JPH07263809A - Crystal manufacture method - Google Patents

Crystal manufacture method

Info

Publication number
JPH07263809A
JPH07263809A JP5154094A JP5154094A JPH07263809A JP H07263809 A JPH07263809 A JP H07263809A JP 5154094 A JP5154094 A JP 5154094A JP 5154094 A JP5154094 A JP 5154094A JP H07263809 A JPH07263809 A JP H07263809A
Authority
JP
Japan
Prior art keywords
crystal
plane
layer
algainn
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5154094A
Other languages
Japanese (ja)
Inventor
Shigekazu Minagawa
重量 皆川
Toshiaki Tanaka
俊明 田中
Yoshihiro Ishitani
善博 石谷
So Otoshi
創 大歳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5154094A priority Critical patent/JPH07263809A/en
Publication of JPH07263809A publication Critical patent/JPH07263809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a crystal manufacturing method for excellently making a light-emitting element from AlGaInN crystal. CONSTITUTION:The {1-100} or {11-20} face of sapphire is used as a substrate crystal and a ZnO layer 12 is put on it and successively AlGaIn series hetero structures 13 to 17 are grown, and the ZnO layer is dissolved by an acid to separate AlGaInN heterocrystal and the herterocrystal is split. Thereby, the excellent split plane which is essential to form a Fabry-perot cavity is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAlGaInN系結晶に
て発光素子を作るための結晶製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal manufacturing method for manufacturing a light emitting device using an AlGaInN type crystal.

【0002】[0002]

【従来の技術】AlGaInN系のIIIV族半導体を用
いた青色発光ダイオードが実用化されている。 この素
子は基本的にはサファイア基板結晶の{0001}面上
にAlGaInN系のダブルヘテロ結晶を成長すること
によって製造される。
2. Description of the Related Art Blue light emitting diodes using AlGaInN group IIIV semiconductors have been put to practical use. This device is basically manufactured by growing an AlGaInN-based double hetero crystal on the {0001} plane of a sapphire substrate crystal.

【0003】[0003]

【発明が解決しようとする課題】発光ダイオードから放
出される光は強い指向性を持たず,光のエネルギ密度も
低い。 したがって表示素子以外の情報処理機器や産業
機器あるいは事務機器などの用途に対しては半導体レー
ザの開発が望まれる。 AlGaInN系の結晶を用い
れば緑から青,さらには紫外領域にかけての波長の光を
発する半導体レーザを作ることは原理的には可能であ
る。 その実現を妨げている原因の一つは,ファブリペ
ロキャビテイ形成に欠くことの出来ない反射率の高い端
面の形成技術が開発されていないことにある。 良好な
端面を形成するための基本的な要請は(1)結晶が十分
に薄く劈開しやすいこと,並びに(2)適当な劈開面が
存在することである。 窒化物結晶は典型的なIIIV族
化合物である砒化物や燐化物結晶に比べて硬度が高く劈
開しにくい。 劈開しやすい後者においても良好な端面
を得るためには厚さが100ミクロンていどに薄片化し
なくてはならない。 窒化物結晶においてはさらに一桁
薄くする必要がある。 またエピタキシャル成長する結
晶面が{0001}面であるとこれに垂直で良好な劈開
特性を示す結晶面は無い。 したがって{0001}以
外の基板結晶面上でのエピタキシャル成長を考えなくて
はならない。
The light emitted from the light emitting diode does not have a strong directivity and the energy density of the light is low. Therefore, development of a semiconductor laser is desired for applications such as information processing equipment other than display elements, industrial equipment, and office equipment. In principle, it is possible to make a semiconductor laser that emits light of wavelengths from green to blue and further into the ultraviolet region by using AlGaInN type crystals. One of the reasons that hinders the realization of this is that the technology for forming the end faces with high reflectance, which is indispensable for forming Fabry-Perot cavities, has not been developed. The basic requirements for forming a good end face are (1) that the crystal is sufficiently thin and easy to cleave, and (2) that an appropriate cleave plane exists. Nitride crystals have higher hardness and are less prone to cleavage than arsenide or phosphide crystals, which are typical IIIV compounds. In the latter case, which is easily cleaved, in order to obtain a good end face, the thickness must be reduced to 100 μm. In a nitride crystal, it is necessary to make it thinner by one digit. Further, if the crystal plane to be epitaxially grown is the {0001} plane, there is no crystal plane perpendicular to this plane and exhibiting good cleavage characteristics. Therefore, it is necessary to consider epitaxial growth on a crystal plane of the substrate other than {0001}.

【0004】本発明の目的はAlGaInN系結晶にて
発光素子を良好に作るための結晶製造方法を提供するこ
とにある。
An object of the present invention is to provide a crystal manufacturing method for satisfactorily forming a light emitting device with an AlGaInN type crystal.

【0005】[0005]

【課題を解決するための手段】基板結晶面としてサファ
イアの{1−100}または{11−20}近傍の結晶
面を採用し,この上にまずZnOの結晶層を成長し,さ
らにAlGaInN系のダブルヘテロ結晶を成長し,し
かるのち酸によってZnO層を溶解し去り,得られたA
lGaInN系結晶層を{0001}面に沿って劈開す
ることにより良い端面が得られる。
A crystal plane near {1-100} or {11-20} of sapphire is adopted as a crystal plane of a substrate, and a ZnO crystal layer is first grown on the crystal plane, and an AlGaInN-based crystal plane is further grown. A double heterocrystal was grown, and then the ZnO layer was dissolved away with an acid to obtain A
A good end face can be obtained by cleaving the 1GaInN-based crystal layer along the {0001} plane.

【0006】[0006]

【作用】ウルツ鉱型結晶においては{0001}面が最
も良い劈開性を示す。 またAlGaInN系のダブル
ヘテロ結晶から成る半導体レーザなどのデバイスは,そ
の厚さが10ミクロン以下である場合が多い。 従って
劈開を容易に行うことができる。
In the wurtzite type crystal, the {0001} plane shows the best cleavage. In addition, a device such as a semiconductor laser made of an AlGaInN-based double heterocrystal is often 10 μm or less in thickness. Therefore, the cleavage can be easily performed.

【0007】[0007]

【実施例】図1によって本発明を説明する。 基板結晶
11にはサファイアの{1−100}面を採用する。
この基板結晶を有機溶剤で超音波洗浄し,ついで熱した
3PO4:H2SO4=1:3により表面を化学エッチン
グする。 このウエハを水洗,乾燥したのち,RFスパ
ッタ法により厚さ50ナノメータのZnO微結晶層12
を被着する。 この上にAlGaInN系結晶を成長す
る。 これにはトリメチルアルミニウム,トリメチルガ
リウム,トリメチルインジウムをIII族元素のプレカー
サとし,アンモニアをV族元素のプレカーサとして用
い,ジシランおよびジイソプロピルマグネシウムをそれ
ぞれn型およびp型ドーパントのプレカーサとして用い
る有機金属気相エピタキシ成長法を採用する。 このZ
nO層の付いたサファイア基板結晶を反応管に装着し窒
素気流中で1050℃に昇温する。
The present invention will be described with reference to FIG. The substrate crystal 11 adopts the {1-100} plane of sapphire.
The substrate crystal is ultrasonically cleaned with an organic solvent, and then the surface is chemically etched with heated H 3 PO 4 : H 2 SO 4 = 1: 3. The wafer is washed with water and dried, and then the ZnO microcrystal layer 12 having a thickness of 50 nm is formed by the RF sputtering method.
To wear. An AlGaInN-based crystal is grown on this. For this, trimethylaluminum, trimethylgallium, and trimethylindium are used as group III element precursors, ammonia is used as group V element precursors, and disilane and diisopropylmagnesium are used as n-type and p-type dopant precursors, respectively. Adopt the growth method. This Z
A sapphire substrate crystal with an nO layer is attached to a reaction tube and heated to 1050 ° C. in a nitrogen stream.

【0008】まずトリメチルガリウム,ジシラン,アン
モニアを流してn−GaN層13を10ミクロン,これ
にトリメチルアルミニウムを加えてn−AlGaN層1
4を0.2ミクロン,トリメチルガリウム,トリメチル
インジウム,アンモニアによりu−GaInN層15を
0.1ミクロン,トリメチルアルミニウム,トリメチル
ガリウム,ジイソプロピルマグネシウム,アンモニアで
p−AlGaN層16を0.1ミクロン,トリメチルガ
リウム,ジイソプロピルマグネシウム,アンモニアを流
してp−GaN層17を2ミクロンと順次成長する(図
1(a))。このウエハを取り出して王水に浸漬すると
ZnO層12が溶解し,AlGaInN系結晶層をサフ
ァイア基板11から分離することができる(図1
(b))。分離した結晶層を{0001}面18に沿っ
て割ると良好な端面を持ったチップ19が得られる(図
1(c))。 本実施例では{1−100}面上での成
長を例として説明したが{11−20}面についても同
様である。
First, trimethylgallium, disilane, and ammonia are made to flow to make the n-GaN layer 13 have a thickness of 10 μm, and trimethylaluminum is added to this to make the n-AlGaN layer 1
4 to 0.2 μm, trimethylgallium, trimethylindium, and ammonia to make the u-GaInN layer 15 0.1 μm, trimethylaluminum, trimethylgallium, diisopropylmagnesium, and ammonia to make the p-AlGaN layer 16 0.1 μm and trimethylgallium. , Diisopropylmagnesium and ammonia are caused to flow to sequentially grow the p-GaN layer 17 to 2 μm (FIG. 1A). When this wafer is taken out and immersed in aqua regia, the ZnO layer 12 is dissolved and the AlGaInN-based crystal layer can be separated from the sapphire substrate 11 (FIG. 1).
(B)). When the separated crystal layer is divided along the {0001} plane 18, a chip 19 having a good end face is obtained (FIG. 1 (c)). In this embodiment, the growth on the {1-100} plane has been described as an example, but the same applies to the {11-20} plane.

【0009】[0009]

【発明の効果】本発明によれば,ファブリペロキャビテ
イを形成するために欠くことの出来ないきれいな劈開面
を得ることが出来る。
According to the present invention, it is possible to obtain a clean cleavage surface which is indispensable for forming Fabry-Perot cavities.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の結晶製造工程(ウエハ断面図)を説明
する図。
FIG. 1 is a diagram illustrating a crystal manufacturing process (wafer cross-sectional view) of the present invention.

【符号の説明】[Explanation of symbols]

11…(1−100)サファイア基板結晶、12…Zn
O結晶層、13…n−GaN層、14…n−AlGaN
層、15…u−GaInN層、16…p−AlGaN
層、17…p−GaN層、18…{0001}面、19
…チップ。
11 ... (1-100) sapphire substrate crystal, 12 ... Zn
O crystal layer, 13 ... n-GaN layer, 14 ... n-AlGaN
Layers, 15 ... u-GaInN layer, 16 ... p-AlGaN
Layer, 17 ... p-GaN layer, 18 ... {0001} plane, 19
… Tips.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大歳 創 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Otoshi 1-280 Higashi Koigakubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】サファイアの{1−100}または{11
−20}面のうえにZnO層を成長し,続いてAlGa
InN系のダブルヘテロ結晶層を成長し,該ZnO層を
酸で溶解して該ダブルヘテロ結晶層を該基板結晶から分
離してのち,該ダブルヘテロ結晶層を{0001}面に
沿って劈開することを特徴とする結晶製造方法。
1. Sapphire {1-100} or {11
ZnO layer is grown on the −20} plane, and then AlGa
An InN-based double hetero crystal layer is grown, the ZnO layer is dissolved with an acid to separate the double hetero crystal layer from the substrate crystal, and then the double hetero crystal layer is cleaved along the {0001} plane. A method for producing a crystal characterized by the above.
JP5154094A 1994-03-23 1994-03-23 Crystal manufacture method Pending JPH07263809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5154094A JPH07263809A (en) 1994-03-23 1994-03-23 Crystal manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5154094A JPH07263809A (en) 1994-03-23 1994-03-23 Crystal manufacture method

Publications (1)

Publication Number Publication Date
JPH07263809A true JPH07263809A (en) 1995-10-13

Family

ID=12889866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5154094A Pending JPH07263809A (en) 1994-03-23 1994-03-23 Crystal manufacture method

Country Status (1)

Country Link
JP (1) JPH07263809A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437363B1 (en) 1998-09-25 2002-08-20 Murata Manufacturing Co. Ltd. Semiconductor photonic device
US6593596B1 (en) 1998-09-25 2003-07-15 Murata Manufacturing Co., Ltd. Semiconductor light emitting device and method for adjusting the luminous intensity thereof
JP2009141132A (en) * 2007-12-06 2009-06-25 Sharp Corp Light-emitting element and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437363B1 (en) 1998-09-25 2002-08-20 Murata Manufacturing Co. Ltd. Semiconductor photonic device
US6593596B1 (en) 1998-09-25 2003-07-15 Murata Manufacturing Co., Ltd. Semiconductor light emitting device and method for adjusting the luminous intensity thereof
JP2009141132A (en) * 2007-12-06 2009-06-25 Sharp Corp Light-emitting element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2002217115A (en) Crystal film, crystal substrate, and semiconductor device
JP2001210598A (en) Substrate for epitaxial growth and manufacturing method
JP2002261395A (en) Semiconductor light-emitting device and its manufacturing method, and semiconductor device and its manufacturing method
JP2000040858A (en) Optical semiconductor device, manufacture thereof and semiconductor wafer
JPH10321910A (en) Light-emitting semiconductor element
US20240120436A1 (en) Laser diodes, leds, and silicon integrated sensors on patterned substrates
JP4635727B2 (en) Method of manufacturing epitaxial wafer for nitride semiconductor light emitting diode, epitaxial wafer for nitride semiconductor light emitting diode, and nitride semiconductor light emitting diode
JP3839580B2 (en) Manufacturing method of semiconductor substrate
JP3863962B2 (en) Nitride III-V compound semiconductor light emitting device and method for manufacturing the same
JPH11330546A (en) Iii nitride semiconductor material and its manufacture
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JPH10135140A (en) Hetero-epitaxial growing method, hetero-epitaxial layer and semiconductor light-emitting device
JP2003282551A (en) Single-crystal sapphire substrate and its manufacturing method
KR20120039324A (en) Gallium nitride type semiconductor light emitting device and method of fabricating the same
JP2003023179A (en) p-TYPE III NITRIDE SEMICONDUCTOR, ITS MANUFACTURING METHOD, SEMICONDUCTOR DEVICE, AND ITS MANUFACTURING METHOD
JP4743989B2 (en) Semiconductor device, method for manufacturing the same, and method for manufacturing a semiconductor substrate
JPH07263809A (en) Crystal manufacture method
JP4608731B2 (en) Manufacturing method of semiconductor laser
JP3759746B2 (en) Method for producing group III nitride compound semiconductor light emitting diode
JP4623799B2 (en) Semiconductor light emitting device manufacturing method and semiconductor laser
JP4698053B2 (en) Method for producing group III nitride compound semiconductor
JP3817133B2 (en) Method for manufacturing group III nitride compound semiconductor light emitting device
JPH07249831A (en) Method for growing crystal
JP3706577B2 (en) Method for manufacturing group III nitride compound semiconductor light emitting device
JP2006324680A (en) Crystal film, crystal substrate, and semiconductor device