリズム部材2の偏光分離面S1 で反射さ れて1/4波長板8b4 へ向かう。この1/4波長板8b4 を通過した第2ビー ムは、円偏光に変換された後、第2固定鏡6bで反射されて1/4波長板8b4 を通過し、P偏光に変換される。そして、P偏光に変換された第2ビームは、プ リズム部材2の偏光分離面S1 を透過して第2のレシーバ7aで受光される。On the other hand, the S-polarized second beam that transmits the light splitting surface S 2 of the prism member 5 and reflects the polarization splitting surface S 1 of the prism member 2 passes through the ½ wavelength plate 9b and After the surface is rotated by 90 ° and converted from S polarized light to P polarized light, it is reflected and deflected by 180 ° by the deflection prism 4 and passes through the polarization separation surface S 1 of the prism member 5. The P-polarized second beam that has passed through the polarization separation surface S 1 is reflected and deflected by 90 ° at the reflection surface R 1 , and then passes through the ¼ wavelength plate 8b 3 to be converted into circularly polarized light. . After that, the second beam converted into circularly polarized light is reflected by the second fixed mirror 6b fixed at a predetermined distance b along the X direction with respect to the surface T of the prism member, and again 1 / It passes through the four-wave plate 8b 3 and is converted into S-polarized light. The second beam converted into the S-polarized light is reflected by the reflecting surface R 1 of the prism member 2, is reflected by the polarized light separating surface S 1 of the prism member 2, and travels toward the quarter-wave plate 8b 4 . The second beam that has passed through the quarter-wave plate 8b 4 is converted into circularly polarized light, is then reflected by the second fixed mirror 6b, passes through the quarter-wave plate 8b 4, and is converted into P-polarized light. It Then, the second beam converted into P-polarized light passes through the polarization splitting surface S 1 of the prism member 2 and is received by the second receiver 7a.

【0134】 以上の如く、本発明による第2実施例の干渉計装置は、第1のレシーバ7aに おいては、プリズム部材2と移動鏡3との間の空気等の気体中を経由する長さx (プリズム部材2の面Tから移動鏡3までのX方向に沿った距離)の第1計測光 路OPM1を進行する第1ビームと、この第1計測光路OPM1と近接してプリズム 部材2と第1固定鏡6aとの間の空気等の気体中を経由する長さa(プリズム部 材2の面Tから第1固定鏡6aまでのX方向に沿った距離)の第1参照光路OP R1 を進行する第2ビームとが内部のアナライザにより偏光方向が揃えられて内部 の受光素子に入射する。As described above, in the interferometer device of the second embodiment according to the present invention, in the first receiver 7a, the long distance between the prism member 2 and the movable mirror 3 via gas such as air is used. The first measurement optical path OP having a length x (the distance from the surface T of the prism member 2 to the movable mirror 3 along the X direction)M1Beam that travels through the first measurement optical path OPM1And a length a passing through a gas such as air between the prism member 2 and the first fixed mirror 6a (a distance from the surface T of the prism member 2 to the first fixed mirror 6a in the X direction). ) First reference optical path OP R1 And the second beam traveling in the direction of polarization are aligned in the polarization direction by the internal analyzer and are incident on the internal light receiving element.

【0135】 このため、第1レシーバ7aの受光素子からは、移動鏡3が第1固定鏡6に対 して停止している状態では、周波数が(f1−f2)のビート信号が出力され、 移動鏡3がX方向へ移動すると周波数が変調されたビート信号が出力される。従 って、この周波数の変化を積算することにより、移動鏡3と固定鏡6とのX方向 の相対的な移動量を検出することができる。よって、空気等の気体中を通過する 第1計測光路OPM1の長さ(あるいは第1干渉計のプリズム部材2から移動鏡6 までの第1計測光路OPM1の光学的光路長)をx、空気等の気体中を通過する第 1参照光路OPR1の長さ(あるいは干渉計のプリズム部材2から固定鏡6までの 第1参照光路OPR1の光学的光路長)をa、測定開始時(リセット時)等の初期 の空気等の気体の屈折率をn、空気等の気体の屈折率の変化をΔnとすると、第 1レシーバ7aでは、nx+(x−a)Δnに相当する信号XA が演算処理部1 0へ出力される。Therefore, the light receiving element of the first receiver 7a outputs a beat signal having a frequency (f1-f2) when the movable mirror 3 is stopped with respect to the first fixed mirror 6. When the movable mirror 3 moves in the X direction, a beat signal whose frequency is modulated is output. Therefore, by accumulating the change in the frequency, the relative movement amount of the movable mirror 3 and the fixed mirror 6 in the X direction can be detected. Therefore, the length of the first measurement optical path OP M1 passing through a gas such as air (or the optical optical path length of the first measurement optical path OP M1 from the prism member 2 of the first interferometer to the movable mirror 6) is x, The length of the first reference optical path OP R1 passing through a gas such as air (or the optical optical path length of the first reference optical path OP R1 from the prism member 2 of the interferometer to the fixed mirror 6) is a, at the start of measurement ( When the initial refractive index of a gas such as air is n and the change of the refractive index of a gas such as air is Δn (at the time of resetting), the first receiver 7a outputs a signal X A corresponding to nx + (x−a) Δn. Is output to the arithmetic processing unit 10.

【0136】 一方、第2レシーバ7bにおいては、プリズム部材2と移動鏡3との間の空気 等の気体中を経由する長さx(プリズム部材2の面Tから移動鏡3までのX方向 に沿った距離)の第2計測光路OPM2を進行する第1ビームと、この第2計測光 路OPM1と近接してプリズム部材2と第2固定鏡6bとの間の空気等の気体中を 経由する長さb(プリズム部材2の面Tから第2固定鏡6bまでのX方向に沿っ た距離)の第2参照光路OPR2を進行する第2ビームとが内部のアナライザによ り偏光方向が揃えられて内部の受光素子に入射する。On the other hand, in the second receiver 7b, the length x (in the X direction from the surface T of the prism member 2 to the movable mirror 3) passing through a gas such as air between the prism member 2 and the movable mirror 3. The first beam traveling along the second measurement optical path OP M2 along the distance) and the gas such as air between the prism member 2 and the second fixed mirror 6b in the vicinity of the second measurement optical path OP M1. The second beam traveling along the second reference optical path OP R2 having the length b (the distance along the X direction from the surface T of the prism member 2 to the second fixed mirror 6b) and the polarization direction by the internal analyzer. Are aligned and are incident on the internal light receiving element.

【0137】 ここで、第2レシーバ7bの受光素子からは、第1レシーバ7aと同様に、移 動鏡3が固定鏡6に対して停止している状態では、周波数が(f1−f2)のビ ート信号が出力され、移動鏡3がX方向へ移動すると周波数が変調されたビート 信号が出力される。従って、この周波数の変化を積算することにより、移動鏡3 と固定鏡6とのX方向の相対的な移動量を検出することができる。よって、空気 等の気体中を通過する第2計測光路OPM2の長さ(あるいは第2干渉計のプリズ ム部材2から移動鏡6までの第2計測光路OPM2の光学的光路長)をx、空気等 の気体中を通過する第2参照光路OPR2の長さ(あるいは干渉計のプリズム部材 2から固定鏡6までの第2参照光路OPR2の光学的光路長)をb、測定開始時( リセット時)等の初期の空気等の気体の屈折率をn、空気等の気体の屈折率の変 化をΔnとすると、第2レシーバ7bでは、nx+(x−b)Δnに相当する信 号XB が演算処理部10へ出力される。Here, from the light receiving element of the second receiver 7b, similarly to the first receiver 7a, when the moving mirror 3 is stopped with respect to the fixed mirror 6, the frequency is (f1-f2). A beat signal is output, and when the movable mirror 3 moves in the X direction, a beat signal whose frequency is modulated is output. Therefore, by accumulating the change in the frequency, the relative movement amount of the movable mirror 3 and the fixed mirror 6 in the X direction can be detected. Therefore, the length of the second measurement optical path OP M2 passing through a gas such as air (or the optical optical path length of the second measurement optical path OP M2 from the prism member 2 of the second interferometer to the movable mirror 6) is x , B is the length of the second reference optical path OP R2 passing through a gas such as air (or the optical optical path length of the second reference optical path OP R2 from the prism member 2 of the interferometer to the fixed mirror 6), Assuming that the initial refractive index of gas such as air (at the time of reset) is n and the change of refractive index of gas such as air is Δn, the second receiver 7b has a signal corresponding to nx + (x−b) Δn. The signal X B is output to the arithmetic processing unit 10.

【0138】 さて、演算処理部10には、第1実施例と同様に、例えば、前述の(3)式に 示す如き演算式がメモリーされており、演算処理部10は、第1及び第2のレシ ーバ(7a,7b)からの出力信号(XA ,XB )、及び計測開始時での初期の 気体の屈折率nを検出するための不図示の屈折率検出器からの出力nに基づいて 、前述の(3)式に示す如き演算を実行し、気体の揺らぎ等が起因して生ずる気 体の屈折率変化に伴う計測誤差が補正された演算結果が不図示の表示部を介して 出力される。Similar to the first embodiment, the arithmetic processing unit 10 stores, for example, an arithmetic expression represented by the above-mentioned expression (3), and the arithmetic processing unit 10 includes the first and second arithmetic expressions. The output signals (X A , X B ) from the receivers (7a, 7b) of the device and the output n from the refractive index detector (not shown) for detecting the initial refractive index n of the gas at the start of measurement. Based on the above, the calculation as shown in the above equation (3) is executed, and the calculation result in which the measurement error due to the change in the refractive index of the gas caused by the fluctuation of the gas is corrected is displayed on a display unit (not shown). Is output via.

【0139】 そして、上記(11)式〜(14)式、又は上記(25)式〜(31)式を満 足するように第1移動鏡及び第2移動鏡(3)をそれぞれ一体的に移動させれば 、干渉計装置の出力に加算される量子化誤差eをそれぞれ4倍〜1倍以下に抑え ることが可能となる。 しかも、第2実施例も第1実施例と同様に、2つの固定鏡との間の距離に対し て移動鏡が内分するように、2つの固定鏡との間に形成される空間に沿って移動 鏡を移動させることができるため、極めて高い精度な計測が保証される。Then, the first movable mirror and the second movable mirror (3) are integrally formed so as to satisfy the expressions (11) to (14) or the expressions (25) to (31). If moved, the quantization error e added to the output of the interferometer device can be suppressed to 4 times to 1 times or less. Moreover, in the second embodiment, as in the first embodiment, the movable mirror is internally divided with respect to the distance between the two fixed mirrors along the space formed between the two fixed mirrors. Since the moving mirror can be moved by using this method, extremely accurate measurement is guaranteed.

【0140】 また、詳細な説明は省略するが、第2実施例でも、プリズム部材2の内部を通 過する計測光路長と各参照光路長とが共に等しくなるように干渉計装置が構成さ れているため、プリズム部材2の内部に温度差が生じても高精度な計測が実現で きる。 なお、図3に示す第2実施例では、1/4波長板(8a1 〜8a4 ,8b1 〜 8b4 )を8枚で構成した例を示しているが、これを1枚の1/4波長板で構成 しても良く、また、この1枚の1/4波長板をプリズム部材の面Tと接合して一 体的に構成しても良い。Although detailed description is omitted, also in the second embodiment, the interferometer device is configured so that the measurement optical path length passing through the inside of the prism member 2 and each reference optical path length are equal. Therefore, even if a temperature difference occurs inside the prism member 2, highly accurate measurement can be realized. In the second embodiment shown in FIG. 3, 1/4-wave plate (8a 1 ~8a 4, 8b 1 ~ 8b 4) While shows an example in which in the eight, which of one 1 / It may be configured with a four-wave plate, or this one quarter-wave plate may be bonded to the surface T of the prism member to be integrally configured.

【0141】 また、図3に示した第2実施例の2枚の1/2波長板(9a,9b)の代わり に、偏光プリズム4とプリズム部材2の間に形成される4つの光路をカバーする ような1枚の1/4波長板を設けても良く、また、偏光プリズム4の入射面及び 射出面の全面を覆うような1/4波長板を偏光プリズム4と一体的に構成しても 良く、さらには、プリズム部材2の偏光プリズム4側の面全体を覆うような1/ 4波長板1/4波長板をプリズム部材2と一体的に構成しても良い。Further, instead of the two half-wave plates (9a, 9b) of the second embodiment shown in FIG. 3, four optical paths formed between the polarization prism 4 and the prism member 2 are covered. It is also possible to provide a single quarter-wave plate as described above, and a quarter-wave plate that covers the entire entrance surface and exit surface of the polarization prism 4 is formed integrally with the polarization prism 4. Further, a quarter-wave plate that covers the entire surface of the prism member 2 on the side of the polarization prism 4 may be integrally formed with the prism member 2.

【0142】 また、図3に示した第1実施例では、互いに直交した2つの面を持つ直角プリ ズム2aの第1の面側にレーザー光源1とプリズム部材5と2つのレシーバ(7 a,7b)とがそれぞれ配置され、第2の面側に2つの1/2波長板(9a,9 b)と直角プリズム4とがそれぞれ配置されている。しかしながら、この配置構 成に限ることなく、この直角プリズム2aの第2の面側にレーザー光源1とプリ ズム部材5と2つのレシーバ(7a,7b)とをそれぞれ配置し、直角プリズム 2aの第1の面側に2つの1/2波長板(9a,9b)と直角プリズム4とをそ れぞれ配置しても良い。Further, in the first embodiment shown in FIG. 3, the laser light source 1, the prism member 5 and the two receivers (7 a, 7 a, 7b) and two half-wave plates (9a, 9b) and the right-angle prism 4 are respectively arranged on the second surface side. However, the arrangement is not limited to this arrangement, and the laser light source 1, the prism member 5 and the two receivers (7a, 7b) are arranged on the second surface side of the right-angle prism 2a, and the right-angle prism 2a has a second surface. Two half-wave plates (9a, 9b) and the right-angle prism 4 may be arranged on the surface 1 side, respectively.

【0143】 また、図3に示した第2実施例では、コヒーレントな光束を供給する光源手段 をレーザー光源1と光分割手段として機能するプリズム部材5とで構成している が、2つのレーザー光源を光源手段として用いて、一方のレーザー光源からの光 束を第1干渉計(プリズム部材2,1/4波長板(8a1,8a2,8b1,8b2),1/2波 長板9a,偏向プリズム4,第1検出器7a)へ導き、他方のレーザー光源から の光束を第2干渉計(プリズム部材2,1/4波長板(8a3,8a4,8b3,8b4),1/ 2波長板9b,偏向プリズム4,第2検出器7b)へ導く構成としても良い。こ の場合、2つの光源(レーザー光源)の光学特性変化(波長変動等)がある時に は、この光学特性変化を補正する補正手段を設けることが望ましい。Further, in the second embodiment shown in FIG. 3, the light source means for supplying the coherent light flux is composed of the laser light source 1 and the prism member 5 functioning as the light splitting means. Is used as a light source means, the light flux from one of the laser light sources is used as a first interferometer (prism member 2, quarter wave plate (8a 1 , 8a 2 , 8b 1 , 8b 2 ), 1/2 wave plate). 9a, the deflecting prism 4, the first detector 7a), and the light flux from the other laser light source is guided to the second interferometer (prism member 2, quarter wave plate (8a 3 , 8a 4 , 8b 3 , 8b 4 )). , 1/2 wavelength plate 9b, deflecting prism 4, second detector 7b). In this case, when there is a change in the optical characteristics (wavelength fluctuation, etc.) of the two light sources (laser light source), it is desirable to provide a correction means for correcting the change in the optical characteristics.

【0144】 また、上述の各実施例ではヘテロダイン方式のレーザー干渉計に本発明を適用 したものであるが、本発明はホモダイン方式の干渉計にも同様に適用することが できる。また、直角プリズム17の代わりにコーナーキューブ等を使用しても良 い。 ところで、以上にて説明した各実施例では、第1及び第2干渉計により形成さ れる各計測光路並びに各参照光路を互いに近接かつ平行となるように構成した例 を示したが、これに限るものではない。Further, although the present invention is applied to the heterodyne type laser interferometer in each of the above-described embodiments, the present invention can also be applied to the homodyne type interferometer. Further, a corner cube or the like may be used instead of the rectangular prism 17. By the way, in each of the embodiments described above, an example is shown in which the measurement optical paths formed by the first and second interferometers and the reference optical paths are configured to be close to and parallel to each other, but the present invention is not limited to this. Not a thing.

【0145】 そこで、図1に示した第1実施例の別の変形例としての第3実施例について図 7を参照しながら説明する。なお、図3には、図1と同一の機能を有する部材に は同一符号を付してある。 本実施例では、図1に示した第1実施例のプリズム部材2を、計測光路OPM を形成する下側部分のプリズム部材62、2つの参照光路(OPR1,OPR2)を 形成する上側部分のプリズム部材63に2分割し、上側部分のプリズム部材63 は下側部分のプリズム部材62に対して90度回転された状態で配置して、計測 光路OPM に対して2つの参照光路(OPR1,OPR2)が非平行、即ち垂直とな る如く構成したものである。Therefore, a third embodiment, which is another modification of the first embodiment shown in FIG. 1, will be described with reference to FIG. In FIG. 3, members having the same functions as those in FIG. 1 are designated by the same reference numerals. In the present embodiment, the prism member 2 of the first embodiment shown in FIG. 1 is replaced with the prism member 62 in the lower part forming the measurement optical path OP M and the upper part forming the two reference optical paths (OP R1 , OP R2 ). 2 is divided into the prism member 63 portion, a prism member 63 of the upper portion is arranged in a state of being rotated 90 degrees with respect to the prism member 62 of the lower portion, two reference light paths relative to the measurement optical path OP M ( OP R1 and OP R2 are non-parallel, that is, vertical.

【0146】 ここで、下側部分のプリズム部材62は、直角プリズム62aと直角プリズム 62aとの貼合せで構成され、この貼合せ面は偏光分離面(偏光ビームスプリッ ター面)S3 で形成されている。また、上側部分のプリズム部材63は、直角プ リズム63aと直角プリズム63bとの貼合せで構成され、この貼合せ面は偏光 分離面(偏光ビームスプリッター面)S4 で形成されている。Here, the lower prism member 62 is constituted by laminating the right-angle prism 62a and the right-angle prism 62a, and the pasting surface is formed by the polarization separation surface (polarization beam splitter surface) S 3. ing. The prism member 63 on the upper side is formed by bonding a right-angle prism 63a and a right-angle prism 63b, and the bonding surface is formed by a polarization splitting surface (polarization beam splitter surface) S 4 .

【0147】 なお、プリズム部材62、63の構成以外は、図1に示した第1実施例の構成 と全く同一であるため、装置の動作を含めた詳細な説明は省略する。 以上の如く図7に示した例によっても、計測光路中にて生ずる気体の屈折率変 化による測定誤差を補正し、精度良く移動鏡3の移動量や位置を検出することが できる。しかも、本例においても、2つの固定鏡との間の距離に対して移動鏡が 内分するように、2つの固定鏡との間に形成される空間に沿って移動鏡を移動さ せることができるため、極めて高い精度な計測が保証される。Note that the configuration is the same as that of the first embodiment shown in FIG. 1 except for the configurations of the prism members 62 and 63, and therefore detailed description including the operation of the apparatus will be omitted. As described above, also in the example shown in FIG. 7, it is possible to correct the measurement error due to the change in the refractive index of the gas that occurs in the measurement optical path, and to accurately detect the movement amount and position of the movable mirror 3. Moreover, also in this example, the movable mirror is moved along the space formed between the two fixed mirrors so that the movable mirror is internally divided with respect to the distance between the two fixed mirrors. Therefore, extremely high precision measurement is guaranteed.

【0148】 なお、図3に示した第2実施例においても、図7に示した如き計測光路と参照 光路とを直交させる構成とすることが可能である。例えば、図3の偏光プリズム 2の代わりに図7に示した2つの偏光プリズム62,63を用いれば、計測光路 と参照光路とを直交させることが可能となる。 また、以上にて示した各実施例における各干渉計の計測光路と参照光路との光 路の少なくとも一方に光路折り曲げ用の光路偏向部材を適宜配置し、装置全体が コンパクトになるように各光路を引き回すことも可能である。In the second embodiment shown in FIG. 3 as well, it is possible to make the measurement optical path and the reference optical path as shown in FIG. 7 orthogonal to each other. For example, if the two polarizing prisms 62 and 63 shown in FIG. 7 are used instead of the polarizing prism 2 of FIG. 3, the measurement optical path and the reference optical path can be made orthogonal to each other. In addition, an optical path deflecting member for bending the optical path is appropriately arranged in at least one of the measurement optical path and the reference optical path of each interferometer in each of the above-described embodiments so that each optical path can be made compact in size. It is also possible to draw around.

【0149】 また、以上の各実施例では、第1及び第2干渉計の計測光路長が互いに等しい 例を示したが、図4の原理にて説明した如く、第1及び第2干渉計の計測光路長 を異ならせしてめても良いことは言うまでもない。 このように、本発明は上述実施例に限定されず本発明の要旨を逸脱しない範囲 で種々の構成を取り得る。Further, in each of the above embodiments, an example in which the measurement optical path lengths of the first and second interferometers are equal to each other has been shown. However, as described in the principle of FIG. It goes without saying that the measurement optical path length may be different. As described above, the present invention is not limited to the above-described embodiments, and various configurations can be adopted without departing from the scope of the present invention.

【0150】[0150]

【発明の効果】【The invention's effect】

以上の如く、本発明によれば、空気等の気体の揺らぎが生じていても測定誤差 が極めて少なく、しかも原理的に高精度な計測が実現できる高性能な干渉計装置 が実現できる。 As described above, according to the present invention, it is possible to realize a high-performance interferometer device which has a very small measurement error even when fluctuations of gas such as air occur and which can realize highly accurate measurement in principle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の干渉計装置の第1実施例を示す斜視図
である。
FIG. 1 is a perspective view showing a first embodiment of an interferometer device of the present invention.

【図2】(a)は第1実施例のプリズム部材2の下部を
通過する計測光路及び第1及び第2参照光路の様子を示
す平面図、(b)は第1実施例のプリズム部材2の上部
を通過する計測光路及び第1参照光路の様子を示す平面
図、(c)は第1実施例のプリズム部材2の上部を通過
する計測光路及び第2参照光路の様子を示す平面図、
(d)は第1実施例のプリズム部材2の他の例を示す平
面図である。
2A is a plan view showing the states of a measurement optical path and first and second reference optical paths that pass under the prism member 2 of the first embodiment, and FIG. 2B is a prism member 2 of the first embodiment. Is a plan view showing the states of the measurement optical path and the first reference optical path that pass through the upper part of FIG.
(D) is a plan view showing another example of the prism member 2 of the first embodiment.

【図3】本考案の干渉計装置の第2実施例を示す斜視図
である。
FIG. 3 is a perspective view showing a second embodiment of the interferometer device of the present invention.

【図4】本考案の干渉計装置の原理を示す構成図であ
る。
FIG. 4 is a block diagram showing the principle of the interferometer device of the present invention.

【図5】図4とは別の見方による本考案の干渉計装置の
原理を示す構成図である。
FIG. 5 is a configuration diagram showing the principle of the interferometer device of the present invention from a different perspective from FIG.

【図6】従来の干渉計装置を示す構成図である。FIG. 6 is a configuration diagram showing a conventional interferometer device.

【図7】本考案の干渉計装置の第1実施例の変形例を示
す斜視図である。
FIG. 7 is a perspective view showing a modification of the first embodiment of the interferometer device of the present invention.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1・・・・・・レーザー光源 2・・・・・・プリズム部材 3・・・・・・移動鏡 4・・・・・・偏向プリズム(直角プリズム) 5・・・・・・プリズム部材(光分割部材) 6,6a,6b・・・・・・固定鏡 7a・・・・・・第1レシーバ 7b・・・・・・第2レシーバ 8a1 〜8a4,8b1 〜8a4 ・・・・・・1/4波長板 9,9a,9b・・・・・・1/2波長板 10・・・・・・演算処理部 60・・・・・・密閉管 61・・・・・・棒状部材1 ... Laser light source 2 Prism member 3 Moving mirror 4 Deflection prism (right angle prism) 5 Prism member ( light splitting member) 6,6a, 6b ······ fixed mirror 7a · · · · · · first receiver 7b · · · · · · second receiver 8a 1 ~8a 4, 8b 1 ~8a 4 ·· .... Quarter wave plate 9, 9a, 9b ... 1/2 wave plate 10 ... Calculation processing unit 60 ... Sealed tube 61 ...・ Bar-shaped member

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】被計測物体の変位量を計測する干渉計装置
において、2つの直角プリズムの内の一方の斜面と他方
の底面とを接合してこの接合面が偏光分離面で形成され
た光学部材を配置し、該光学部材によって測定用光路と
参照用光路とを形成する構成としたことを特徴とする干
渉計装置。
1. An interferometer device for measuring the amount of displacement of an object to be measured, wherein one slanted surface and the other bottom surface of two right-angle prisms are joined to each other, and the joined surface is a polarization splitting surface. An interferometer device characterized in that a member is arranged and a measuring optical path and a reference optical path are formed by the optical member.
JP6478293U 1992-12-24 1993-12-03 Interferometer device Pending JPH0726706U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6478293U JPH0726706U (en) 1992-12-24 1993-12-03 Interferometer device
US08/532,267 US5585922A (en) 1992-12-24 1995-09-22 Dual interferometer apparatus compensating for environmental turbulence or fluctuation and for quantization error

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8831792 1992-12-24
JP5-47343 1993-08-31
JP4-88317 1993-08-31
JP4734393 1993-08-31
JP6478293U JPH0726706U (en) 1992-12-24 1993-12-03 Interferometer device

Publications (1)

Publication Number Publication Date
JPH0726706U true JPH0726706U (en) 1995-05-19

Family

ID=27292947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6478293U Pending JPH0726706U (en) 1992-12-24 1993-12-03 Interferometer device

Country Status (1)

Country Link
JP (1) JPH0726706U (en)

Similar Documents

Publication Publication Date Title
US6806960B2 (en) Compact beam re-tracing optics to eliminate beam walk-off in an interferometer
US7355719B2 (en) Interferometer for measuring perpendicular translations
JPH09325005A (en) Device for measuring deflection
US5585922A (en) Dual interferometer apparatus compensating for environmental turbulence or fluctuation and for quantization error
CN102003935A (en) Environment compensation method for measurement employing laser tracker
JPH09178415A (en) Light wave interference measuring device
JPH07101166B2 (en) Interferometer
US7705994B2 (en) Monolithic displacement measuring interferometer with spatially separated but substantially equivalent optical pathways and optional dual beam outputs
US4334778A (en) Dual surface interferometer
JPH08320206A (en) Optical interference measuring apparatus and optical interference measuring method
JP2015072137A (en) Optical measurement device
CN108286943B (en) Displacement measurement optical system applied to workbench of photoetching system
WO2023184719A1 (en) Sensitivity-adjustable optical measurement apparatus and method for plasma magnetic field
JP3019050B2 (en) Interferometer device
JPH0726706U (en) Interferometer device
JPH09280822A (en) Light wave interference measuring device
CN110966939B (en) Interferometric measuring device, measuring method and photoetching equipment
JP3412212B2 (en) Interferometer device
JP3230280B2 (en) Interferometer
JPH095018A (en) Device for measuring moving quantity
JP3221507B2 (en) Interferometer
JP2004347425A (en) Measuring method of distance change between two faces and device
JP2760830B2 (en) Optical measuring device for displacement
JPH09318311A (en) Interferometer system
JPH11108614A (en) Light-wave interference measuring instrument