JPH07262821A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH07262821A
JPH07262821A JP5172694A JP5172694A JPH07262821A JP H07262821 A JPH07262821 A JP H07262821A JP 5172694 A JP5172694 A JP 5172694A JP 5172694 A JP5172694 A JP 5172694A JP H07262821 A JPH07262821 A JP H07262821A
Authority
JP
Japan
Prior art keywords
powder
conductive paste
preferable
particles
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5172694A
Other languages
Japanese (ja)
Inventor
秀次 ▲くわ▼島
Hideji Kuwashima
Shozo Yamana
章三 山名
Junichi Kikuchi
純一 菊池
Hiroshi Wada
和田  弘
Riichi Ono
利一 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP5172694A priority Critical patent/JPH07262821A/en
Publication of JPH07262821A publication Critical patent/JPH07262821A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a conductive paste which has a high conductivity and excellent economically efficiency, and can prevent or reduce a short circuit between electrodes or between wirings under the ambiance of a high temperature and a high humidity, by including a ceramics powder whose surface is covered with a specific compound particle in the conductive paste. CONSTITUTION:This conductive paste contains a ceramics powder whose surface is covered with compound particles of a silver powder and a titanium powder. Although the form of the compound particles of the silver powder and the titanium powder is not limited, it is preferable to be a flake form whose mean aspect ratio is about 3 or higher, and it is more preferable to be the flake form with the aspect ratio 10 or higher. Although the form of the compound particles is not limited, it is favorable to have the undifined form having few projection, and its mean grain size is preferable less than 10mum, being more preferable to be less than 5mum. The manufacturing method of the compound particles is not limited, but a strong impact is applied to the particles after the silver powder and the titanium powder are mixed together evenly, or while mixing them evenly, so as to integrate plural particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気回路形成用の導電ペ
ーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste for forming an electric circuit.

【0002】[0002]

【従来の技術】従来、プリント配線板、電子部品等の配
線導体を形成する方法として、導電性に優れた銀粉を含
有するペーストを塗布又は印刷して形成する方法が一般
的に知られている。
2. Description of the Related Art Conventionally, as a method for forming a wiring conductor of a printed wiring board, an electronic component, etc., a method of applying or printing a paste containing silver powder having excellent conductivity is generally known. .

【0003】[0003]

【発明が解決しようとする課題】銀粉を用いた導電ペー
ストは、導電性が良好なことから印刷配線板、電子部品
等の配線導体や電極として使用されているが、これらは
高温多湿の雰囲気下で電界が印加されると、配線導体や
電極にマイグレーションと称する銀の電析が生じ電極間
又は配線間が短絡するという欠点が生じる。このマイグ
レーションを防止するための方策はいくつか行われてお
り、導体の表面に防湿塗料を塗布するか又は導電ペース
トに含窒素化合物などの腐食抑制剤を添加するなどの方
策が検討されているが十分な効果が得られるものではな
かった。
Since the conductive paste using silver powder has good conductivity, it is used as a wiring conductor or an electrode of a printed wiring board, an electronic component or the like, but these are used in a hot and humid atmosphere. When an electric field is applied to the wiring conductors and electrodes, silver electrodeposition called migration occurs, which causes a short circuit between electrodes or between wirings. Several measures have been taken to prevent this migration, and measures such as applying a moisture-proof coating to the surface of the conductor or adding a corrosion inhibitor such as a nitrogen-containing compound to the conductive paste have been studied. The effect was not sufficient.

【0004】銀とパラジウムの合金を使用すればマイグ
レーションを改善できるが、パラジウムが高価なため導
電ペーストも高価となり、また導通抵抗の良好な導体を
得るには銀粉又は銀とパラジウムの合金粉の配合量を多
くしなければならず、これらの原料が高価であることか
ら導電ペーストも高価になるという欠点があった。
Migration can be improved by using an alloy of silver and palladium, but since palladium is expensive, the conductive paste is also expensive, and in order to obtain a conductor having good conduction resistance, silver powder or a silver-palladium alloy powder is blended. The amount has to be increased, and since these raw materials are expensive, the conductive paste is also expensive.

【0005】本発明はかかる欠点のない導電ペーストを
提供するものである。
The present invention provides a conductive paste that does not have such drawbacks.

【0006】[0006]

【課題を解決するための手段】本発明は表面を銀粉とチ
タン粉の複合粒子で被覆したセラミックス粉を含む導電
ペーストに関する。
The present invention relates to a conductive paste containing ceramic powder whose surface is coated with composite particles of silver powder and titanium powder.

【0007】本発明における銀粉とチタン粉の複合粒子
はその形状を限定するものではないが、アスペクト比が
平均で大略3以上あるフレーク状の形状であることが好
ましく、10以上であるフレーク状の形状であればさら
に好ましい。また、その長径の平均粒径は20μm以下
が好ましく、10μm以下であれば印刷性を低下させな
いのでさらに好ましい。
The shape of the composite particles of silver powder and titanium powder in the present invention is not limited, but it is preferable to have a flake shape having an average aspect ratio of about 3 or more, and a flake shape of 10 or more. The shape is more preferable. The average particle diameter of the major axis is preferably 20 μm or less, and more preferably 10 μm or less because printability is not deteriorated.

【0008】セラミックス粉はその形状を限定するもの
ではないが突起の少ない不定形のものが適しており、そ
の平均粒径は10μm以下が好ましく、5μm以下であ
ればさらに好ましい。また該セラミックス粉は、全表面
が複合粒子で覆われていることが望ましいが、大略が被
覆されていれば何ら問題はない。なおセラミックス粉と
しては、アルミナ粉、シリカ粉、炭化ケイ素粉、窒化ア
ルミニウム粉、窒化ケイ素粉、ジルコニア粉等が用いら
れる。複合粒子の作製方法は特に制限はないが、銀粉と
チタン粉を略均一に混合したのち又は略均一に混合しな
がら強い衝撃力を粒子に加えて複数の粒子を一体化させ
ればよい。具体的にはボールミル、連続ビーズミル等の
方法で略均一に混合し、次いでこれを振動ミル、遊星型
ボールミル、アトライター等の高剪断力を印加できる装
置で処理して複合一体化させればよい。また複合粒子の
セラミックス粉への被覆方法については特に制限はない
が、例えば、複合粒子を粉砕用ボールと共にボールミル
に投入し、これを回転させて凝集した複合粒子を分散さ
せながらセラミックス粉の表面を被覆する方法が大量に
処理できるので好ましい。
Although the shape of the ceramic powder is not limited, an irregular shape with few protrusions is suitable, and the average particle diameter is preferably 10 μm or less, more preferably 5 μm or less. Further, it is desirable that the entire surface of the ceramic powder is covered with the composite particles, but if the ceramic powder is substantially covered, no problem will occur. As the ceramic powder, alumina powder, silica powder, silicon carbide powder, aluminum nitride powder, silicon nitride powder, zirconia powder and the like are used. The method for producing the composite particles is not particularly limited, but after the silver powder and the titanium powder are mixed almost uniformly or while being mixed substantially uniformly, a strong impact force may be applied to the particles to integrate the plurality of particles. Specifically, a ball mill, a continuous bead mill, or the like may be used to mix them substantially uniformly, and then this may be treated with a device such as a vibration mill, a planetary ball mill, or an attritor that can apply a high shearing force, to form a composite integral. . The method for coating the composite particles on the ceramic powder is not particularly limited. For example, the composite particles are put into a ball mill together with a ball for pulverization, and the surface of the ceramic powder is dispersed by rotating the composite particles to disperse the aggregated composite particles. The coating method is preferable because a large amount can be processed.

【0009】複合粒子の銀粉とチタン粉の比率は導体の
抵抗、マイグレーションの防止及び耐はんだ性の点から
重量比で100:1〜20:1(銀粉:チタン粉)であ
ることが好ましい。複合粒子とセラミックス粉の比率は
導体の抵抗、マイグレーションの防止及び価格の点から
体積比で5:1〜1:1(複合粒子:セラミックス粉)
であることが好ましい。
The ratio of silver powder to titanium powder of the composite particles is preferably 100: 1 to 20: 1 (silver powder: titanium powder) in weight ratio from the viewpoint of resistance of conductor, migration prevention and soldering resistance. The volume ratio of composite particles to ceramic powder is 5: 1 to 1: 1 in terms of resistance of conductor, prevention of migration and price (composite particles: ceramic powder).
Is preferred.

【0010】導電ペーストは上記の材料以外に液状のエ
ポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂
等の有機質の接着剤成分、2エチル4メチルイミダゾー
ルなどの有機質の接着剤成分の硬化剤及び必要に応じて
テルピネオール、エチルカルビトール、カルビトールア
セテート、ブチルセロソルブ等の溶媒、ベンゾチアゾー
ル、ベンズイミダゾール等の腐食抑制剤、微小黒鉛粉末
などを含有する。銀粉、チタン粉及びセラミックス粉の
含有量は導電ペーストの固形分に対して導体の抵抗と経
済性から20〜60重量%であることが好ましく、30
〜60重量%であることがさらに好ましい。
In addition to the above materials, the conductive paste is a curing agent for an organic adhesive component such as liquid epoxy resin, phenol resin, unsaturated polyester resin, and the like, and an organic adhesive component such as 2 ethyl 4-methylimidazole, and if necessary. It contains a solvent such as terpineol, ethyl carbitol, carbitol acetate and butyl cellosolve, a corrosion inhibitor such as benzothiazole and benzimidazole, and fine graphite powder. The content of silver powder, titanium powder, and ceramics powder is preferably 20 to 60% by weight from the resistance of the conductor and economy with respect to the solid content of the conductive paste, and 30
More preferably, it is from about 60% by weight.

【0011】[0011]

【実施例】以下本発明の実施例を説明する。 実施例1 ビスフェノールA型エポキシ樹脂(油化シェルエポキシ
製、商品名エピコート834)60重量部及びビスフェ
ノールA型エポキシ樹脂(油化シェルエポキシ製、商品
名エピコート828)40重量部を予め加温溶解させ、
次いで室温に冷却した後2エチル4メチルイミダゾール
(四国化成製)5重量部、エチルカルビトール(和光純
薬製、試薬)20重量部、ブチルセロソルブ(和光純薬
製、試薬)20重量部を加えて均一に混合して樹脂組成
物とした。
EXAMPLES Examples of the present invention will be described below. Example 1 60 parts by weight of bisphenol A type epoxy resin (Oilized shell epoxy, trade name Epicoat 834) and 40 parts by weight of bisphenol A type epoxy resin (Oilized shell epoxy, trade name Epicoat 828) were dissolved by heating in advance. ,
Then, after cooling to room temperature, 5 parts by weight of 2 ethyl 4-methyl imidazole (manufactured by Shikoku Kasei), 20 parts by weight of ethyl carbitol (manufactured by Wako Pure Chemicals, reagent), 20 parts by weight of butyl cellosolve (manufactured by Wako Pure Chemicals, reagent) were added. The resin composition was mixed uniformly.

【0012】一方、フレーク状の銀粉(徳力化学研究所
製、商品名TCG−1)110g及び平均粒径が1μm
以下のチタン微粉(高純度化学製)5.5gを粉砕用ボ
ールと共にボールミルに投入し、100時間回転させ
た。さらにこれを遊星型ボールミル(高速回転ボールミ
ル)に移し、100時間高剪断力を印加して一体化して
アスペクト比が平均で20及び長径の平均粒径が6μm
の複合粒子を作製した。次いで該複合粒子と平均粒径が
0.4μmのアルミナ粉(住友化学製、商品名AES−
12)35gを粉砕用ボールと共にボールミルに投入
し、100時間回転させて均一に分散させると共に表面
を複合粒子で被覆したアルミナ粉を作製した。複合粒子
のアルミナ粉への被覆割合を光学顕微鏡で観察したとこ
ろ被覆割合は約90%であった。この後上記で得た樹脂
組成物145gに上記の複合粒子で被覆したアルミナ粉
150.5gを加えて撹拌らいかい機及び三本ロールで
均一に分散して導電ペーストを得た。
On the other hand, 110 g of flake-shaped silver powder (TCG-1 manufactured by Tokuriki Kagaku Kenkyusho) and an average particle size of 1 μm.
5.5 g of the following titanium fine powder (manufactured by Kojundo Chemical Co., Ltd.) was put into a ball mill together with a ball for pulverization and rotated for 100 hours. Further, this was transferred to a planetary ball mill (high-speed rotation ball mill), and a high shearing force was applied for 100 hours to integrate them, and the aspect ratio was 20 on average and the average diameter of major axis was 6 μm.
The composite particles of Next, the composite particles and alumina powder having an average particle size of 0.4 μm (trade name AES-, manufactured by Sumitomo Chemical Co., Ltd.
12) 35 g was put into a ball mill together with a ball for pulverization, rotated for 100 hours to be uniformly dispersed, and alumina powder having the surface coated with composite particles was produced. When the coverage of the composite particles on the alumina powder was observed with an optical microscope, the coverage was about 90%. Thereafter, 150.5 g of the alumina powder coated with the above composite particles was added to 145 g of the resin composition obtained above and uniformly dispersed by a stirrer and a triple roll to obtain a conductive paste.

【0013】次に上記で得た導電ペーストで、厚さが
1.6mmで直径が0.8mm(φ)のスルーホールを形成
した紙フェノール銅張積層板(日立化成工業製、商品名
MCL−437F)に図1に示すテストパターンを印刷
すると共にこれをスルーホール1に充てんしたものを大
気中で60℃30分さらに160℃30分の条件で加熱
処理して配線板を得た。なお図1において2は紙フェノ
ール銅張積層板である。次に得られた配線板の抵抗を測
定した。その結果、銅箔の抵抗を除いたスルーホール1
の抵抗は24mΩ/穴であり、隣り合うスルーホール間
の絶縁抵抗は108Ω以上であった。該配線板の冷熱衝
撃試験を実施した結果、スルーホール1の抵抗は30m
Ω/穴であった。また該配線板の湿中負荷試験を実施し
た結果、スルーホール間の絶縁抵抗は108Ω以上であ
った。なお、冷熱試験条件は125℃30分〜−65℃
30分を100サイクル行い、湿中負荷試験は40℃9
0%RH中、隣り合うライン間に50Vの電圧を印加し
て1000時間保持した。また耐はんだ試験(260
℃、10秒、5回)を行ったが、ランド部分の導電ペー
スト硬化物に、はんだくわれは認められなかった。
Next, a paper phenol copper-clad laminate (made by Hitachi Chemical Co., Ltd., trade name MCL- with a thickness of 1.6 mm and a through hole having a diameter of 0.8 mm (φ) formed with the conductive paste obtained above. 437F) was printed with the test pattern shown in FIG. 1 and the through hole 1 was filled with the test pattern and heated at 60 ° C. for 30 minutes and 160 ° C. for 30 minutes to obtain a wiring board. In FIG. 1, 2 is a paper phenol copper clad laminate. Next, the resistance of the obtained wiring board was measured. As a result, through hole 1 excluding the resistance of copper foil
The resistance was 24 mΩ / hole, and the insulation resistance between adjacent through holes was 10 8 Ω or more. As a result of the thermal shock test of the wiring board, the resistance of the through hole 1 is 30 m.
Ω / hole. Moreover, as a result of performing a wet and medium load test on the wiring board, the insulation resistance between the through holes was 10 8 Ω or more. The cold heat test conditions are 125 ° C. 30 minutes to −65 ° C.
100 cycles of 30 minutes, 40 ° C 9
In 0% RH, a voltage of 50 V was applied between adjacent lines and held for 1000 hours. Also, solder resistance test (260
However, solder curl was not observed in the cured conductive paste in the land portion.

【0014】実施例2 実施例1で用いたフレーク状銀粉を200g及びチタン
粉を5g配合した以外は実施例1と同様の工程を経てア
スペクト比が平均で20及び長径の平均粒径が6μmの
複合粒子を作製し、次いで該複合粒子と実施例1で用い
たアルミナ粉40gを粉砕用ボールと共にボールミルに
投入し、100時間回転させて均一に分散させると共に
表面を複合粒子で被覆したアルミナ粉を作製した。この
後実施例1で得た樹脂組成物145gに上記の複合粒子
で被覆したアルミナ粉を245g加えて実施例1と同様
の方法で均一に混合分散して導電ペーストを得た。以下
実施例1と同様の工程を経て配線板を作製してその特性
を評価した。その結果、スルーホールの抵抗は22mΩ
/穴であり、スルーホール間の絶縁抵抗は108Ω以上
であった。また該配線板の冷熱衝撃試験を実施した結
果、スルーホールの抵抗は28mΩ/穴であり、湿中負
荷試験の結果では、スルーホール間の絶縁抵抗は108
Ω以上であった。
Example 2 Aspect ratio was 20 on average and the average diameter of major axis was 6 μm through the same steps as in Example 1 except that 200 g of the flake silver powder used in Example 1 and 5 g of titanium powder were blended. Composite particles were prepared, and then 40 g of the alumina powder used in Example 1 and the alumina powder used in Example 1 were put into a ball mill together with a ball for pulverization and rotated for 100 hours to uniformly disperse the alumina powder whose surface was coated with the composite particles. It was made. Then, 245 g of the alumina powder coated with the above composite particles was added to 145 g of the resin composition obtained in Example 1 and uniformly mixed and dispersed in the same manner as in Example 1 to obtain a conductive paste. A wiring board was manufactured through the same steps as in Example 1 and the characteristics thereof were evaluated. As a result, the resistance of the through hole is 22 mΩ.
/ Hole, and the insulation resistance between through holes was 10 8 Ω or more. As a result of the thermal shock test of the wiring board, the resistance of the through holes was 28 mΩ / hole, and the result of the wet and medium load test showed that the insulation resistance between the through holes was 10 8.
It was more than Ω.

【0015】実施例3 実施例1で用いたフレーク状銀粉を730g及びチタン
粉を70g配合した以外は実施例1と同様の工程を経て
アスペクト比が平均で20及び長径の平均粒径が6μm
の複合粒子を作製し、次いで該複合粒子と実施例1で用
いたアルミナ粉70gを粉砕用ボールと共にボールミル
に投入し、100時間回転させて均一に分散させると共
に表面を複合粒子で被覆したアルミナ粉を作製した。こ
の後実施例1で用いた樹脂組成物145gに上記の複合
粒子で被覆したアルミナ粉を870g加えて実施例1と
同様の方法で均一に混合分散して導電ペーストを得た。
以下実施例1と同様の工程を経て配線板を作製してその
特性を評価した。その結果、スルーホールの抵抗は21
mΩ/穴であり、スルーホール間の絶縁抵抗は108Ω
以上であった。また該配線板の冷熱衝撃試験を実施した
結果、スルーホールの抵抗は26mΩ/穴であり、湿中
負荷試験の結果では、スルーホール間の絶縁抵抗は10
8Ω以上であった。
Example 3 The same aspect ratio as in Example 1 was used except that 730 g of the flake silver powder and 70 g of titanium powder used in Example 1 were blended, and the aspect ratio was 20 on average and the average diameter of major axis was 6 μm.
Composite particles and 70 g of the alumina powder used in Example 1 were put into a ball mill together with a ball for grinding, and the mixture was rotated for 100 hours to be uniformly dispersed and the surface of the alumina powder was coated with the composite particles. Was produced. Thereafter, 870 g of the alumina powder coated with the above composite particles was added to 145 g of the resin composition used in Example 1 and uniformly mixed and dispersed in the same manner as in Example 1 to obtain a conductive paste.
A wiring board was manufactured through the same steps as in Example 1 and the characteristics thereof were evaluated. As a result, the through hole resistance is 21
mΩ / hole, insulation resistance between through holes is 10 8 Ω
That was all. As a result of the thermal shock test of the wiring board, the resistance of the through hole was 26 mΩ / hole, and the result of the wet and medium load test showed that the insulation resistance between the through holes was 10 mΩ / hole.
It was more than 8 Ω.

【0016】比較例1 実施例1で得た樹脂組成物145gに実施例1で用いた
フレーク状銀粉を1000g加えて実施例1と同様の方
法で均一に混合分散して導電ペーストを得た。以下実施
例1と同様の工程を経て配線板を作製してその特性を評
価した。その結果、スルーホールの抵抗は22mΩ/穴
であり、スルーホール間の絶縁抵抗は108Ω以上であ
った。また該配線板の冷熱衝撃試験を実施した結果、ス
ルーホールの抵抗は28mΩ/穴であり、湿中負荷試験
の結果では、スルーホール間の絶縁抵抗は配線板5枚の
うち1枚が107Ω台に低下していた。また実施例1と
同様の耐はんだ試験を実施したところ、ランド部分の導
電ペースト硬化物に、はんだくわれが認められた。
Comparative Example 1 To 145 g of the resin composition obtained in Example 1, 1000 g of the flake silver powder used in Example 1 was added and uniformly mixed and dispersed in the same manner as in Example 1 to obtain a conductive paste. A wiring board was manufactured through the same steps as in Example 1 and the characteristics thereof were evaluated. As a result, the resistance of the through holes was 22 mΩ / hole, and the insulation resistance between the through holes was 10 8 Ω or more. As a result of a thermal shock test of the wiring board, the resistance of the through hole was 28 mΩ / hole. According to the result of the wet and medium load test, the insulation resistance between the through holes was 10 7 for 5 wiring boards. It had dropped to the Ω range. Further, when the same soldering resistance test as in Example 1 was carried out, solder nicks were observed in the conductive paste cured product in the land portion.

【0017】[0017]

【発明の効果】本発明になる導電ペーストは、配線板に
おけるスルーホールの抵抗が低い高導電性のペーストで
あり、また湿中負荷試験後におけるスルーホール間の絶
縁抵抗の低下が小さく、また、高価なパラジウムを使用
することなく耐マイグレーション性及び耐はんだ性を改
善できるなど経済的にも優れた導電ペーストである。
EFFECT OF THE INVENTION The conductive paste according to the present invention is a highly conductive paste having a low resistance of through holes in a wiring board, and has a small decrease in insulation resistance between through holes after a wet and medium load test. It is a conductive paste that is economically excellent in that migration resistance and solder resistance can be improved without using expensive palladium.

【図面の簡単な説明】[Brief description of drawings]

【図1】紙フェノール銅張積層板に導電ペーストを印刷
すると共にスルーホールに充てんした状態を示す平面図
である。
FIG. 1 is a plan view showing a state in which a conductive paste is printed on a paper phenol copper clad laminate and the through holes are filled.

【符号の説明】[Explanation of symbols]

1 スルーホール 2 紙フェノール銅張積層板 1 Through hole 2 Paper phenol copper clad laminate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 弘 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 (72)発明者 小野 利一 茨城県日立市鮎川町三丁目3番1号 桜川 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Wada 4-13-1, Higashimachi, Hitachi City, Ibaraki Prefecture Ibaraki Research Laboratory, Hitachi Chemical Co., Ltd. (72) Inventor Toshikazu Ono 3-chome, Ayukawacho, Hitachi City, Ibaraki No. 3 Sakuragawa Sangyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面を銀粉とチタン粉の複合粒子で被覆
したセラミックス粉を含む導電ペースト。
1. A conductive paste containing ceramic powder, the surface of which is coated with composite particles of silver powder and titanium powder.
JP5172694A 1994-03-23 1994-03-23 Conductive paste Pending JPH07262821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5172694A JPH07262821A (en) 1994-03-23 1994-03-23 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5172694A JPH07262821A (en) 1994-03-23 1994-03-23 Conductive paste

Publications (1)

Publication Number Publication Date
JPH07262821A true JPH07262821A (en) 1995-10-13

Family

ID=12894899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5172694A Pending JPH07262821A (en) 1994-03-23 1994-03-23 Conductive paste

Country Status (1)

Country Link
JP (1) JPH07262821A (en)

Similar Documents

Publication Publication Date Title
WO1996024938A1 (en) Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
JPWO2005031760A1 (en) Mixed conductive powder and its use
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JPH07307110A (en) Conductive paste
JPH06333417A (en) Conductive paste
JPH07262821A (en) Conductive paste
JPH07262820A (en) Conductive paste
JPH10152630A (en) Conductive paste and composite conductive powder
JP3596563B2 (en) Conductive paste
JPH0714427A (en) Conductive paste
JPH06349318A (en) Conductive paste
JPH07307112A (en) Conductive paste
JPH07307109A (en) Conductive paste
JPH07288030A (en) Conductive paste
JPH07262822A (en) Conductive paste
JPH07288029A (en) Conductive paste
JPH06338219A (en) Conductive paste
JPH06349319A (en) Conductive paste
JPH06336562A (en) Conductive paste
JPH06338218A (en) Conductive paste
JPH06333416A (en) Conductive paste
JPH0969313A (en) Conductive paste and its manufacture, and electric circuit device using conductive paste and its manufacture
JP3618441B2 (en) Conductive metal composite powder and manufacturing method thereof
JPH07307111A (en) Conductive paste
JPH06329960A (en) Conductive paste