JPH07265739A - Apparatus and method for electrostatic classification - Google Patents

Apparatus and method for electrostatic classification

Info

Publication number
JPH07265739A
JPH07265739A JP8224194A JP8224194A JPH07265739A JP H07265739 A JPH07265739 A JP H07265739A JP 8224194 A JP8224194 A JP 8224194A JP 8224194 A JP8224194 A JP 8224194A JP H07265739 A JPH07265739 A JP H07265739A
Authority
JP
Japan
Prior art keywords
powder
linear
electrostatic
electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8224194A
Other languages
Japanese (ja)
Inventor
Susumu Yashiro
進 屋代
Toshiro Higuchi
俊郎 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP8224194A priority Critical patent/JPH07265739A/en
Publication of JPH07265739A publication Critical patent/JPH07265739A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To classify simply with high precision and stability into many grades as the need arises. CONSTITUTION:Linear cross electrodes 34a, 34b, 34c and linear cross electrodes 34x, 34y, 34z are arranged to cross at right angles correspondingly. When low voltage with two or more phases is applied only to the linear cross electrodes 34a, 34b, 34c, the lightest powder moves to be extracted. When higher voltage with two or more phases is applied to the linear cross electrodes 34a, 34b, 34c and the linear cross electrodes 34x, 34y, 34z, the second lightest powder moves in the direction other than that of the lightest powder to be extracted. When a still higher voltage is applied with two or more phases is applied to only the linear cross electrodes 34x, 34y, 34z, the third lightest powder moves in the direction other than those of the previous powder to be extracted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、粉体を例えば所定の
粒径範囲毎に分離する手段として好適な静電分級装置及
び静電分級方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic classifying apparatus and an electrostatic classifying method suitable as means for separating powder into, for example, a predetermined particle size range.

【0002】[0002]

【従来の技術】従来、この種の装置としては、複数の線
状電極からなる電極配列体に多相交流電圧を相順に印加
することにより生じる"進行波交番電界カーテン"(特公
昭54−12667号公報参照)の電気力学的浮上搬送
力を利用して、粉体を所定の粒径範囲毎に分離抽出する
ようにした特開昭62−53753号公報、特開昭60
−156568号公報等記載の静電分級装置が知られて
いる。特開昭62−53753号公報記載の静電分級装
置は、網目(マトリックス)状に張られた複数の線状電
極を備え、これらの線状電極に相順に3相交流電圧を印
加して、進行波交番電界カーテン(電界マトリックス)
を形成し、この進行波交番電界カーテンに被分級粒子を
供給して分級を行わせる装置であり、被分級粒子のうち
粒径の小さな粒子は、静電力の作用を容易に受けて、進
行波交番電界カーテンに沿って浮上搬送され、これに対
して、粒径の大きな粒子は、静電力の影響を受けにく
く、網目を通過して落下してしまうので、分級が行われ
る仕組みとなっている。
2. Description of the Related Art Conventionally, as a device of this type, a "traveling wave alternating electric field curtain" (Japanese Patent Publication No. 54-12667) produced by applying a multiphase AC voltage to an electrode array consisting of a plurality of linear electrodes in a phase order. Japanese Patent Laid-Open Publication No. 62-53753 and Japanese Patent Laid-Open Publication No. Sho 60-37553, in which powder is separated and extracted for each predetermined particle size range by utilizing the electrodynamic levitation conveying force (see Japanese Patent Publication No.
An electrostatic classification device described in Japanese Patent Publication No. 156568 is known. The electrostatic classification device described in JP-A-62-53753 includes a plurality of linear electrodes stretched in a mesh shape (matrix), and a three-phase AC voltage is applied to these linear electrodes in order of phase, Traveling wave alternating electric field curtain (electric field matrix)
Is a device for performing classification by supplying particles to be classified to this traveling wave alternating electric field curtain, and particles having a small particle size among the particles to be classified are easily subjected to the action of an electrostatic force, Levitated along the alternating electric field curtain, on the other hand, particles with a large particle size are less susceptible to the influence of electrostatic force and fall through the mesh, so classification is performed. .

【0003】一方、特開昭60−156568号公報記
載の静電分級装置は、傾斜配置の分級板と、該分級板の
上面に被処理粉体を供給する供給手段と、分級板に振動
を与えて該分級板上に供給された被処理粉体を傾斜面に
沿って下流側に機械的に移動させる加振手段と、分級板
の板面に沿って傾斜の向きと略直角方向に移動電界を生
成する移動電界発生手段とからなり、粒径の小さな粉体
は、移動電界に沿って沿って傾斜の向きと略直角方向に
搬送され、これに対して、粒径の大きな粉体は、傾斜面
に沿って下流側に機械的に滑落させられるので、分級が
行われる仕組みとなっている。
On the other hand, the electrostatic classification device described in Japanese Patent Laid-Open No. 60-156568 discloses an inclined classification plate, a supply means for supplying the powder to be treated to the upper surface of the classification plate, and a vibration for the classification plate. A vibrating means for mechanically moving the powder to be treated supplied on the classifying plate to the downstream side along the inclined surface, and moving along the plate surface of the classifying plate in a direction substantially perpendicular to the direction of inclination. The powder having a small particle size is conveyed along the moving electric field in a direction substantially perpendicular to the direction of the inclination, whereas the powder having a large particle size is formed by a moving electric field generating means for generating an electric field. Since it can be mechanically slid to the downstream side along the slope, classification is performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開昭
62−53753号公報記載の静電分級装置にあって
は、装置の使用を重ねると、小さな網目に目詰まりが生
じ、粒径の大きな粒子が網目を通過できなくなり、分級
能力の低下を招くという問題がある。また、被分級粒子
を浮上搬送するに足る進行波交番電界カーテン(電界マ
トリックス)を形成するためには高周波高電圧電源が必
要であり、このような高周波高電圧は、不安定になり易
く、進行波交番電界カーテンが少しでも乱れると、粒径
の小さな粒子も網目を通過して落下する虞がある。加え
て、網目を通過できない程の粒径の大きな粒子について
は、分級を行うことができないという欠点もあった。
However, in the electrostatic classification device described in Japanese Patent Laid-Open No. 62-53753, when the device is repeatedly used, small meshes are clogged and particles having a large particle size are generated. Cannot pass through the mesh, leading to a reduction in classification ability. Further, in order to form a traveling wave alternating electric field curtain (electric field matrix) sufficient for levitating and transporting the particles to be classified, a high frequency high voltage power source is necessary, and such a high frequency high voltage is likely to become unstable and If the wave alternating electric field curtain is disturbed as much as possible, particles with a small particle size may pass through the mesh and fall. In addition, there is also a drawback that classification cannot be performed on particles having a large particle size that cannot pass through the mesh.

【0005】一方、特開昭60−156568号公報記
載の静電分級装置にあっては、分級板の傾斜が少しでも
急峻になると、粒径の大きな粉体に混じって、粒径の小
さな粉体も傾斜面に沿って下流側に滑落する虞があり、
分級能力の低下を招くことになる。一方、分級板の傾斜
が少しでも緩やかになると、粒径の大きな粉体が分級板
上に滞り、このことが、粒径の小さな粉体の移動を妨げ
る原因となって、やはり分級能力の低下を招くという不
都合が生じる。しかも、分級板の最適な傾斜角度は、被
処理粉体の材質、温度湿度条件、経時変化等で変動する
ため、その調整は、大変困難であるという問題がある。
On the other hand, in the electrostatic classifier described in Japanese Patent Laid-Open No. 60-156568, when the inclination of the classifying plate becomes steep as much as possible, it is mixed with powder having a large particle size and powder having a small particle size. There is a risk that the body will also slide down along the inclined surface,
This will lead to a decline in classification ability. On the other hand, if the inclination of the classifying plate becomes even gentler, the powder with a large particle size stays on the classifying plate, which hinders the movement of the powder with a small particle size, which also reduces the classification ability. The inconvenience of causing In addition, the optimum tilt angle of the classifying plate varies depending on the material of the powder to be treated, temperature and humidity conditions, changes over time, etc., so that there is a problem that its adjustment is very difficult.

【0006】この発明は、上述の事情に鑑みてなされた
もので、精度と安定度の高い分級処理を簡単な操作と調
整で行うことができると共に、大か小かの2種類の分級
にとどまらず、必要に応じて、何等級にも細かく分級で
きる静電分級装置及び静電分級方法を提供することを目
的としている。
The present invention has been made in view of the above circumstances, and can perform classification processing with high accuracy and stability with simple operation and adjustment, and is limited to two types of classification, large and small. First, it is an object of the present invention to provide an electrostatic classification device and an electrostatic classification method capable of finely classifying into any number of grades as needed.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、複数の線状電極が一方向に
かつ相順に繰り返し配列されてなる縞状の電極配列体の
少なくとも一方側が絶縁層で被覆され、該絶縁層の表面
が被処理粉体の分級処理を行う処理面となっている分級
用固定子と、上記複数の線状電極に対して、所定の周期
又はタイミングで変動する複数相の電圧を印加する電圧
印加手段とを備え、上記処理面上の所定の初期位置に載
置された被処理粉体に対して所定の強さの静電力を作用
させると、該静電力によって移動する粒径の小さな粉体
グループと、移動せずに取り残される粒径の大きなグル
ープとに分かれることを利用する静電分級装置であっ
て、上記電圧印加手段は、制御部又は操作部から供給さ
れる所定の昇圧信号に基づいて、上記複数の線状電極に
印加すべき上記複数相の電圧を所定量昇圧して出力する
ことを特徴としている。なお、この発明において、粉体
とは、粒体、繊維屑、微小片等を含む概念である。
In order to solve the above problems, the invention according to claim 1 provides at least a striped electrode array in which a plurality of linear electrodes are repeatedly arranged in one direction and in sequence. The one side is covered with an insulating layer, the surface of the insulating layer is a treatment surface for performing the classification treatment of the powder to be treated, and a predetermined cycle or timing with respect to the plurality of linear electrodes. And a voltage applying means for applying a voltage of a plurality of phases that fluctuate in, when an electrostatic force of a predetermined strength is applied to the powder to be processed placed at a predetermined initial position on the processing surface, An electrostatic classification device that utilizes the fact that it is divided into a powder group having a small particle size that is moved by the electrostatic force and a group having a large particle size that is left without moving, wherein the voltage applying means is a control unit or Predetermined boosting signal supplied from the operating unit Based on, it is characterized by outputting a voltage of said plurality of linear electrodes on the plurality of phases to be applied by a predetermined amount boosting. In the present invention, the term “powder” is a concept including particles, fiber scraps, minute pieces, and the like.

【0008】また、請求項2記載の発明は、請求項1記
載の静電分級装置であって、上記分級用固定子は、上記
線状電極となる導電性線材と、絶縁性繊維とが、互いに
縦糸・横糸となって織り込まれた電極織物と、該電極織
物の少なくとも表面を被覆する上記絶縁層とを有してな
ることを特徴としている。
The invention according to claim 2 is the electrostatic classifying device according to claim 1, wherein the classifying stator includes a conductive wire to be the linear electrode and an insulating fiber. It is characterized by comprising an electrode fabric woven into each other as warp yarns and weft yarns, and the insulating layer covering at least the surface of the electrode fabric.

【0009】また、請求項3記載の発明は、複数の線状
電極が一方向にかつ相順に繰り返し配列されてなると共
に、これらの線状電極に直交する方向に複数の線状バイ
アス電極が配線されてなる格子状の電極配列体の少なく
とも一方側が絶縁層で被覆され、該絶縁層の表面が被処
理粉体の分級処理を行う処理面となっている分級用固定
子と、上記複数の線状電極に対して、所定の周期又はタ
イミングで変動する複数相の電圧を印加する電圧印加手
段とを備え、上記処理面上の所定の初期位置に載置され
た被処理粉体に対して所定の強さの静電力を作用させる
と、該静電力によって移動する粒径の小さな粉体グルー
プと、移動せずに取り残される粒径の大きなグループと
に分かれることを利用する静電分級装置であって、上記
電圧印加手段は、上記複数の線状バイアス電極に対して
一定のバイアス直流電圧を印加すると共に、制御部又は
操作部から供給される所定の昇圧信号に基づいて、上記
複数の線状電極に印加すべき上記複数相の電圧を所定量
昇圧して出力することを特徴としている。
According to a third aspect of the present invention, a plurality of linear electrodes are repeatedly arranged in one direction and in a phase order, and a plurality of linear bias electrodes are arranged in a direction orthogonal to these linear electrodes. At least one side of the grid-like electrode array thus formed is covered with an insulating layer, and the surface of the insulating layer serves as a treated surface for classifying the powder to be treated. Voltage applying means for applying voltages of a plurality of phases that fluctuate at a predetermined cycle or timing to the electrode electrode, and a predetermined value for the powder to be processed placed at a predetermined initial position on the processing surface. The electrostatic classification device utilizes the fact that when an electrostatic force of strength is applied, it is divided into a powder group with a small particle size that moves due to the electrostatic force and a group with a large particle size that remains without moving. Then, the voltage applying means, The plurality of linear phases to be applied to the plurality of linear electrodes based on a predetermined boosting signal supplied from the control unit or the operation unit while applying a constant bias DC voltage to the plurality of linear bias electrodes. It is characterized by boosting the voltage of a predetermined amount and outputting it.

【0010】また、請求項請求項4記載の発明は、互い
に直交する複数の第1の線状電極と複数の第2の線状電
極とがそれぞれ相順に繰り返し配列されてなる格子状の
電極配列体の少なくとも一方側が絶縁層で被覆され、該
絶縁層の表面が被処理粉体の分級処理を行う処理面とな
っている分級用固定子と、上記複数の第1又は/及び第
2の線状電極に対して、所定の周期又はタイミングで変
動する複数相の電圧を印加する電圧印加手段とを備え、
上記処理面上の所定の初期位置に載置された被処理粉体
に対して所定の強さの静電力を作用させると、該静電力
によって移動する粒径の小さな粉体グループと、移動せ
ずに取り残される粒径の大きなグループとに分かれるこ
とを利用する静電分級装置であって、上記電圧印加手段
は、制御部又は操作部から供給される所定の昇圧信号に
基づいて、上記複数の線状電極に印加すべき複数相の電
圧を所定量昇圧して出力することを特徴としている。
The invention according to claim 4 is a grid-shaped electrode array in which a plurality of first linear electrodes and a plurality of second linear electrodes that are orthogonal to each other are arranged in sequence in order. At least one side of the body is covered with an insulating layer, and the surface of the insulating layer serves as a treated surface for classifying the powder to be treated, and a plurality of the first or / and second wires. Voltage-applying means for applying a voltage of a plurality of phases that fluctuate at a predetermined cycle or timing to the electrode electrode,
When an electrostatic force having a predetermined strength is applied to the powder to be processed placed at a predetermined initial position on the processing surface, the powder group having a small particle size and moved by the electrostatic force are moved. In the electrostatic classification device, the voltage applying means utilizes the fact that the particle size is divided into a large particle size group that is left behind, and the plurality of voltage applying means are based on a predetermined boosting signal supplied from a control unit or an operation unit. It is characterized in that the voltages of a plurality of phases to be applied to the linear electrodes are boosted by a predetermined amount and output.

【0011】また、請求項5記載の発明は、請求項3又
は4記載の静電分級装置であって、上記分級用固定子
は、上記線状電極又は第1の線状電極となる第1の導電
性線材と、上記線状バイアス電極又は第2の線状電極と
なる第2の導電性線材とが、互いに縦糸・横糸となって
織り込まれた電極織物と、該電極織物の少なくとも表面
を被覆する上記絶縁層とを有してなり、かつ、上記第1
及び第2の導電性線材のうち、少なくとも一方は、絶縁
被覆されていることを特徴としている。
The invention according to claim 5 is the electrostatic classification device according to claim 3 or 4, wherein the classification stator is the linear electrode or the first linear electrode. And a second conductive wire that becomes the linear bias electrode or the second linear electrode are woven as warp yarns and weft yarns into each other, and at least the surface of the electrode fabric. The insulating layer for coating, and the first
At least one of the second conductive wire and the second conductive wire is coated with an insulating material.

【0012】また、請求項6記載の発明は、請求項1,
3又は4記載の静電分級装置であって、上記分級用固定
子は、上記処理面の少なくとも一部が曲面となってい
て、所定の被処理粉体の移動先の位置が、傾斜面上か、
又は逆さまの面に設定されていることを特徴としてい
る。
Further, the invention according to claim 6 is based on claim 1,
3. The electrostatic classification device according to 3 or 4, wherein at least a part of the processing surface of the stator for classification is a curved surface, and the position of the predetermined destination of the powder to be processed is on the inclined surface. Or
Or, it is characterized by being set upside down.

【0013】また、請求項7記載の発明は、請求項1又
は3記載の静電分級装置を用いて被処理粉体を所定の粒
径範囲毎に分離抽出する静電分級方法であって、上記電
圧印加手段を制御して、上記処理面上の所定の初期位置
に載置された被処理粉体に、所定の強さの静電力を作用
させ、さらに、所定の処理期間経過毎に、上記静電力を
段階的に強めて行くことで、粒径の小さなグループから
逐次静電移動させて分離抽出することを特徴としてい
る。
The invention according to claim 7 is an electrostatic classification method for separating and extracting a powder to be treated in a predetermined particle size range by using the electrostatic classification device according to claim 1 or 3. By controlling the voltage applying means, the powder to be processed placed at a predetermined initial position on the processing surface, an electrostatic force of a predetermined strength is applied, and further, each time a predetermined processing period elapses, It is characterized in that the electrostatic force is gradually strengthened in a stepwise manner so that the groups having a small particle size are sequentially electrostatically moved to be separated and extracted.

【0014】さらにまた、請求項8記載の発明は、請求
項4記載の静電分級装置を用いて被処理粉体を所定の粒
径範囲毎に分離抽出する静電分級方法であって、上記電
圧印加手段を制御して、上記処理面上の所定の初期位置
に載置された被処理粉体に、所定の強さでかつ所定の向
きの静電力を作用させ、さらに、所定の処理期間経過毎
に、上記静電力を段階的に強めて行くと共に、静電力の
向きを変えて行くことで、粒径の小さなグループから、
逐次、互いに異なる方向に静電移動させて分離抽出する
ことを特徴としている。
Furthermore, the invention according to claim 8 is the electrostatic classification method for separating and extracting the powder to be treated for each predetermined particle size range by using the electrostatic classification device according to claim 4. The voltage applying means is controlled to apply an electrostatic force having a predetermined strength and a predetermined direction to the powder to be processed placed at a predetermined initial position on the processing surface, and further, for a predetermined processing period. By increasing the electrostatic force stepwise with each passage, and changing the direction of the electrostatic force, from the group of small particle size,
It is characterized in that it is sequentially electrostatically moved in different directions and separated and extracted.

【0015】[0015]

【作用】請求項1記載の構成において、上記電圧印加手
段は、制御部又は操作部から供給される所定の昇圧信号
に基づいて、上記複数の線状電極に印加すべき上記複数
相の電圧を所定量昇圧して出力する。被処理粉体を所定
の粒径範囲毎に分離するには、線状電極に印加すべき複
数相の電圧を最初は低電圧に設定する。すると、(弱い
静電力でも容易に動く)粒径の一番小さな軽いグループ
(粉体)がまず動き始める。最初の分級処理が終了する
と、今度は、線状電極に印加すべき複数相の電圧を所定
量高めに設定変更する。静電力が強められ、粒径の次に
小さなグループが動き始める。この後も、線状電極に印
加すべき複数相の電圧を段階的に昇圧することを繰り返
せば、粒径の小さなグループから順番に粒径の大きなグ
ループまで分離抽出される(請求項7)。それ故、昇圧
をこきざみに繰り返せば、これに応じて、何等級にも細
かく分級できる。
In the structure of claim 1, the voltage applying means applies the voltages of the plurality of phases to be applied to the plurality of linear electrodes on the basis of a predetermined boosting signal supplied from the control section or the operating section. It boosts a predetermined amount and outputs. In order to separate the powder to be processed into predetermined particle size ranges, the voltages of the multiple phases to be applied to the linear electrodes are initially set to low voltages. Then, the lightest group (powder) with the smallest particle size (which easily moves even with weak electrostatic force) starts to move. When the first classification process is completed, this time, the voltage of the plurality of phases to be applied to the linear electrode is set and changed to be higher by a predetermined amount. The electrostatic force is strengthened, and the next smaller group of particles starts to move. After that, if the voltage of the plurality of phases to be applied to the linear electrode is stepwise increased, the groups having a smaller particle size are sequentially separated and extracted from the group having a smaller particle size (claim 7). Therefore, if the pressurization is repeated repeatedly, it is possible to finely classify into several grades accordingly.

【0016】また、線状電極として断面円形の導電性線
材を用い、該導電性線材と絶縁性繊維とを互いに縦糸・
横糸として所定のピッチで織り込んで行き電極織物の形
態にすることで、線状電極の配線をなすようにすれば、
長尺の分級装置が容易に得られる上、線状電極の周縁が
滑らかなので絶縁破壊を回避できる(請求項2)。ま
た、処理面を曲面にして、被処理粉体の移動先の位置を
傾斜面又は逆さまの面に設定することも自在にできる。
このような曲面構成では、被処理粉体が傾斜面上又は逆
さまの移動先に到達した時点で、静電力の作用を中断又
は終了させるようにすれば、被処理粉体が滑落又は落下
し易くなるので、回収が容易となる(請求項6)。
Further, a conductive wire having a circular cross section is used as the linear electrode, and the conductive wire and the insulating fiber are mutually warped and
By weaving at a predetermined pitch as a weft and making it into a form of an electrode woven fabric, the wiring of the linear electrodes can be formed.
A long classifier can be easily obtained, and since the peripheral edge of the linear electrode is smooth, dielectric breakdown can be avoided (claim 2). Further, it is possible to freely set the processing surface to a curved surface and set the position of the movement destination of the powder to be processed to an inclined surface or an inverted surface.
In such a curved surface configuration, when the powder to be processed reaches the destination on the inclined surface or upside down, if the action of the electrostatic force is interrupted or terminated, the powder to be processed easily slips or falls. Therefore, the collection becomes easy (claim 6).

【0017】また、請求項3記載の構成では、請求項1
記載の構成に加えて、線状電極と直交する方向に線状バ
イアス電極が設けられていて、該線状バイアス電極には
バイアス直流電圧が投入される。したがって、移動中の
被処理粉体は、線状バイアス電極から絶えず静電吸引力
の作用を受けるので、該線状バイアス電極に沿って直進
する。電極織物の形で配線された線状電極は、直交糸と
一本ずつ交互に上下して、浮沈しながら交錯する状態で
織り込まれているので、被処理粉体は紆余曲折した行動
をとりがちである。それ故、請求項3記載の構成は、線
状電極が、電極織物の形で配線される場合に、その直交
糸に適用して、特に有用である。
According to the third aspect of the invention, the first aspect of the invention is as follows.
In addition to the described structure, a linear bias electrode is provided in a direction orthogonal to the linear electrode, and a bias DC voltage is applied to the linear bias electrode. Therefore, the moving powder to be processed is continuously subjected to the electrostatic attraction force from the linear bias electrode, and thus moves straight along the linear bias electrode. The linear electrodes wired in the form of electrode fabric are woven in a state where they cross up and down alternately with the orthogonal threads one by one, so the powder to be treated tends to bend and bend. Is. Therefore, the configuration according to claim 3 is particularly useful when the linear electrode is wired in the form of an electrode fabric and applied to the orthogonal thread thereof.

【0018】請求項4記載の構成では、複数の第1の線
状電極と複数の第2の線状電極とが互いに直交する状態
に配列されているので、被処理粉体は、2次元移動が可
能である。被処理粉体を所定の粒径範囲毎に分級するに
は、前記電圧印加手段を制御して、例えば、まず、複数
の第1の線状電極のみに複数相の低電圧を印加する。す
ると、(弱い静電力でも容易に動く)1番軽いグループ
が、第1の線状電極の長さ方向に直交する例えば右側の
方向にまず動き始めて分離抽出される。次に、複数の第
1の線状電極と複数の第2の線状電極との双方に一段と
昇圧した複数相の電圧を印加する。すると、2番目に軽
いグループが、第1及び第2の線状電極のそれぞれに対
して45度の方向に動き始めて抽出される。次に、第2
の線状電極にさらに一段と昇圧した複数相の電圧を印加
する。すると、3番目に軽い粒径のグループが、第1の
線状電極に沿う方向に動いて抽出される。以下、複数相
の電圧を段階的に昇圧することを繰り返し、昇圧する度
に、移動先の向きを2次元的に変える制御を行うように
すれば、粒径の小さな軽いグループから順番に、移動先
を変えながら分離抽出される(請求項8)。それ故、昇
圧をこきざみに繰り返せば、これに応じて、何等級にも
細かく分級できる。しかも、互いの移動先が異なるの
で、分離抽出後の回収が一段と容易である。
In the structure of claim 4, the plurality of first linear electrodes and the plurality of second linear electrodes are arranged in a state of being orthogonal to each other, so that the powder to be processed is two-dimensionally moved. Is possible. In order to classify the powder to be treated in a predetermined particle size range, the voltage applying means is controlled so that, for example, first, low voltages of a plurality of phases are applied only to the plurality of first linear electrodes. Then, the lightest group (which easily moves even with a weak electrostatic force) first starts to move in a direction, for example, the right side orthogonal to the length direction of the first linear electrode, and is separated and extracted. Next, a further increased voltage of a plurality of phases is applied to both the plurality of first linear electrodes and the plurality of second linear electrodes. Then, the second lightest group starts to move in the direction of 45 degrees with respect to each of the first and second linear electrodes and is extracted. Then the second
The voltage of a plurality of phases further boosted is applied to the linear electrode of. Then, the group with the third lightest particle size moves in the direction along the first linear electrode and is extracted. Hereinafter, if the voltage of a plurality of phases is repeatedly stepped up, and the control is performed to change the direction of the moving destination two-dimensionally every time the voltage is stepped up, the particles are moved in order from the smaller particle size group. Separation and extraction are performed while changing the destination (claim 8). Therefore, if the pressurization is repeated repeatedly, it is possible to finely classify into several grades accordingly. Moreover, since the destinations of movement are different from each other, recovery after separation and extraction is much easier.

【0019】[0019]

【実施例】以下、図面を参照してこの発明の実施例につ
いて説明する。 ◇第1実施例 図1は、この発明の第1実施例である誘導電荷形の静電
分級装置の構成を示す斜視図であり、この例の静電分級
装置は、被処理粉体に対し静電搬送力を発生する分級用
固定子1と、該分級用固定子1に3相の電圧をレベル可
変に印加する電気回路部2とから概略構成されている。
図2は、分級用固定子1の電極構造を示す平面図、図3
は同分級用固定子1の構成を分解して示す分解斜視図、
また、図4は同分級用固定子1の断面図である。まず、
分級用固定子1から説明する。上記分級用固定子1は、
3相の線状電極31a,31b,31c,…が一方向に
かつ相順に繰り返し配列されてなる電極配列体3と、該
電極配列体3を上下面から挟持する一対の絶縁フィルム
4,4と、フィルム間充填材5とから構成されている。
上記電極配列体3は、複数の導電性線材(この例では、
線径40μmの銅線を使用)31'a,31'b,31'
c,…を縦糸又は横糸とし、絶縁性繊維(この例では、
線径40μmのポリエステル繊維を使用)32,32,
…を直交糸として、1本ずつ互い違いに所定のピッチで
平織して構成されるもので、複数の導電性線材31'
a,31'b,31'c,…が、このように織り込まれる
ことによって所定のピッチ(この例では、80μm)の
線状電極31a,31b,31c,…が形成されてい
る。これらの線状電極31a,31b,31c,…は、
図1に示すように、2つおきに直列又は並列に結線され
て、各相の固定子電極群を構成している。すなわち、線
状電極31a,31a,…は、互いに接続されてA相の
固定子電極群を、線状電極31b,31b,…は、互い
に接続されてB相の固定子電極群を、また、線状電極3
1c,31c,…は、互いに接続されてC相の固定子電
極群をそれぞれ構成している。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a perspective view showing the configuration of an induction charge type electrostatic classification device according to a first embodiment of the present invention. The electrostatic classification device of this example is applied to powder to be treated. It is roughly composed of a classification stator 1 that generates an electrostatic carrying force, and an electric circuit unit 2 that applies a three-phase voltage to the classification stator 1 in a variable level.
FIG. 2 is a plan view showing an electrode structure of the classification stator 1, and FIG.
Is an exploded perspective view showing an exploded configuration of the stator 1 for classification,
FIG. 4 is a sectional view of the stator 1 for classification. First,
The classification stator 1 will be described first. The classification stator 1 is
An electrode array body 3 in which three-phase linear electrodes 31a, 31b, 31c, ... Are repeatedly arranged in one direction and in phase order, and a pair of insulating films 4 and 4 sandwiching the electrode array body 3 from the upper and lower surfaces. , And the inter-film filling material 5.
The electrode array 3 includes a plurality of conductive wires (in this example,
Use copper wire with wire diameter 40μm) 31'a, 31'b, 31 '
c, ... Are warp threads or weft threads, and insulating fibers (in this example,
Polyester fiber with a wire diameter of 40 μm is used) 32, 32,
.. are formed by alternately weaving one by one with a predetermined pitch and using a plurality of conductive wires 31 '.
The a, 31'b, 31'c, ... Are woven in this way to form the linear electrodes 31a, 31b, 31c, ... With a predetermined pitch (80 μm in this example). These linear electrodes 31a, 31b, 31c, ...
As shown in FIG. 1, every two lines are connected in series or in parallel to form a stator electrode group for each phase. That is, the linear electrodes 31a, 31a, ... Are connected to each other to form the A-phase stator electrode group, and the linear electrodes 31b, 31b, ... Are connected to each other to form the B-phase stator electrode group. Linear electrode 3
, 1c, 31c, ... Are connected to each other to form a C-phase stator electrode group.

【0020】上記絶縁フィルム4,4には、例えば、表
面抵抗率が1015Ω/□以上で無帯電処理のなされた膜
厚1μm〜200μmのPET(ポリエチレンテレフタ
レート)フィルムが用いられ、上部側の絶縁フィルム4
の表面が、被処理粉体6,6,…を搬送する処理面4a
として利用される。また、上記フィルム間充填材(この
例では、ニッシリ製エポキシ樹脂”プラキャスト”を使
用)5は、電極配列体3に生じた織目を埋めて電極ピッ
チを固定すると共に、電極配列体3を挟んで対向する一
対の絶縁フィルム4,4を互いに接合するために用いら
れる。
As the insulating films 4 and 4, for example, a PET (polyethylene terephthalate) film having a surface resistivity of 10 15 Ω / □ or more and a thickness of 1 μm to 200 μm, which is non-charged, is used. Insulation film 4
The surface is a processing surface 4a that carries the powders 6, 6, ...
Used as. In addition, the inter-film filler (in this example, Nissili epoxy resin "Plastic" is used) 5 fills the texture generated in the electrode array 3 to fix the electrode pitch, and It is used to bond a pair of insulating films 4 and 4 which are opposed to each other by sandwiching them.

【0021】上記構成の分級用固定子1を作製するに
は、まず、図示せぬ織機を用いて、電極配列体3を織り
あげ、織りあげた電極配列体3を(この静電分級装置が
組み込まれる装置、システムの規模に応じた)所定の寸
法に裁断した後、片方の絶縁フィルム4の上に重ねて置
く。次に、絶縁フィルム4上の電極配列体3の上から流
動状態のフィルム間充填材5を塗布する。塗布されたフ
ィルム間充填材5は、電極配列体3の織目から下方の絶
縁フィルム4の内面にまで到達する。この後、もう片方
の絶縁フィルム4を電極配列体3の上に重ねて置く。最
後に、圧着機を用いて、一対の絶縁フィルム4,4の両
側から圧力を加え、各絶縁フィルム4と電極配列体3と
を密着状態にしてフィルム間充填材5を硬化させて、分
級用固定子1を完成させる。
In order to produce the classification stator 1 having the above-mentioned structure, first, a weaving machine (not shown) is used to weave the electrode array 3 and the woven electrode array 3 (this electrostatic classification device After cutting into a predetermined size (depending on the device and the scale of the system to be incorporated), it is placed on one of the insulating films 4 in an overlapping manner. Next, the inter-film filler 5 in a fluid state is applied from above the electrode array 3 on the insulating film 4. The applied inter-film filler 5 reaches the inner surface of the insulating film 4 below from the texture of the electrode array 3. Then, the other insulating film 4 is placed on the electrode array body 3 in an overlapping manner. Finally, using a pressure bonding machine, pressure is applied from both sides of the pair of insulating films 4 and 4 to bring the insulating films 4 and the electrode array 3 into close contact with each other to cure the inter-film filler 5 for classification. Complete the stator 1.

【0022】次に、電気回路部2の電気的構成について
説明する。図5は、電気回路部の電気的構成を示すブロ
ック図である。同図に示すように、この例の電気回路部
2は、複数の直流電圧を可変に出力する電源回路21
と、この電源回路21と電極配列体3の各相の固定子電
極群との間に介挿されるスイッチング素子22a,22
b,22cと、制御回路23とからなっている。上記電
源回路21は、商用交流を直流に変えるAC/DC変換
器と、電圧可変回路等から構成され、3種類の電圧(正
電圧+V、負電圧−V、ゼロ電圧0V)を出力する。上
記電圧可変回路は、制御回路23から供給されるレベル
設定信号に基づいて、出力電圧のレベルを設定/変更す
る。スイッチング素子22a,22b,22cは、制御
回路23から所定のタイミングで送られてくる3相電圧
生成信号に基づいて、電源回路21から供給される3種
類の電圧(正電圧+V、負電圧−V、ゼロ電圧0V)の
中から所定の順序で一つずつ選択して行くことにより、
3相の電圧(矩形波パルス電圧)を生成して、各相の固
定子電極群に印加する。また、制御回路23は、CPU
(中央処理装置)、ROM、RAM等を備え、上記した
電源回路21及びスイッチング素子22a,22b,2
2cの制御を始めとする装置各部の制御を行う。上記固
定子電極群を構成する線状電極31a,31b,31
c,…に対して、スイッチング素子22a,22b,2
2cから3相の電圧が印加されると、処理面4a近傍の
空間に進行波電界が形成され、処理面4a上の被処理粉
体6,6,…の中から所定の粒径範囲の粉体に対する静
電搬送力が発生する。
Next, the electrical configuration of the electric circuit section 2 will be described. FIG. 5 is a block diagram showing the electrical configuration of the electric circuit section. As shown in the figure, the electric circuit unit 2 of this example includes a power supply circuit 21 that variably outputs a plurality of DC voltages.
And switching elements 22a, 22 interposed between the power supply circuit 21 and the stator electrode group of each phase of the electrode array 3.
b, 22c and a control circuit 23. The power supply circuit 21 includes an AC / DC converter that converts commercial alternating current into direct current, a voltage variable circuit, and the like, and outputs three types of voltages (positive voltage + V, negative voltage −V, zero voltage 0V). The voltage variable circuit sets / changes the level of the output voltage based on the level setting signal supplied from the control circuit 23. The switching elements 22a, 22b, 22c have three types of voltages (positive voltage + V, negative voltage -V) supplied from the power supply circuit 21 based on a three-phase voltage generation signal sent from the control circuit 23 at a predetermined timing. , Zero voltage 0V) by selecting one by one in a predetermined order,
Three-phase voltage (rectangular wave pulse voltage) is generated and applied to the stator electrode group of each phase. Further, the control circuit 23 is a CPU
(Central processing unit), ROM, RAM, etc., and the above-mentioned power supply circuit 21 and switching elements 22a, 22b, 2
The control of each part of the apparatus including the control of 2c is performed. The linear electrodes 31a, 31b, 31 forming the stator electrode group
For c, ..., Switching elements 22a, 22b, 2
When a voltage of three phases from 2c is applied, a traveling wave electric field is formed in the space near the processing surface 4a, and powder having a predetermined particle size range is selected from the powders 6, 6, ... An electrostatic transport force is generated on the body.

【0023】次に、図6及び図7を参照して、粉体の静
電移動(搬送)原理について説明する。なお、説明の都
合上、大小2個の粉体(アルミ粉体)61a,61bの
みを取扱い、処理面4a上にはこれら大小2個の粉体6
1a,61bが互いに接触状態で載置されているとす
る。大きな粉体61aの粒径は300μm、小さな粉体
61bの粒径は100μmである。まず、制御回路23
は、所定のレベル設定信号を電源回路21に送出すると
共に、3相電圧生成信号をスイッチング素子22a,2
2b,22cに送出して、図6(a)に示すように、A
相の固定子電極群(線状電極31a,31a,…)に低
電圧の正電圧+V,B相の固定子電極群(線状電極31
b,31b,…)にゼロ電圧0V、C相の固定子電極群
(線状電極31c,31c,…)に低電圧の負電圧−V
を印加させる。すると、同図(b)に示すように、始め
は電荷の存在していなかった粉体61a,61b間に微
弱な電流が流れ、図中左側の粉体61aに(線状電極3
1aの電荷と逆極の)負の電荷が誘導され、一方、図中
右側の粉体61bには(線状電極31cの電荷と逆極
の)正の電荷が誘導(充電)されて平衡状態になる。こ
の結果、左側の粉体61aには一番近くにある線状電極
31aの向きに、一方、右側の粉体61bには一番近く
にある線状電極31cの向きにそれぞれ静電吸引力が働
く。しかしながら、静電吸引力が弱いので、両粉体61
a,61bは静電吸引力の方向にまだ動かない。ここ
で、一旦、各線状電極に対する3相の電圧の供給を遮断
すると、粉体61a,61bに先程と逆向きの電流が流
れて正負の誘導電荷は消失する。
Next, the principle of electrostatic movement (conveyance) of powder will be described with reference to FIGS. 6 and 7. For convenience of explanation, only two large and small powders (aluminum powders) 61a and 61b are handled, and two large and small powders 6 are provided on the processing surface 4a.
It is assumed that 1a and 61b are placed in contact with each other. The particle size of the large powder 61a is 300 μm, and the particle size of the small powder 61b is 100 μm. First, the control circuit 23
Sends a predetermined level setting signal to the power supply circuit 21 and sends a three-phase voltage generation signal to the switching elements 22a, 2
2b, 22c, and as shown in FIG.
Low-voltage positive voltage + V to the phase stator electrode group (linear electrodes 31a, 31a, ...) And the B-phase stator electrode group (linear electrode 31
b, 31b, ...) With a zero voltage of 0 V, and a C-phase stator electrode group (linear electrodes 31c, 31c, ...) With a low negative voltage -V.
Is applied. Then, as shown in (b) of the figure, a weak current flows between the powders 61a and 61b that initially had no charge, and the powder 61a on the left side of the figure (the linear electrode 3
Negative charge (inverse polarity of 1a) is induced, while positive charge (inverse polarity of charge of the linear electrode 31c) is induced (charged) in the powder 61b on the right side in the figure, resulting in an equilibrium state. become. As a result, the electrostatic attraction force is applied in the direction of the linear electrode 31a closest to the left powder 61a, and to the linear electrode 31c of the nearest powder 61b in the right direction. work. However, since the electrostatic attraction is weak, both powders 61
a and 61b still do not move in the direction of the electrostatic attraction force. Here, once the supply of the three-phase voltage to each linear electrode is cut off, a current in the opposite direction to the above flows through the powders 61a and 61b, and the positive and negative induced charges disappear.

【0024】次に、制御回路23は、電源回路21に所
定のレベル信号を送出して、出力電圧を最初の設定値よ
りも一段昇圧させる。そして、スイッチング素子22
a,22b,22cに3相電圧生成信号を送出して、A
相の固定子電極群(線状電極31a,31a,…)に最
初に較べて一段昇圧した正電圧+V,B相の固定子電極
群(線状電極31b,31b,…)にゼロ電圧0V、C
相の固定子電極群(線状電極31c,31c,…)に一
段昇圧した負電圧−Vを改めて印加させる。すると、粉
体61a,61b間に最初よりも一段大きな電流が流
れ、左側の粉体61aに負の電荷が一段多く誘導され、
一方、右側の粉体61bにも一段多く正の電荷が誘導さ
れる。処理面4a近傍の空間の静電界も一段強くなる。
この結果、左側の粉体61aには一番近くにある線状電
極31aの向きに、一方、右側の粉体61bには一番近
くにある線状電極31cの向きにそれぞれ一段強くなっ
た静電吸引力が働く。右側の大きな粉体61aは、重い
ので、これでも依然動かないが、しかし、左側の小さな
粉体61bは、軽いので、同図(c)に示すように、右
側の大きな粉体61aから離れて線状電極31cの直上
まで移動する。このとき、両粉体61a,61bは、互
いに逆極の誘導電荷を有したまま、離れるので、右側の
粉体61aは、負極に帯電し、左側の粉体は正極に帯電
する。
Next, the control circuit 23 sends a predetermined level signal to the power supply circuit 21 to raise the output voltage by one step above the initial set value. Then, the switching element 22
Send a three-phase voltage generation signal to a, 22b, and 22c, and
A positive voltage + V boosted by one step compared to the phase stator electrode group (linear electrodes 31a, 31a, ...) First, zero voltage 0V to the B phase stator electrode group (linear electrodes 31b, 31b, ...), C
The negative voltage -V boosted by one step is applied again to the phase stator electrode group (linear electrodes 31c, 31c, ...). Then, an electric current that is one step larger than that at the beginning flows between the powders 61a and 61b, and more negative charges are induced in the powder 61a on the left side,
On the other hand, more positive charges are induced in the powder 61b on the right side. The electrostatic field in the space near the processing surface 4a also becomes stronger.
As a result, the static electricity becomes stronger toward the linear electrode 31a closest to the left powder 61a, and toward the linear electrode 31c closest to the right powder 61b. Electric attraction works. The large powder 61a on the right side is heavy, so it still does not move. However, the small powder 61b on the left side is light, so as shown in FIG. It moves to just above the linear electrode 31c. At this time, the two powders 61a and 61b separate from each other while having induced charges of opposite polarities to each other, so that the powder 61a on the right side is charged to the negative electrode and the powder on the left side is charged to the positive electrode.

【0025】次に、同図(d)に示すように、電圧を印
加する線状電極を例えば図中右にずらす。すなわち、電
圧を切り替え、A相の固定子電極群(線状電極31a,
31a,…)に負電圧−V,B相の固定子電極群(線状
電極31b,31b,…)に正電圧+V、C相の固定子
電極群(線状電極31c,31c,…)にゼロ電圧0V
を印加すると、線状電極31a,31b,31c,…の
電荷は入れ替わるが、粉体61a,61bの電荷は、帯
電しているので、元の電荷の状態を保持する。このと
き、分級用固定子7と小さな粉体61bとの電荷間の静
電力により、正極に帯電した粉体61bに対して右向き
の搬送力が発生する。この結果、同図(e)に示すよう
に、粉体61bは迅速に右に動く。一方、負極に帯電し
た大きな粉体61aに対しても右向きの静電力が作用す
るが、重いので、搬送力とはなり得ない。
Next, as shown in FIG. 3D, the linear electrode to which a voltage is applied is shifted to the right in the figure, for example. That is, the voltage is switched and the A-phase stator electrode group (the linear electrodes 31a,
31a, ...) to a negative voltage −V, a B-phase stator electrode group (linear electrodes 31b, 31b, ...) To a positive voltage + V, a C-phase stator electrode group (linear electrodes 31c, 31c, ...) Zero voltage 0V
, The electric charges of the linear electrodes 31a, 31b, 31c, ... Are exchanged, but the electric charges of the powders 61a, 61b are charged, so that the original electric charge state is maintained. At this time, due to the electrostatic force between the charges of the classification stator 7 and the small powder 61b, a rightward conveying force is generated with respect to the powder 61b charged to the positive electrode. As a result, the powder 61b quickly moves to the right as shown in FIG. On the other hand, the electrostatic force in the right direction acts on the large powder 61a charged in the negative electrode, but it is heavy and cannot be the carrying force.

【0026】次に、同図(f)に示すように、電圧を印
加する線状電極をさらに右にずらすと、分級用固定子7
と小さな粉体61bとの電荷間の静電力により、同図
(g)に示すように、正極に帯電した粉体61bはさら
に右に素早く動く。以下、電圧を印加する線状電極を右
にずらす電圧切り替え操作を繰り返す度に、粉体61a
は順次電極1ピッチずつ右に移動し、同図(h)に示す
ように、最終的に、処理面4aの図中右端面から落下し
て図示せぬ採集容器に集められる。これに対して、負極
に帯電した大きな粉体61aは、初期位置に取り残され
たままである。
Next, as shown in FIG. 6 (f), the linear electrode for applying a voltage is further shifted to the right.
By the electrostatic force between the electric charges of the small powder 61b and the small powder 61b, the powder 61b charged to the positive electrode moves further to the right as shown in FIG. Hereinafter, each time the voltage switching operation of shifting the linear electrode to which the voltage is applied to the right is repeated, the powder 61a
Sequentially move one electrode to the right by one pitch, and finally fall from the right end surface of the processing surface 4a in the figure and are collected in a collection container (not shown), as shown in FIG. On the other hand, the large powder 61a charged in the negative electrode remains left at the initial position.

【0027】粉体61bを採集(回収)した後、次に、
制御回路23は、電源回路21を制御して、出力電圧を
さらに一段昇圧する。そして、スイッチング素子22
a,22b,22cを制御して、図7(i)に示すよう
に、A相の固定子電極群(線状電極31a,31a,
…)にさらに一段昇圧した正電圧+V,B相の固定子電
極群(線状電極31b,31b,…)にゼロ電圧0V、
C相の固定子電極群(線状電極31c,31c,…)に
さらに一段昇圧した負電圧−Vを再度印加する。これに
より、処理面4a近傍の空間の静電界がさらに一段強く
なる。ここに至って、負極に帯電した大きな粉体61a
も、同図(j)に示すように、線状電極31aの直上ま
で移動する。次に、上記したように、電圧を印加する線
状電極を右にずらす電圧切り替え操作を繰り返す度に、
同図(k)〜(n)に示すように、粉体61aは順次電
極1ピッチずつ右に移動し、同図(o)に示すように、
最終的に、処理面4aの図中右端面から落下して図示せ
ぬ採集容器に集められる。
After collecting (collecting) the powder 61b, next,
The control circuit 23 controls the power supply circuit 21 to further boost the output voltage by one stage. Then, the switching element 22
By controlling a, 22b, 22c, as shown in FIG. 7 (i), the A-phase stator electrode group (the linear electrodes 31a, 31a,
...) with a further positive voltage + V, zero voltage 0V applied to the B-phase stator electrode group (linear electrodes 31b, 31b, ...).
The negative voltage -V further boosted by one step is applied again to the C-phase stator electrode group (linear electrodes 31c, 31c, ...). As a result, the electrostatic field in the space near the processing surface 4a becomes even stronger. At this point, the large powder 61a charged in the negative electrode
Also, as shown in (j) of the same figure, it moves to just above the linear electrode 31a. Next, as described above, each time the voltage switching operation of shifting the linear electrode applying the voltage to the right is repeated,
As shown in (k) to (n) of the figure, the powder 61a sequentially moves to the right by one pitch of the electrode, and as shown in (o) of the figure,
Finally, it falls from the right end surface of the processing surface 4a in the figure and is collected in a collection container (not shown).

【0028】上述の静電搬送原理では、被処理粉体がわ
ずか2個の場合を例に採り説明したが、実際には、被処
理粉体は、様々の粒径の粉体が多数混在したものであ
る。しかしながら、被処理粉体が多数混在する場合に
は、各粉体は、他の多数の粉体の何れかに必ず接触して
いるし、あるいは、衝突等により接触する可能性は非常
に高い。この状態で、固定子電極群に電圧が印加される
と、相互に接触する多数の粉体間に誘導電流が流れ(つ
まり、電荷のやり取りが行われ)、線状電極に近接する
粉体には当該線状電極の電荷と逆極の誘導電荷が発生す
る。したがって、線状電極と粉体との間で静電吸引力が
働くので、粉体同士が離反して帯電する機会は著しく高
い。
In the electrostatic transfer principle described above, the case where there are only two powders to be processed has been described as an example, but in reality, a large number of powders of various particle sizes are mixed in the powder to be processed. It is a thing. However, when a large number of powders to be treated are mixed, each powder is inevitably in contact with any of a large number of other powders, or is highly likely to be in contact with one another due to collision or the like. When a voltage is applied to the stator electrode group in this state, an induced current flows (that is, charges are exchanged) between the many powder particles that are in contact with each other, and the powder particles that are close to the linear electrodes are generated. Causes an induced charge having a polarity opposite to that of the charge of the linear electrode. Therefore, since electrostatic attraction works between the linear electrode and the powder, there is a very high chance that the powders are separated from each other and charged.

【0029】多量の被処理粉体を所定の粒径範囲毎に分
級するには、制御回路23は、電源回路21、スイッチ
ング素子22a,22b,22cを制御して、線状電極
31a,31b,31c,…に印加すべき3相の電圧を
最初は低電圧に設定する。そして、電圧を印加する線状
電極を例えば右にずらす電圧切り替え操作を繰り返す。
すると、(弱い静電力でも容易に動く)粒径の一番小さ
なグループ(粉体)がまず動き始め、処理面4aの所定
の端面から落下して図示せぬ採集容器に集められる。次
に、線状電極に印加すべき複数相の電圧を一段高めに設
定変更する。そして、電圧を印加する線状電極を例えば
右にずらす電圧切り替え操作を繰り返す。すると、粉体
の帯電量が一段増加し、静電界も一段強められるため、
今度は、粒径の次に小さなグループが動き始め、処理面
4aの所定の端面から落下して図示せぬ採集容器に集め
られる。以下、線状電極に印加すべき複数相の電圧を段
階的に昇圧することを繰り返すことにより、粒径の小さ
なグループから順番に粒径の大きなグループまで何等級
にも分離抽出される。
In order to classify a large amount of powder to be processed into a predetermined particle size range, the control circuit 23 controls the power supply circuit 21 and the switching elements 22a, 22b, 22c to form the linear electrodes 31a, 31b ,. The three-phase voltages to be applied to 31c, ... Are initially set to low voltages. Then, the voltage switching operation of shifting the linear electrode to which the voltage is applied, for example, to the right is repeated.
Then, the group (powder) with the smallest particle size (which easily moves even with a weak electrostatic force) starts to move, falls from a predetermined end surface of the processing surface 4a, and is collected in a collection container (not shown). Next, the voltages of the plurality of phases to be applied to the linear electrode are set and changed one step higher. Then, the voltage switching operation of shifting the linear electrode to which the voltage is applied, for example, to the right is repeated. Then, the charge amount of the powder is further increased and the electrostatic field is further strengthened.
This time, a group next to the particle size starts to move, falls from a predetermined end surface of the processing surface 4a, and is collected in a collection container (not shown). Hereinafter, by stepwise increasing the voltage of a plurality of phases to be applied to the linear electrode, the groups having a small particle size to the group having a large particle size are separated and extracted in order.

【0030】◇第1実施例の変形例 上述の第1実施例では、導電性線材と絶縁性繊維とを平
織してなる電極配列体3を用いたが、電極配列体は、織
物組織体に限定されない。例えば、フェノール樹脂やガ
ラスエポキシ樹脂等の電気回路用基板上に銅やアルミ等
の金属膜を形成し、この金属膜上に感光性樹脂等を塗布
して帯状電極パターンを焼付け、金属膜をエッチングす
ることにより、電極配列体を得るようにしても良い。
Modification of First Embodiment In the above-mentioned first embodiment, the electrode array 3 made by plain weaving the conductive wire and the insulating fiber is used, but the electrode array is a woven fabric body. Not limited. For example, a metal film such as copper or aluminum is formed on an electric circuit substrate such as phenol resin or glass epoxy resin, a photosensitive resin is applied on the metal film, and the strip electrode pattern is baked to etch the metal film. By doing so, an electrode array may be obtained.

【0031】また、上述の第1実施例における処理面4
aは、平坦面形状、屈曲面形状、湾曲面形状、球面形
状、その他、様々な面形状でも良い。例えば、処理面を
曲面形状にすることにより、予め設定された移動粉体の
目標位置(終着地)が捕獲容器の直上に来るように設定
し、粉体が目標位置に到達した時点で、線状電極に対す
る電圧の印加を遮断するようにすれば、粉体が容易に滑
落又は落下するので、回収が容易となる。これに対し
て、処理面4aは平坦面のままとし、粉体が目標位置に
到達集積した後、処理面の全部又はその一部を傾斜又は
反転させると共に、線状電極に対する電圧の印加を遮断
し、これにより、粉体を滑落又は落下させるような構成
としても良い。
Further, the processing surface 4 in the first embodiment described above.
a may be a flat surface shape, a bent surface shape, a curved surface shape, a spherical surface shape, or other various surface shapes. For example, by setting the processing surface to a curved surface, the preset target position (end point) of the moving powder is set to be directly above the capture container, and when the powder reaches the target position, the line If the application of the voltage to the electrode is cut off, the powder easily slides or falls, and the collection becomes easy. On the other hand, the processing surface 4a remains flat, and after the powder reaches the target position and accumulates, all or part of the processing surface is inclined or inverted, and the voltage application to the linear electrode is cut off. However, this may be configured so that the powder slides or falls.

【0032】◇第2実施例 図8は、この発明の第2実施例である誘導電荷形の静電
分級装置の構成を示す斜視図、図9は、同静電分級装置
における分級用固定子1aの電極構造を示す平面図、図
10は、同分級用固定子1aの構成を分解して示す分解
斜視図、また、図11は、同静電分級装置における電気
回路部2aの電気的構成を示すブロック図である。この
第2実施例の静電分級装置が、上記第1実施例の構成と
大きく異なるところは、複数の線状電極31a,31
b,31c,…に直交して織り込まれる電極配列体3の
絶縁性繊維32,32,…に代えて、複数の線状バイア
ス電極33,33,33,…を用いて電極配列体3aを
構成するようにした点である。すなわち、この例の電極
配列体3aは、図9及び図10に示すように、複数の導
電性線材(この例では、線径40μmの銅線)31'
a,31'b,31'c,…を縦糸又は横糸とし、絶縁被
覆された導電性線材(この例では、線径40μmのテフ
ロン被覆銅線を使用)33',33',…を直交糸とし
て、1本ずつ互い違いに所定のピッチで平織して形成さ
れるもので、複数の導電性線材31'a,31'b,3
1'c,…が、このように織り込まれることによって、
所定のピッチ(この例では、80μm)の3相の線状電
極31a,31b,31c,…の配線がなされ、同様
に、導電性線材33',33',…が、このように織り込
まれることによって、所定のピッチ(この例では、80
μm)の線状バイアス電極33,33,…の配線がなさ
れている。ここで、3相の線状電極31a,31b,3
1c,…は、相順に繰り返し配線されるが、線状バイア
ス電極33,33,…は、互いに直列又は並列に直接結
線され、全てが同電位になるようにされている(ただ
し、必ずしも、同電位にする必要はない)。なお、図8
において、図1と同一の構成各部については同一の符号
を付してその説明を省略する。
Second Embodiment FIG. 8 is a perspective view showing the configuration of an induction charge type electrostatic classification device according to a second embodiment of the present invention, and FIG. 9 is a classification stator of the electrostatic classification device. 1a is a plan view showing the electrode structure of FIG. 1a, FIG. 10 is an exploded perspective view showing the structure of the stator 1a for classification in an exploded manner, and FIG. 11 is an electrical structure of an electric circuit section 2a in the electrostatic classification device. It is a block diagram showing. The electrostatic classification device of the second embodiment is largely different from the structure of the first embodiment in that it has a plurality of linear electrodes 31a, 31.
The electrode array 3a is configured by using a plurality of linear bias electrodes 33, 33, 33, ... Instead of the insulating fibers 32, 32, ... Of the electrode array 3 woven orthogonally to b, 31c ,. This is the point I chose to do. That is, as shown in FIGS. 9 and 10, the electrode array 3a of this example includes a plurality of conductive wire members (copper wires having a wire diameter of 40 μm in this example) 31 ′.
a, 31'b, 31'c, ... are warp threads or weft threads, and conductive wire material with insulation coating (in this example, a Teflon-coated copper wire with a wire diameter of 40 µm) 33 ', 33', ... is orthogonal thread As one of the conductive wires 31'a, 31'b, 3
1'c, ... are woven in this way,
The wiring of the three-phase linear electrodes 31a, 31b, 31c, ... Has a predetermined pitch (80 μm in this example), and the conductive wires 33 ′, 33 ′ ,. By a predetermined pitch (80 in this example)
(.mu.m) linear bias electrodes 33, 33, ... Are wired. Here, the three-phase linear electrodes 31a, 31b, 3
1c, ... Are repeatedly wired in the order of phases, but the linear bias electrodes 33, 33, ... Are directly connected in series or in parallel to each other so that all of them have the same potential (however, they are not necessarily the same. It does not have to be a potential). Note that FIG.
In FIG. 1, the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0033】この例の電気回路部2aは、電極配列体3
aが線状バイアス電極33,33,…を備えることによ
り、図11に示すように、複数の直流電圧を可変に出力
すること(第11実施例と同一)に加えて、一定のバイ
アス直流電圧DCを線状バイアス電極33,33,…に
印加する電源回路21と、第1実施例と同一構成のスイ
ッチング素子22a,22b,22cと、装置各部を制
御する制御回路23aとから概略構成されている。
The electric circuit portion 2a of this example includes an electrode array 3
Since a includes the linear bias electrodes 33, 33, ..., As shown in FIG. 11, in addition to variably outputting a plurality of DC voltages (the same as in the eleventh embodiment), a constant bias DC voltage is provided. A power supply circuit 21 for applying DC to the linear bias electrodes 33, 33, ..., Switching elements 22a, 22b, 22c having the same configuration as the first embodiment, and a control circuit 23a for controlling each part of the apparatus. There is.

【0034】次に、この例の分級動作について説明す
る。多量の被処理粉体を所定の粒径範囲毎に分級するに
は、制御回路23aは、電源回路21a、スイッチング
素子22a,22b,22cを制御して、線状バイアス
電極33,32,…に所定のバイアス直流電圧DCを印
加した状態で、線状電極31a,31b,31c,…に
印加すべき3相の電圧を最初は低電圧に設定する。そし
て、電圧を印加する線状電極を例えば右にずらす電圧切
り替え操作を繰り返す。すると、(弱い静電力でも容易
に動く)粒径の一番小さなグループ(粉体)が、まず、
線状バイアス電極33,33,…の”レール効果(静電
吸引力)”により、線状バイアス電極33,33,…に
沿って動き始め、処理面4bの所定の端面から落下して
図示せぬ採集容器に集められる。
Next, the classification operation of this example will be described. In order to classify a large amount of powder to be processed in a predetermined particle size range, the control circuit 23a controls the power supply circuit 21a and the switching elements 22a, 22b, 22c to cause the linear bias electrodes 33, 32 ,. With a predetermined bias DC voltage DC applied, the three-phase voltages to be applied to the linear electrodes 31a, 31b, 31c, ... Are initially set to low voltages. Then, the voltage switching operation of shifting the linear electrode to which the voltage is applied, for example, to the right is repeated. Then, the group (powder) with the smallest particle size (which easily moves even with weak electrostatic force)
By the "rail effect (electrostatic attraction force)" of the linear bias electrodes 33, 33, ..., The linear bias electrodes 33, 33, ... Start moving along the linear bias electrodes 33, 33 ,. Collected in a collection container.

【0035】次に、線状電極に印加すべき複数相の電圧
を一段高めに設定変更する。そして、電圧を印加する線
状電極を例えば右にずらす電圧切り替え操作を繰り返
す。すると、粉体の帯電量が一段増加し、静電界も一段
強められるため、今度は、粒径の次に小さなグループ
が、線状バイアス電極33,33,…の”レール効果
(静電吸引力)”により線状バイアス電極33,33,
…に沿って動き始め、動き始め、処理面4bの所定の端
面から落下して図示せぬ採集容器に集められる。以下、
線状電極に印加すべき複数相の電圧を段階的に昇圧する
ことを繰り返すことにより、粒径の小さなグループから
順番に粒径の大きなグループまで何等級にも分離抽出さ
れる。
Next, the voltages of the plurality of phases to be applied to the linear electrodes are set and changed one step higher. Then, the voltage switching operation of shifting the linear electrode to which the voltage is applied, for example, to the right is repeated. Then, since the charge amount of the powder is further increased and the electrostatic field is further strengthened, the group next to the particle size is the rail effect (electrostatic attraction force) of the linear bias electrodes 33, 33 ,. ) ”, The linear bias electrodes 33, 33,
.. starts to move, falls from a predetermined end surface of the processing surface 4b, and is collected in a collection container (not shown). Less than,
By repeating stepwise boosting of the voltages of a plurality of phases to be applied to the linear electrode, it is possible to separate and extract several grades from a group having a small particle size to a group having a large particle size in order.

【0036】各線状バイアス電極33に”レール効果”
があるのは、バイアス直流電圧の印加によって生じる不
平等電界が、常時、移動中の粉体6に作用するので、粉
体6には、線状バイアス電極33と逆極の電荷が誘導さ
れる。それ故、不平等電界の下では、粉体6と線状バイ
アス電極33との電荷間に全体として静電吸引力が働
く。それ故、粉体6は、レールに導かれるように、線状
バイアス電極33に沿って走行する。図12に示すよう
に、粒径の大きな粉体6bが進路を妨害しているときで
も、線状バイアス電極33の向きに絶えず働く静電吸引
力のおかげで、大きな粉体を回り込んで、元のレール上
に戻ることができる。
"Rail effect" on each linear bias electrode 33
The reason is that the non-uniform electric field generated by the application of the bias DC voltage always acts on the moving powder 6, so that electric charges of the opposite polarity to the linear bias electrode 33 are induced in the powder 6. . Therefore, under the unequal electric field, the electrostatic attraction force acts between the charges of the powder 6 and the linear bias electrode 33 as a whole. Therefore, the powder 6 travels along the linear bias electrode 33 so as to be guided to the rail. As shown in FIG. 12, even when the powder 6b having a large particle diameter obstructs the path, the electrostatic attraction force constantly acting in the direction of the linear bias electrode 33 causes the large powder to wrap around, You can return to the original rail.

【0037】それ故、この例の構成によれば、線状バイ
アス電極33,33,…の”レール効果”により、粉体
6の走行直進性の向上を図ることができる。電極織物の
形で配線された線状電極は、直交糸と一本ずつ交互に上
下して、浮沈しながら交錯する状態で織り込まれている
ので、被処理粉体は紆余曲折した行動をとりがちであ
る。それ故、電極織物の形で線状電極を配線する場合に
は、線状バイアス電極33,33,…を線状電極の直交
糸として用いることは極めて有効である。
Therefore, according to the configuration of this example, it is possible to improve the traveling straightness of the powder 6 by the "rail effect" of the linear bias electrodes 33, 33, .... The linear electrodes wired in the form of electrode fabric are woven in a state where they cross up and down alternately with the orthogonal threads one by one, so the powder to be treated tends to bend and bend. Is. Therefore, when wiring the linear electrodes in the form of the electrode fabric, it is extremely effective to use the linear bias electrodes 33, 33, ... As the orthogonal threads of the linear electrodes.

【0038】◇第3実施例 図13は、この発明の第3実施例である誘導電荷形の静
電分級装置の構成を示す斜視図、また、図14は、同静
電分級装置における電気回路部2aの電気的構成を示す
ブロック図である。この第3実施例においては、分級用
固定子1bは、互いに直交する複数の線状横電極34
a,34b,34b,34c,…と複数の線状縦電極3
4x,34y,34z,…とがそれぞれ相順に繰り返し
配列されて構成された格子状の電極配列体3bを備えて
構成され、これにより、線状横電極34a,34b,3
4c,…と線状縦電極34x,34y,34z,…との
双方に3相の電圧を同時印加して、被処理粉体を2次元
搬送(抽出)できるようにしている。
Third Embodiment FIG. 13 is a perspective view showing the structure of an induction charge type electrostatic classifier according to a third embodiment of the present invention, and FIG. 14 is an electric circuit of the electrostatic classifier. It is a block diagram which shows the electric constitution of the part 2a. In the third embodiment, the classification stator 1b includes a plurality of linear lateral electrodes 34 which are orthogonal to each other.
a, 34b, 34b, 34c, ... And a plurality of linear vertical electrodes 3
4x, 34y, 34z, ... And each of the linear horizontal electrodes 34a, 34b, 3 is provided with a grid-shaped electrode array 3b which is repeatedly arranged in order of phase.
4c, ... And the linear vertical electrodes 34x, 34y, 34z, ... Simultaneously apply three-phase voltages so that the powder to be processed can be two-dimensionally transferred (extracted).

【0039】すなわち、この例の電極配列体3bは、複
数の絶縁被覆された導電性線材(この例では、線径60
μmのテフロン被覆銅線を使用)34'a,34'b,3
4'c,34'x,34'y,34'z,…を縦糸・横糸と
して、1本ずつ互い違いに平織することにより、互いに
所定のピッチ(100μm)でかつ相順にそれぞれ並べ
られた線状横電極34a,34b,34c,…、及び線
状縦電極34x,34y,34z,…が配列されて構成
されている。
That is, the electrode array 3b of this example is composed of a plurality of insulating coated conductive wires (wire diameter 60 in this example).
Uses Teflon-coated copper wire of μm) 34'a, 34'b, 3
4'c, 34'x, 34'y, 34'z, ... are warp yarns and weft yarns, and are alternately woven one by one, so that they are linearly arranged at a predetermined pitch (100 µm) and in phase order. The horizontal electrodes 34a, 34b, 34c, ... And the linear vertical electrodes 34x, 34y, 34z ,.

【0040】この例の電気回路部2bは、3相の線状横
電極34a,34b,34c,…、及び3相の線状縦電
極34x,34y,34z,…が直交配列されることに
対応して、図14に示すように、スイッチング素子22
a,22b,22c,22x,22y,22zが増設さ
れている。、制御回路23bは、これらのスイッチング
素子22a,22b,22c,22x,22y,22z
を制御して、線状横電極34a,34b,34c,…に
のみ、線状縦電極34x,34y,34z,…のみ、あ
るいは、線状横電極34a,34b,34c,…及び線
状縦電極34x,34y,34z,…の双方に電源を供
給する。
In the electric circuit portion 2b of this example, the three-phase linear horizontal electrodes 34a, 34b, 34c, ... And the three-phase linear vertical electrodes 34x, 34y, 34z ,. Then, as shown in FIG.
a, 22b, 22c, 22x, 22y, 22z are added. The control circuit 23b controls the switching elements 22a, 22b, 22c, 22x, 22y, 22z.
To control only the linear horizontal electrodes 34a, 34b, 34c, ..., Only the linear vertical electrodes 34x, 34y, 34z, ... Or the linear horizontal electrodes 34a, 34b, 34c ,. Power is supplied to both 34x, 34y, 34z, ....

【0041】次に、図15を参照して、この例の動作に
ついて説明する。処理面4cの中央部(初期位置)に載
置された被処理粉体(アルミ粉体)を粒径範囲毎に8等
級に分級する場合を例にとり説明する。なお、ここで
は、8等級のうち、粒径の小さな(質量が軽い)グルー
プから順に、一番軽粒子、二番軽粒子、三番軽粒子、四
番軽粒子、四番重粒子、三番重粒子、二番重粒子、一番
重粒子と称することとする。分離抽出は、軽いものから
順に行われる。
Next, the operation of this example will be described with reference to FIG. The case where the powder to be processed (aluminum powder) placed on the central portion (initial position) of the processing surface 4c is classified into 8 grades for each particle size range will be described as an example. Here, of the 8 grades, the lightest particle, the second lightest particle, the third lightest particle, the fourth lightest particle, the fourth heavyest particle, and the third heavyest particle in order from the smallest particle size (lightest mass). We will call them heavy particles, second heavy particles, and first heavy particles. Separation and extraction are performed in order from the lightest one.

【0042】 一番軽粒子の分離抽出 制御回路23bは、電源回路21bを制御して0V以外
の出力電圧を(予め決められた8段階のレベルのうち)
一番低レベルの電圧に設定する。そして、スイッチング
素子22a,22b,22cを駆動制御、スイッチング
素子22x,22y,22zを遮断制御することによ
り、線状横電極34a,34b,34c,…にのみ3相
の電圧を印加する。そして、正電圧+V、負電圧−V、
ゼロ電圧0Vの電圧を印加する線状横電極34a,34
b,34c,…を図中上にずらす電圧切り替え操作を繰
り返す。すると、一番軽粒子がまず図中上に向かって動
き始め、処理面4cの図中Aで示す端面から落下して図
示せぬ採集容器に集められる。
Separation and extraction of the lightest particles The control circuit 23b controls the power supply circuit 21b to output an output voltage other than 0V (among eight predetermined levels).
Set to the lowest level voltage. Then, the switching elements 22a, 22b, 22c are drive-controlled and the switching elements 22x, 22y, 22z are cut off to apply a three-phase voltage only to the linear lateral electrodes 34a, 34b, 34c, .... Then, positive voltage + V, negative voltage -V,
Linear horizontal electrodes 34a, 34 for applying a zero voltage of 0V
The voltage switching operation of shifting b, 34c, ... Up in the figure is repeated. Then, the lightest particles first move upward in the figure, fall from the end surface of the processing surface 4c shown by A in the figure, and are collected in a collection container (not shown).

【0043】 二番軽粒子の分離抽出 次に、制御回路23bは、電源回路21bを制御して0
V以外の出力電圧を二番目にレベルの低い電圧に設定す
ると共に、スイッチング素子22a,22b,22c,
22x,22y,22zを駆動制御することにより、線
状横電極34a,34b,34c,…及び線状縦電極3
4x,34y,34z,…の双方に3相の電圧を印加す
る。そして、正電圧+V、負電圧−V、ゼロ電圧0Vの
電圧を印加する線状横電極34a,34b,34c,…
を図中上にずらす電圧切り替え操作、及び正電圧+V、
負電圧−V、ゼロ電圧0Vの電圧を印加する線状縦電極
34x,34y,34z,…を図中左にずらす電圧切り
替え操作を繰り返す。すると、今度は、二番軽粒子が図
中左上に向かって動き始め、処理面4cの図中Bで示す
コーナから落下して図示せぬ採集容器に集められる。
Separation and Extraction of Second Light Particle Next, the control circuit 23b controls the power supply circuit 21b to make it 0.
The output voltage other than V is set to the second lowest level voltage, and the switching elements 22a, 22b, 22c,
By driving and controlling 22x, 22y, and 22z, the linear horizontal electrodes 34a, 34b, 34c, ...
Three-phase voltages are applied to both 4x, 34y, 34z, .... Then, the linear lateral electrodes 34a, 34b, 34c, ... To which the positive voltage + V, the negative voltage −V, and the zero voltage 0V are applied.
Voltage switching operation to shift the above in the figure, and positive voltage + V,
The voltage switching operation of shifting the linear vertical electrodes 34x, 34y, 34z, ... To which a voltage of negative voltage −V and zero voltage 0V is applied to the left in the drawing is repeated. Then, this time, the second lightest particles start moving toward the upper left of the drawing, fall from the corner of the processing surface 4c shown by B in the drawing, and are collected in a collection container (not shown).

【0044】 三番軽粒子の分離抽出 次に、制御回路23bは、電源回路21bを制御して0
V以外の出力電圧を一段昇圧すると共に、スイッチング
素子22x,22y,22zを駆動制御、スイッチング
素子22a,22b,22cを遮断制御することによ
り、線状縦電極34x,34y,34z,…のみに3相
の電圧を印加する。そして、電圧を印加する線状横電極
34x,34y,34z,…を図中左にずらす電圧切り
替え操作を繰り返す。すると、今度は、三番軽粒子が図
中左に向かって動き始め、処理面4cの図中Cで示す端
面から落下して図示せぬ採集容器に集められる。
Separation and Extraction of Third Light Particle Next, the control circuit 23b controls the power supply circuit 21b to set 0.
By increasing the output voltage other than V by one step, controlling the switching elements 22x, 22y, 22z and controlling the switching elements 22a, 22b, 22c to be cut off, only the linear vertical electrodes 34x, 34y, 34z ,. Apply phase voltage. Then, the voltage switching operation of shifting the linear horizontal electrodes 34x, 34y, 34z, ... To which the voltage is applied to the left in the drawing is repeated. Then, the third light particles start moving to the left in the drawing, fall from the end surface of the processing surface 4c indicated by C in the drawing, and are collected in a collection container (not shown).

【0045】 四番軽粒子の分離抽出 次に、制御回路23bは、電源回路21bを制御して0
V以外の出力電圧をさらに一段昇圧すると共に、スイッ
チング素子22a,22b,22c,22x,22y,
22zを駆動制御することにより、線状横電極34a,
34b,34c,…及び線状縦電極34x,34y,3
4z,…の双方に3相の電圧を印加する。そして、電圧
を印加する線状横電極34a,34b,34c,…を図
中下にずらす電圧切り替え操作、及び電圧を印加する線
状縦電極34x,34y,34z,…を図中左にずらす
電圧切り替え操作を繰り返す。すると、今度は、四番軽
粒子が図中左下に向かって動き始め、処理面4cの図中
Dで示すコーナから落下して図示せぬ採集容器に集めら
れる。
Separation and Extraction of Fourth Light Particle Next, the control circuit 23b controls the power supply circuit 21b to make it 0.
The output voltage other than V is further boosted by one step, and the switching elements 22a, 22b, 22c, 22x, 22y,
By controlling the drive of 22z, the linear lateral electrodes 34a,
34b, 34c, ... And linear vertical electrodes 34x, 34y, 3
Three-phase voltage is applied to both 4z ,. Then, the voltage switching operation for shifting the linear horizontal electrodes 34a, 34b, 34c, ... Applying the voltage to the lower side in the figure, and the voltage for shifting the linear vertical electrodes 34x, 34y, 34z ,. Repeat the switching operation. Then, this time, the fourth light particles start moving toward the lower left in the figure, fall from the corner indicated by D in the figure of the treated surface 4c, and are collected in a collection container (not shown).

【0046】 四番重粒子の分離抽出 この後、制御回路23bは、電源回路21bを制御して
0V以外の出力電圧を次の段のレベルに昇圧すると共
に、スイッチング素子22a,22b,22cを駆動制
御、スイッチング素子22x,22y,22zを遮断制
御することにより、線状横電極34a,34b,34
c,…にのみ3相の電圧を印加する。そして、電圧を印
加する線状横電極34a,34b,34c,…を図中下
にずらす電圧切り替え操作を繰り返す。すると、今度
は、四番重粒子が図中下に向かって動き始め、処理面4
cの図中Eで示す端面から落下して図示せぬ採集容器に
集められる。 三番重粒子の分離抽出 次に、制御回路23bは、電源回路21bを制御して0
V以外の出力電圧をさらに一段昇圧すると共に、スイッ
チング素子22a,22b,22c,22x,22y,
22zを駆動制御することにより、線状横電極34a,
34b,34c,…及び線状縦電極34x,34y,3
4z,…の双方に3相の電圧を印加する。そして、電圧
を印加する線状横電極34a,34b,34c,…を図
中下にずらす電圧切り替え操作、及び電圧を印加する線
状縦電極34x,34y,34z,…を図中右にずらす
電圧切り替え操作を繰り返す。すると、今度は、三番軽
粒子が図中左上下に向かって動き始め、処理面4cの図
中Fで示すコーナから落下して図示せぬ採集容器に集め
られる。
After that, the control circuit 23b controls the power supply circuit 21b to boost the output voltage other than 0V to the level of the next stage, and drives the switching elements 22a, 22b, 22c. By controlling and cutting off the switching elements 22x, 22y, 22z, the linear lateral electrodes 34a, 34b, 34 are formed.
A three-phase voltage is applied only to c, .... Then, the voltage switching operation of shifting the linear horizontal electrodes 34a, 34b, 34c, ... Then, the fourth heavy particle started to move downward in the figure and the treated surface 4
It falls from the end surface indicated by E in the figure of c and is collected in a collection container (not shown). Separation and Extraction of Third Heavy Particle Next, the control circuit 23b controls the power supply circuit 21b to make it 0.
The output voltage other than V is further boosted by one step, and the switching elements 22a, 22b, 22c, 22x, 22y,
By controlling the drive of 22z, the linear lateral electrodes 34a,
34b, 34c, ... And linear vertical electrodes 34x, 34y, 3
Three-phase voltage is applied to both 4z ,. Then, the voltage switching operation for shifting the linear horizontal electrodes 34a, 34b, 34c, ... To which the voltage is applied downward in the figure, and the voltage for shifting the linear vertical electrodes 34x, 34y, 34z, ... Repeat the switching operation. Then, this time, the third light particles start moving toward the lower left of the drawing, fall from the corner of the processing surface 4c indicated by F in the drawing, and are collected in a collection container (not shown).

【0047】 二番重粒子の分離抽出 次に、制御回路23bは、電源回路21bを制御して0
V以外の出力電圧を一段昇圧すると共に、スイッチング
素子22x,22y,22zを駆動制御、スイッチング
素子22a,22b,22cを遮断制御することによ
り、線状縦電極34x,34y,34z,…のみに3相
の電圧を印加する。そして、電圧を印加する線状横電極
34x,34y,34z,…を図中右にずらす電圧切り
替え操作を繰り返す。すると、今度は、二番重粒子が図
中右に向かって動き始め、処理面4cの図中Gで示す端
面から落下して図示せぬ採集容器に集められる。
Separation and Extraction of Duplex Particles Next, the control circuit 23b controls the power supply circuit 21b to make it 0.
By increasing the output voltage other than V by one step, controlling the switching elements 22x, 22y, 22z and controlling the switching elements 22a, 22b, 22c to be cut off, only the linear vertical electrodes 34x, 34y, 34z ,. Apply phase voltage. Then, the voltage switching operation of shifting the linear lateral electrodes 34x, 34y, 34z, ... To which the voltage is applied to the right in the drawing is repeated. Then, this time, the second heavy particles start moving toward the right in the figure, fall from the end surface of the processing surface 4c indicated by G in the figure, and are collected in a collection container (not shown).

【0048】 一番重粒子の分離抽出 最後に、制御回路23bは、電源回路21bを制御して
0V以外の出力電圧を一番高い電圧に設定すると共に、
スイッチング素子22a,22b,22c,22x,2
2y,22zを駆動制御することにより、線状横電極3
4a,34b,34c,…及び線状縦電極34x,34
y,34z,…の双方に3相の電圧を印加する。そし
て、電圧を印加する線状横電極34a,34b,34
c,…を図中上にずらす電圧切り替え操作、及び電圧を
印加する線状縦電極34x,34y,34z,…を図中
右にずらす電圧切り替え操作を繰り返す。すると、今度
は、一番重粒子が図中右上に向かって動き始め、処理面
4cの図中Hで示すコーナから落下して図示せぬ採集容
器に集められる。これで、8等級の分級が完了するが、
一番重粒子よりもさらに重い”残滓”が処理面4cの中
央に取り残される。
Separation and Extraction of the Most Heavy Particle Finally, the control circuit 23b controls the power supply circuit 21b to set the output voltage other than 0V to the highest voltage, and
Switching elements 22a, 22b, 22c, 22x, 2
By controlling the drive of 2y and 22z, the linear lateral electrodes 3
4a, 34b, 34c, ... And linear vertical electrodes 34x, 34
Three-phase voltages are applied to both y, 34z, .... Then, the linear horizontal electrodes 34a, 34b, 34 for applying a voltage
The voltage switching operation of shifting c, ... To the upper side in the figure and the voltage switching operation of shifting the linear vertical electrodes 34x, 34y, 34z ,. Then, this time, the most heavy particles start moving toward the upper right in the figure, fall from the corner of the processing surface 4c shown by H in the figure, and are collected in a collection container (not shown). This completes the 8th grade classification,
The "remains" that are heavier than the heaviest particles are left in the center of the processing surface 4c.

【0049】◇第3実施例の変形例 上述の第3実施例においては、図14に示すように、線
状横電極34a,34b,34c,…と、線状縦電極3
4x,34y,34z,…との間では、A相同士、B相
同士、C相同士には、それぞれ同電圧が印加されるよう
になっているが、線状横電極34a,34b,34c,
…と、線状縦電極34x,34y,34z,…とで別々
の電源回路を設けるようにすれば、8等級以上に分級す
ることが可能である。
Modification of Third Embodiment In the above-described third embodiment, as shown in FIG. 14, the linear horizontal electrodes 34a, 34b, 34c, ...
4x, 34y, 34z, ..., The same voltage is applied to the A-phases, the B-phases, and the C-phases, respectively, but the linear horizontal electrodes 34a, 34b, 34c,
, And the linear vertical electrodes 34x, 34y, 34z, ... Are provided with different power supply circuits, it is possible to classify into eight or more grades.

【0050】以上、この発明の実施例を図面により詳述
してきたが、具体的な構成はこの実施例に限られるもの
ではなく、この発明の要旨を逸脱しない範囲の設計の変
更等があってもこの発明に含まれる。例えば、線状電極
として利用される導電性線材は、銅線に限らず、金線、
銀線、ステンレス線、ニクロム線、アルミニウム線等を
使用しても良い。また、裸の導電性線材に限らず、テフ
ロン、ポリイミド、ポリアミド、ポリエステル、ポリウ
レタン、ポリ塩化ビニル等の絶縁材料で絶縁被覆された
線材を使用しても良い。また、絶縁性繊維は、ポリエス
テル繊維に限らず、例えば、軟質ポリ塩化ビニル繊維、
ポリエチレン繊維、ポリプロピレン繊維、ポリイミド繊
維、ポリアミド繊維、ポリウレタン繊維、ポリアクリル
ニトリル繊維、ポリビニルアルコール繊維、ポリ塩化ビ
ニリデン繊維、ポリフッ化エチレン繊維等の合成繊維を
使用しても良い。また、各種線材の線径は実施例のもの
に限らず、必要に応じて、太線、細線様々のものを使用
できる。
Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific structure is not limited to this embodiment, and there are design changes and the like within a range not departing from the gist of the present invention. Also included in the present invention. For example, the conductive wire used as a linear electrode is not limited to a copper wire, a gold wire,
A silver wire, a stainless wire, a nichrome wire, an aluminum wire or the like may be used. Further, not limited to the bare conductive wire, a wire covered with an insulating material such as Teflon, polyimide, polyamide, polyester, polyurethane, or polyvinyl chloride may be used. Further, the insulating fiber is not limited to polyester fiber, for example, soft polyvinyl chloride fiber,
Synthetic fibers such as polyethylene fibers, polypropylene fibers, polyimide fibers, polyamide fibers, polyurethane fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers, and polyfluorinated ethylene fibers may be used. Further, the wire diameters of various wire materials are not limited to those in the embodiment, and various thick wire and thin wire can be used as necessary.

【0051】また、電極ピッチは、80μmに限らず、
線径や織り方を変えることにより、電線の太さ〜2mm
μmの範囲で任意に設定される。なお、理論上は、電極
ピッチが細かいほど、大きな力及びパワー密度が得られ
る。また、絶縁フィルムは、PETフィルムに限らず、
例えば、ポリプロピレンフィルム、ポリイミドフィル
ム、軟質ポリ塩化ビニルフィルム等の高分子フィルムを
用いても良い。また、フィルム間充填材は、エポキシ樹
脂に限らず、ブチルゴム、ブタジエン−スチレンゴム等
の合成ゴム、天然ゴム、アクリル系粘着剤、エポキシ系
接着剤、塩化ビニル樹脂等でも良い。また、被処理粉体
は、アルミニウム球に限らず、例えば鉄粉、銅粉、ジル
コニア粉等でも良く、金属粉体に限らず、半導体粉体、
抵抗体粉体でも良く、さらには、例えばガラス、ポリエ
チレン、ポリカーボネート、アクリル、セラミックス等
の誘電体粉体でも良い。
The electrode pitch is not limited to 80 μm,
By changing the wire diameter and weave, the thickness of the wire is ~ 2mm
It is set arbitrarily in the range of μm. Note that theoretically, the smaller the electrode pitch, the greater the force and power density obtained. Further, the insulating film is not limited to the PET film,
For example, a polymer film such as a polypropylene film, a polyimide film, or a soft polyvinyl chloride film may be used. The inter-film filler is not limited to the epoxy resin, but may be synthetic rubber such as butyl rubber or butadiene-styrene rubber, natural rubber, acrylic adhesive, epoxy adhesive, vinyl chloride resin, or the like. Further, the powder to be treated is not limited to aluminum spheres, and may be, for example, iron powder, copper powder, zirconia powder, etc., not limited to metal powder, semiconductor powder,
Resistor powder may be used, and further, dielectric powder such as glass, polyethylene, polycarbonate, acrylic and ceramics may be used.

【0052】また、上述の実施例では、電極織物である
電極配列体の両面に絶縁フィルムを設ける場合について
述べたが、絶縁被覆された導電性線材で線状電極を配列
する場合には、裏面の絶縁フィルムは省略できる。
In the above-mentioned embodiments, the case where the insulating films are provided on both surfaces of the electrode array body which is the electrode woven fabric has been described. However, when the linear electrodes are arranged by the electrically conductive wire covered with the insulation, The insulating film can be omitted.

【0053】[0053]

【発明の効果】以上説明したように、この発明の構成に
よれば、目詰まりもなく、高周波もなく、処理面の形状
自在なので、精度の高いかつ安定度した分級処理を簡単
な操作で行うことができる。加えて、大か小かの2種類
の分級にとどまらず、必要に応じて、何等級にも細かく
分級できる。また、請求項3記載の構成によれば、線状
電極と直交する方向に線状バイアス電極が設けられてい
るので、粉体の走行のズレを防止できる。また、請求項
4記載の構成によれば、粒径範囲毎に移動方向特定でき
るので、分離抽出後の回収が一段と容易とななる。
As described above, according to the configuration of the present invention, since there is no clogging, no high frequency, and the shape of the processing surface is flexible, highly accurate and stable classification processing can be performed by a simple operation. be able to. In addition, it is not limited to two types of classification, large or small, and can be finely classified to any number of grades as needed. Further, according to the structure of the third aspect, since the linear bias electrode is provided in the direction orthogonal to the linear electrode, it is possible to prevent the deviation of the traveling of the powder. Further, according to the configuration of the fourth aspect, since the moving direction can be specified for each particle size range, recovery after separation and extraction becomes much easier.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例である誘導電荷形の静電
分級装置の構成を概略的に示す斜視図である。
FIG. 1 is a perspective view schematically showing a configuration of an induction charge type electrostatic classification device according to a first embodiment of the present invention.

【図2】同静電分級装置における分級用固定子の電極構
造を示す平面図である。
FIG. 2 is a plan view showing an electrode structure of a classification stator in the electrostatic classification device.

【図3】同分級用固定子の構成を分解して示す分解斜視
図である。
FIG. 3 is an exploded perspective view showing an exploded configuration of a stator for classification.

【図4】同分級用固定子の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the structure of the same classification stator.

【図5】電気回路部の電気的構成を示すブロック図であ
る。
FIG. 5 is a block diagram showing an electrical configuration of an electric circuit section.

【図6】同実施例における粉体の静電搬送原理を説明す
るための原理図である。
FIG. 6 is a principle diagram for explaining a principle of electrostatic transfer of powder in the embodiment.

【図7】同実施例における粉体の静電搬送原理を説明す
るための原理図である。
FIG. 7 is a principle diagram for explaining the electrostatic transport principle of powder in the same example.

【図8】この発明の第2実施例である誘導電荷形の静電
分級装置の概略構成を示す斜視図である。
FIG. 8 is a perspective view showing a schematic configuration of an induction charge type electrostatic classification device according to a second embodiment of the present invention.

【図9】同静電分級装置における分級用固定子の電極構
造を示す平面図である。
FIG. 9 is a plan view showing an electrode structure of a classification stator in the same electrostatic classification device.

【図10】同分級用固定子の構成を分解して示す分解斜
視図である。
FIG. 10 is an exploded perspective view showing an exploded configuration of the same classification stator.

【図11】同静電分級装置における電気回路部の電気的
構成を示すブロック図である。
FIG. 11 is a block diagram showing an electrical configuration of an electric circuit section in the electrostatic classification device.

【図12】同実施例の動作を説明するための図である。FIG. 12 is a diagram for explaining the operation of the embodiment.

【図13】この発明の第3実施例である誘導電荷形の静
電分級装置の構成を示す斜視図である。
FIG. 13 is a perspective view showing a configuration of an induction charge type electrostatic classification device according to a third embodiment of the present invention.

【図14】図14は、同静電分級装置における電気回路
部の電気的構成を示すブロック図である。
FIG. 14 is a block diagram showing an electrical configuration of an electric circuit unit in the electrostatic classification device.

【図15】同実施例の分級動作を説明するための説明図
である。
FIG. 15 is an explanatory diagram for explaining a classification operation of the same example.

【符号の説明】[Explanation of symbols]

1,1a,1b 分級用固定子 2,2a,2b 電気回路部(電圧印加手段と制御
部) 21,21a,21b 電源回路(電圧印加手段の
一部) 22a,22b,22c スイッチング素子(電圧
印加手段の一部) 22x,22y,22z スイッチング素子(電圧
印加手段の一部) 23,23a,23b 制御回路(電圧印加手段の
一部) 3,3a 電極配列体(電極織物) 31a,31b,31c 線状電極 31'a,31'b,31'c 導電性線材 32 絶縁性繊維 34a,34b,34c 線状横電極(第1の線状
電極) 34x,34y,34z 線状縦電極(第2の線状
電極) 34'a,34'b,34'c 導電性線材(第1の
導電性線材) 34'x,34'y,34'z 導電性線材(第2の
導電性線材) 4 絶縁フィルム(絶縁層) 4a,4b,4c 処理面 6 被処理粉体 6a 粒径の大きな粉体 33 線状バイアス電極 33' 導電性線材(第2の導電性線材)
1, 1a, 1b Classification stator 2, 2a, 2b Electric circuit unit (voltage applying unit and control unit) 21, 21a, 21b Power supply circuit (part of voltage applying unit) 22a, 22b, 22c Switching element (voltage applying unit) Part of means 22x, 22y, 22z Switching element (part of voltage applying means) 23, 23a, 23b Control circuit (part of voltage applying means) 3,3a Electrode array (electrode fabric) 31a, 31b, 31c Linear electrodes 31'a, 31'b, 31'c Conductive wire 32 Insulating fibers 34a, 34b, 34c Linear horizontal electrodes (first linear electrodes) 34x, 34y, 34z Linear vertical electrodes (second) Linear electrode) 34'a, 34'b, 34'c conductive wire (first conductive wire) 34'x, 34'y, 34'z conductive wire (second conductive wire) 4 Insulating film (insulating layer) 4a, 4b, c treated surface 6 to be treated powder 6a large flour 33 linear bias electrode 33 having a particle size of 'conductive wires (second conductive wires)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の線状電極が一方向にかつ相順に繰
り返し配列されてなる縞状の電極配列体の少なくとも一
方側が絶縁層で被覆され、該絶縁層の表面が被処理粉体
の分級処理を行う処理面となっている分級用固定子と、
前記複数の線状電極に対して、所定の周期又はタイミン
グで変動する複数相の電圧を印加する電圧印加手段とを
備え、前記処理面上の所定の初期位置に載置された被処
理粉体に対して所定の強さの静電力を作用させると、該
静電力によって移動する粒径の小さな粉体グループと、
移動せずに取り残される粒径の大きなグループとに分か
れることを利用する静電分級装置であって、 前記電圧印加手段は、制御部又は操作部から供給される
所定の昇圧信号に基づいて、前記複数の線状電極に印加
すべき前記複数相の電圧を所定量昇圧して出力すること
を特徴とする静電分級装置。
1. A striped electrode array in which a plurality of linear electrodes are repeatedly arrayed in one direction and in a phase order is coated with an insulating layer on at least one side, and the surface of the insulating layer classifies powder to be treated. A classification stator, which is the processing surface for processing,
A powder applying unit that applies a voltage of a plurality of phases that fluctuates at a predetermined cycle or timing to the plurality of linear electrodes, and the powder to be processed placed at a predetermined initial position on the processing surface. When an electrostatic force of a predetermined strength is applied to, a powder group having a small particle size that is moved by the electrostatic force,
An electrostatic classification device that utilizes the fact that it is divided into a large particle size group that is left without moving, and the voltage applying unit is based on a predetermined boosting signal supplied from a control unit or an operation unit. An electrostatic classification device, wherein the voltages of the plurality of phases to be applied to the plurality of linear electrodes are boosted by a predetermined amount and output.
【請求項2】 前記分級用固定子は、前記線状電極とな
る導電性線材と、絶縁性繊維とが、互いに縦糸・横糸と
なって織り込まれた電極織物と、該電極織物の少なくと
も表面を被覆する前記絶縁層とを有してなることを特徴
とする請求項1記載の静電分級装置。
2. The classification stator is an electrode woven fabric in which a conductive wire material to be the linear electrode and an insulating fiber are woven as warp yarns and weft yarns, and at least the surface of the electrode woven fabric. The electrostatic classification device according to claim 1, further comprising: the insulating layer that covers the insulating layer.
【請求項3】 複数の線状電極が一方向にかつ相順に繰
り返し配列されてなると共に、これらの線状電極に直交
する方向に複数の線状バイアス電極が配線されてなる格
子状の電極配列体の少なくとも一方側が絶縁層で被覆さ
れ、該絶縁層の表面が被処理粉体の分級処理を行う処理
面となっている分級用固定子と、前記複数の線状電極に
対して、所定の周期又はタイミングで変動する複数相の
電圧を印加する電圧印加手段とを備え、前記処理面上の
所定の初期位置に載置された被処理粉体に対して所定の
強さの静電力を作用させると、該静電力によって移動す
る粒径の小さな粉体グループと、移動せずに取り残され
る粒径の大きなグループとに分かれることを利用する静
電分級装置であって、 前記電圧印加手段は、前記複数の線状バイアス電極に対
して一定のバイアス直流電圧を印加すると共に、制御部
又は操作部から供給される所定の昇圧信号に基づいて、
前記複数の線状電極に印加すべき前記複数相の電圧を所
定量昇圧して出力することを特徴とする静電分級装置。
3. A grid-shaped electrode array in which a plurality of linear electrodes are repeatedly arranged in one direction and in a phase order, and a plurality of linear bias electrodes are wired in a direction orthogonal to these linear electrodes. At least one side of the body is covered with an insulating layer, and the surface of the insulating layer serves as a processing surface for classifying the powder to be treated. A voltage applying unit for applying a voltage of a plurality of phases that fluctuates in a cycle or timing, and applies an electrostatic force of a predetermined strength to the powder to be processed placed at a predetermined initial position on the processing surface. If so, an electrostatic classification device that utilizes the fact that it is divided into a powder group having a small particle size that moves due to the electrostatic force and a group having a large particle size that is left without moving, the voltage applying unit comprising: The plurality of linear bias electrodes It applies a constant bias DC voltage for, based on a predetermined boost signal supplied from the control unit or the operation unit,
An electrostatic classification device, wherein the voltages of the plurality of phases to be applied to the plurality of linear electrodes are boosted by a predetermined amount and output.
【請求項4】 互いに直交する複数の第1の線状電極と
複数の第2の線状電極とがそれぞれ相順に繰り返し配列
されてなる格子状の電極配列体の少なくとも一方側が絶
縁層で被覆され、該絶縁層の表面が被処理粉体の分級処
理を行う処理面となっている分級用固定子と、前記複数
の第1又は/及び第2の線状電極に対して、所定の周期
又はタイミングで変動する複数相の電圧を印加する電圧
印加手段とを備え、前記処理面上の所定の初期位置に載
置された被処理粉体に対して所定の強さの静電力を作用
させると、該静電力によって移動する粒径の小さな粉体
グループと、移動せずに取り残される粒径の大きなグル
ープとに分かれることを利用する静電分級装置であっ
て、 前記電圧印加手段は、制御部又は操作部から供給される
所定の昇圧信号に基づいて、前記複数の線状電極に印加
すべき前記複数相の電圧を所定量昇圧して出力すること
を特徴とする静電分級装置。
4. At least one side of a grid-like electrode array body in which a plurality of first linear electrodes and a plurality of second linear electrodes that are orthogonal to each other are repeatedly arranged in sequence are covered with an insulating layer. A predetermined cycle of the classifying stator having the surface of the insulating layer serving as a processing surface for classifying the powder to be processed and the plurality of first or / and second linear electrodes; Voltage applying means for applying a voltage of a plurality of phases that fluctuate with timing, and when an electrostatic force of a predetermined strength is applied to the powder to be processed placed at a predetermined initial position on the processing surface. And an electrostatic classification device that utilizes the fact that it is divided into a powder group having a small particle size that moves by the electrostatic force and a group having a large particle size that remains without moving, wherein the voltage applying unit is a control unit. Or a predetermined boost signal supplied from the operation unit Based on electrostatic classifying device and outputs a voltage of the plurality of phases to be applied to said plurality of linear electrodes by a predetermined amount boosting.
【請求項5】 前記分級用固定子は、前記線状電極又は
第1の線状電極となる第1の導電性線材と、前記線状バ
イアス電極又は第2の線状電極となる第2の導電性線材
とが、互いに縦糸・横糸となって織り込まれた電極織物
と、該電極織物の少なくとも表面を被覆する前記絶縁層
とを有してなり、かつ、前記第1及び第2の導電性線材
のうち、少なくとも一方は、絶縁被覆されていることを
特徴とする請求項3又は4記載の静電分級装置。
5. The classifying stator includes a first conductive wire serving as the linear electrode or the first linear electrode, and a second conductive wire serving as the linear bias electrode or the second linear electrode. The conductive wire comprises an electrode woven fabric woven as warp and weft yarns, and the insulating layer covering at least the surface of the electrode woven fabric, and the first and second conductive materials 5. The electrostatic classification device according to claim 3, wherein at least one of the wire rods is coated with insulation.
【請求項6】 前記分級用固定子は、前記処理面の少な
くとも一部が曲面となっていて、移動粉体の目標位置
が、傾斜面上か、又は逆さまの面に設定されていること
を特徴とする請求項1,3又は4記載の静電分級装置。
6. The classification stator is such that at least a part of the processing surface is a curved surface, and the target position of the moving powder is set on an inclined surface or an upside down surface. 5. The electrostatic classification device according to claim 1, 3 or 4.
【請求項7】 請求項1又は3記載の静電分級装置を用
いて被処理粉体を所定の粒径範囲毎に分離抽出する静電
分級方法であって、前記電圧印加手段を制御して、前記
処理面上の所定の初期位置に載置された被処理粉体に、
所定の強さの静電力を作用させ、さらに、所定の処理期
間経過毎に、前記静電力を段階的に強めて行くことで、
粒径の小さなグループから逐次静電移動させて分離抽出
することを特徴とする静電分級方法。
7. An electrostatic classification method for separating and extracting a powder to be treated in a predetermined particle size range by using the electrostatic classification device according to claim 1 or 3, wherein the voltage applying means is controlled. , To the powder to be processed placed at a predetermined initial position on the processing surface,
By applying an electrostatic force of a predetermined strength, and further increasing the electrostatic force stepwise every time a predetermined processing period elapses,
An electrostatic classification method characterized in that a group having a small particle size is sequentially electrostatically moved for separation and extraction.
【請求項8】 請求項4記載の静電分級装置を用いて被
処理粉体を所定の粒径範囲毎に分離抽出する静電分級方
法であって、前記電圧印加手段を制御して、前記処理面
上の所定の初期位置に載置された被処理粉体に、所定の
強さでかつ所定の向きの静電力を作用させ、さらに、所
定の処理期間経過毎に、前記静電力を段階的に強めて行
くと共に、静電力の向きを変えて行くことで、粒径の小
さなグループから、逐次、互いに異なる方向に静電移動
させて分離抽出することを特徴とする静電分級方法。
8. An electrostatic classification method for separating and extracting a powder to be treated for each predetermined particle size range by using the electrostatic classification device according to claim 4, wherein the voltage applying means is controlled to An electrostatic force having a predetermined strength and a predetermined direction is applied to the powder to be processed placed at a predetermined initial position on the processing surface, and the electrostatic force is stepped every time a predetermined processing period elapses. The electrostatic classification method is characterized in that the electrostatic force is changed and the direction of the electrostatic force is changed to sequentially electrostatically move the particles having a small particle diameter in different directions to perform separation and extraction.
JP8224194A 1994-03-28 1994-03-28 Apparatus and method for electrostatic classification Pending JPH07265739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8224194A JPH07265739A (en) 1994-03-28 1994-03-28 Apparatus and method for electrostatic classification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8224194A JPH07265739A (en) 1994-03-28 1994-03-28 Apparatus and method for electrostatic classification

Publications (1)

Publication Number Publication Date
JPH07265739A true JPH07265739A (en) 1995-10-17

Family

ID=13768926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8224194A Pending JPH07265739A (en) 1994-03-28 1994-03-28 Apparatus and method for electrostatic classification

Country Status (1)

Country Link
JP (1) JPH07265739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172543A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Dust collecting apparatus
JP2017051919A (en) * 2015-09-10 2017-03-16 株式会社東芝 Dust collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172543A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Dust collecting apparatus
JP2017051919A (en) * 2015-09-10 2017-03-16 株式会社東芝 Dust collector

Similar Documents

Publication Publication Date Title
CN103357506B (en) Flow passage device, particle sorting apparatus and particle sorting method
EP0482205B1 (en) Electrostatic actuator
CN102197712B (en) Disbanded cascaded array for generating and moving plasma clusters for active airflow control
JP3453136B2 (en) Method for continuous separation of a mixture of fine dielectric particles and apparatus for carrying out the method
US8702945B2 (en) Time-varying flows for microfluidic particle separation
JP3004720B2 (en) Apparatus and method for processing microscopically fine dielectric particles
AU744013B2 (en) Method and apparatus for separating particles by electric fields
JP2002519176A (en) Electrode structure for generating functional electric field barrier in microsystem
US20070175801A1 (en) System for transporting and selectively sorting particles and method of using the same
Moesner et al. Electrostatic devices for particle microhandling
Washizu Electrostatic manipulation of biological objects
CN108699506A (en) Separator
JPH07265739A (en) Apparatus and method for electrostatic classification
JPH02285978A (en) Electrostatic actuator using film
Belgacem et al. Experimental analysis of the transport and the separation of plastic and metal micronized particles using travelling waves conveyor
US20080302664A1 (en) Apparatus for driving fluid
JPH07267365A (en) Electrostatic conveying device and method
US4700262A (en) Continuous electrostatic conveyor for small particles
JP3569553B2 (en) Method and apparatus for separating powder
JP3569541B2 (en) Powder handling equipment
JPH07203689A (en) Electrostatic actuator
JPH0722719B2 (en) Particle classification method and apparatus
KR101693103B1 (en) Electrode generation method for dielectrophoresis based particle separation or capture
JPS6253755A (en) Apparatus for electric field treatment of ultrafine particles
JPS6253754A (en) Method and apparatus for classifying particle