JPH07261556A - Image forming method - Google Patents

Image forming method

Info

Publication number
JPH07261556A
JPH07261556A JP6046289A JP4628994A JPH07261556A JP H07261556 A JPH07261556 A JP H07261556A JP 6046289 A JP6046289 A JP 6046289A JP 4628994 A JP4628994 A JP 4628994A JP H07261556 A JPH07261556 A JP H07261556A
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
image
magnet member
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6046289A
Other languages
Japanese (ja)
Inventor
Masahisa Ochiai
正久 落合
Toshihiko Noshiro
敏彦 野代
Masumi Asanae
益実 朝苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6046289A priority Critical patent/JPH07261556A/en
Priority to US08/385,418 priority patent/US5717983A/en
Priority to DE19504285A priority patent/DE19504285A1/en
Publication of JPH07261556A publication Critical patent/JPH07261556A/en
Priority to US08/917,557 priority patent/US6075964A/en
Priority to US08/917,426 priority patent/US5926677A/en
Priority to US08/917,686 priority patent/US6072974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

PURPOSE:To provide an image forming method requiring little torque for carrying and conveying a magnetic developer and capable of forming a high-quality image in a wide toner density range. CONSTITUTION:An electrostatic charge image on an image carrier 7 moved while carrying the electrostatic charge image is developed with a two-constituent magnetic developer in this image forming method. The means carrying and conveying the magnetic developer is constituted of a permanent magnet member 4 provided multiple magnetic poles on the surface and formed cylindrically and rotatably. The magnetic carrier constituting the magnetic developer attracted and conveyed on the surface of the permanent magnet member 4 has the average grain size of 5-20mum, the opposite electrification polarity to that of the toner, and the magnetization delta1000 of 50emu/g or below in the magnetic field of 1000Oe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,静電荷像を担持する像
担持手段の表面に形成された静電荷像を,円筒状に一体
に成形された永久磁石部材からなる現像剤支持手段の表
面に吸着保持された,トナーと磁性キャリアとを主成分
とする二成分系の磁性現像剤によって顕像化する画像形
成方法に関し,特に磁性現像剤の支持搬送手段として中
空円筒状のスリーブを省略した構成のものを使用し,お
よび磁性現像剤を構成する磁性キャリアとして小粒径か
つ低磁力のものを使用し,現像剤支持搬送に要するトル
クが低減できると共に,広いトナー濃度範囲で高品質の
画像が得られる画像形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface of a developer supporting means comprising a permanent magnet member integrally formed in a cylindrical shape with an electrostatic charge image formed on the surface of an image carrying means carrying an electrostatic charge image. The present invention relates to an image forming method in which a two-component magnetic developer mainly composed of a toner and a magnetic carrier adsorbed and held on a magnetic recording medium is visualized, and in particular, a hollow cylindrical sleeve is omitted as a supporting and conveying means of the magnetic developer. The magnetic carrier that has a small particle size and a low magnetic force is used as the magnetic carrier that constitutes the magnetic developer, and the torque required to support and convey the developer can be reduced, and a high-quality image can be obtained in a wide toner concentration range. And an image forming method capable of obtaining

【0002】[0002]

【従来の技術】従来電子写真法や静電記録を応用したプ
リンタ,ファクシミリ等における画像形成方法では,例
えば円筒状に形成した感光体ドラムの表面に静電荷像を
形成した後,この感光体ドラムと対向して設けられ,永
久磁石部材を内蔵すると共にこの永久磁石部材と同軸的
に相対回転自在に嵌挿してなるスリーブとからなる現像
ロールにより,磁性現像剤をスリーブの表面に吸着して
搬送する。その後現像領域において磁気ブラシを形成す
ると共に,この磁気ブラシによって前記感光体ドラム上
の静電荷像形成面を摺擦し,トナー像として顕像化する
方法を採用している。そしてこの顕像化したトナー像を
記録紙に転写した後,熱定着するのが最も一般的な手段
である。
2. Description of the Related Art In a conventional image forming method for a printer, a facsimile, etc., to which an electrophotographic method or electrostatic recording is applied, for example, an electrostatic charge image is formed on the surface of a cylindrical photosensitive drum and then the photosensitive drum is formed. The magnetic developer is attracted to the surface of the sleeve and conveyed by a developing roll including a sleeve which is provided so as to face the To do. After that, a method is adopted in which a magnetic brush is formed in the developing area and the electrostatic charge image forming surface on the photosensitive drum is rubbed by the magnetic brush to visualize as a toner image. The most general means is to transfer the visualized toner image onto recording paper and then heat fixing.

【0003】近年,上記のような画像形成に使用される
装置の小型化の要求が強まっており,現像部を小型化す
ることが重要となっている。このような要求を満足する
ための手段として,スリーブを使用せずに,永久磁石部
材の表面に磁性現像剤を直接吸着し,永久磁石部材の回
転によって磁性現像剤を搬送する提案がなされている
(例えば特開昭62−201463号公報等参照)。
In recent years, there is an increasing demand for downsizing of the apparatus used for image formation as described above, and it is important to downsize the developing section. As a means for satisfying such a requirement, it has been proposed to directly attract the magnetic developer to the surface of the permanent magnet member and convey the magnetic developer by rotating the permanent magnet member without using a sleeve. (See, for example, JP-A-62-201463).

【0004】図2は従来の現像手段の例を示す要部横断
面図である。図2において,1は現像剤槽であり,トナ
ーと磁性キャリアとを主成分とする磁性現像剤2を収容
すると共に,その下方に永久磁石部材4を回転可能に設
ける。永久磁石部材4は少なくとも表面を導電性に形成
し,外周面に軸方向に延びる複数個の磁極を設け,円柱
状に形成する。
FIG. 2 is a cross-sectional view of a main part showing an example of a conventional developing means. In FIG. 2, reference numeral 1 denotes a developer tank, which contains a magnetic developer 2 containing toner and a magnetic carrier as main components, and below which a permanent magnet member 4 is rotatably provided. At least the surface of the permanent magnet member 4 is made conductive, and a plurality of magnetic poles extending in the axial direction are provided on the outer peripheral surface of the permanent magnet member 4 to form a cylindrical shape.

【0005】上記の永久磁石部材4は,強磁性粉末と樹
脂との混合物からなる樹脂磁石(特開昭57−1304
07号,同59−905号,同59−226367号公
報等参照)によって形成できる。表面を導電性に形成す
る手段としては,表面に導電層を接着,メッキ等によっ
て形成するか,原料混練時に粉末状の導電性物質を添加
してもよい。また永久磁石部材4をハードフェライト磁
石によって形成し,半導電性としてもよい。
The above-mentioned permanent magnet member 4 is a resin magnet made of a mixture of ferromagnetic powder and resin (Japanese Patent Laid-Open No. 57-1304).
No. 07, No. 59-905, No. 59-226367, etc.). As a means for making the surface conductive, a conductive layer may be formed on the surface by adhesion, plating or the like, or a powdery conductive substance may be added at the time of kneading the raw materials. Alternatively, the permanent magnet member 4 may be formed of a hard ferrite magnet so as to be semiconductive.

【0006】7は感光体ドラムであり,矢印方向に回転
可能に形成し,永久磁石部材4と間隙gを介して対向さ
せてある。8はドクターブレードであり,現像剤槽1に
設けられ,永久磁石部材4と間隙tを介して対向させ,
永久磁石部材4の表面に吸着される磁性現像剤2の層厚
を規制するものである。10は直流電源であり,永久磁
石部材4の表面にバイアス電圧を印加するものである。
Reference numeral 7 denotes a photosensitive drum, which is formed to be rotatable in the direction of the arrow and is opposed to the permanent magnet member 4 with a gap g. 8 is a doctor blade, which is provided in the developer tank 1 and faces the permanent magnet member 4 with a gap t,
The layer thickness of the magnetic developer 2 adsorbed on the surface of the permanent magnet member 4 is regulated. A DC power supply 10 applies a bias voltage to the surface of the permanent magnet member 4.

【0007】上記の構成により,永久磁石部材4を矢印
方向に回転させると,磁性現像剤2が永久磁石部材4に
吸着されて搬送され,感光体ドラム7と対向する現像領
域に至ると,感光体ドラム7上に形成されている静電荷
像の電界によって,磁性現像剤2中のトナーが転移し,
静電荷像を顕像化することができるのである。
With the above structure, when the permanent magnet member 4 is rotated in the direction of the arrow, the magnetic developer 2 is adsorbed by the permanent magnet member 4 and conveyed, and when it reaches the developing area facing the photoconductor drum 7, it is exposed to light. The toner in the magnetic developer 2 is transferred by the electric field of the electrostatic charge image formed on the body drum 7,
The electrostatic charge image can be visualized.

【0008】[0008]

【発明が解決しようとする課題】上記のような画像形成
手段において,二成分系の磁性現像剤としては,例えば
5〜20μmの粒度分布を有する磁性トナーと,粒度分
布70〜140μmのフェライトキャリア(例えば日立
金属製KBN−100)との混合材料である磁性現像剤
2が使用される。なお磁性トナーに代えて非磁性トナー
を使用する場合もある。
In the image forming means as described above, as the two-component magnetic developer, for example, a magnetic toner having a particle size distribution of 5 to 20 μm and a ferrite carrier (having a particle size distribution of 70 to 140 μm) ( For example, the magnetic developer 2 which is a mixed material with Hitachi Metals KBN-100) is used. Note that non-magnetic toner may be used in place of magnetic toner.

【0009】この場合において,高精細画像を形成する
ためには,小粒径のトナーを使用する必要があるが,磁
性キャリアとして上記のように大粒径のものを使用する
と,トナーに対する帯電付与能力が不足するためかぶり
が発生し易く,画質を低下させるという問題点がある。
従って高精細画像を得るためには,小粒径のトナーを必
要とすると共に,磁性キャリアとしても小粒径のものが
必要となる。
In this case, in order to form a high-definition image, it is necessary to use a toner having a small particle size. However, when a magnetic carrier having a large particle size is used as described above, a charge is imparted to the toner. There is a problem that fog is apt to occur due to lack of ability, and image quality is deteriorated.
Therefore, in order to obtain a high-definition image, a toner having a small particle size is required, and a magnetic carrier having a small particle size is also required.

【0010】しかしながら従来のスリーブ付の現像ロー
ルにおいて,上記小粒径の磁性キャリアを使用するとキ
ャリア付着が発生し,画質を低下させるという問題点が
ある。一方前記図2に示すようなスリーブを省略し,永
久磁石部材4によって磁性現像剤2を直接吸着搬送する
型式の画像形成手段においては,前記スリーブ付の現像
ロールにおけるようなキャリア付着は発生しないもの
の,高磁力の磁性キャリアを使用すると,永久磁石部材
4を駆動するための回転トルクが大となり,トナーを構
成する樹脂成分が磁性キャリアの表面にこびり着くとい
う所謂スペント現象が発生し易くなり,磁性キャリアの
寿命低下,かぶり発生等の問題点がある。
However, in the conventional developing roller with a sleeve, when the above-mentioned magnetic carrier having a small particle diameter is used, carrier adhesion occurs and the image quality deteriorates. On the other hand, in the image forming means of the type in which the sleeve as shown in FIG. 2 is omitted and the magnetic developer 2 is directly attracted and conveyed by the permanent magnet member 4, carrier adhesion does not occur unlike in the developing roll with the sleeve. When a magnetic carrier having a high magnetic force is used, the rotation torque for driving the permanent magnet member 4 becomes large, so that a so-called spent phenomenon in which the resin component constituting the toner sticks to the surface of the magnetic carrier easily occurs, There are problems such as shortening the life of the magnetic carrier and fogging.

【0011】また従来の画像形成手段における二成分系
の磁性現像剤中のトナー濃度は,非磁性トナー含有の場
合において3〜5重量%,磁性トナー含有の場合におい
て20±5重量%の範囲の比較的狭い範囲であるため,
トナー濃度センサ等のトナー濃度制御手段が必要であ
り,操作性が低いと共に,装置が複雑となるという問題
点も併存する。
Further, the toner concentration in the two-component magnetic developer in the conventional image forming means is in the range of 3 to 5% by weight when the non-magnetic toner is contained, and 20 ± 5% by weight when the magnetic toner is contained. Since it is a relatively narrow range,
A toner density control means such as a toner density sensor is required, which has the problems of low operability and a complicated apparatus.

【0012】本発明は上記従来技術に存在する問題点を
解決し,磁性現像剤の支持搬送に要するトルクが小であ
ると共に,広いトナー濃度範囲で高品質の画像形成が可
能である画像形成方法を提供することを目的とする。
The present invention solves the above-mentioned problems existing in the prior art, and requires a small torque for supporting and conveying the magnetic developer, and is capable of forming a high-quality image in a wide toner concentration range. The purpose is to provide.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に,本発明においては,静電荷像を担持して移動する像
担持体上の静電荷像を二成分系の磁性現像剤を使用して
現像する画像形成方法において,磁性現像剤を支持搬送
する手段を,表面に複数個の磁極を設け円筒状にかつ回
転可能に形成した永久磁石部材によって構成すると共
に,この永久磁石部材の表面に吸着搬送される磁性現像
剤を構成する磁性キャリアを,平均粒径5〜20μm,
トナーと逆帯電極性,1000Oeの磁場中における磁
化σ1000を50emu/g 以下に形成する,という技術的手
段を採用した。
To achieve the above object, in the present invention, a two-component magnetic developer is used for an electrostatic charge image on an image carrier which carries and moves the electrostatic charge image. In the image forming method of developing by developing, the means for supporting and conveying the magnetic developer is constituted by a permanent magnet member formed in a cylindrical shape and rotatably with a plurality of magnetic poles on the surface, and the surface of the permanent magnet member is formed. The magnetic carrier constituting the magnetic developer that is adsorbed and conveyed has an average particle size of 5 to 20 μm,
The technical means of forming the magnetization σ 1000 in the magnetic field of 1000 Oe to 50 emu / g or less with the polarity opposite to that of the toner was adopted.

【0014】本発明における永久磁石部材は,フェライ
ト磁石のみに限らず,磁性粉と樹脂材料とを主成分とす
る樹脂磁石であってもよい。またこの永久磁石部材は,
シャフトの外周に上記磁石をロール状に一体に形成した
ものでも,あるいはシャフトを含めて全体を磁石材料で
形成したものでもよい。但し,この永久磁石部材は,現
像ムラを防止するために,円周方向および軸方向に継目
がなく,全体が一体に形成されていることが必要であ
る。
The permanent magnet member in the present invention is not limited to the ferrite magnet, but may be a resin magnet containing magnetic powder and a resin material as main components. Also, this permanent magnet member is
The magnet may be integrally formed in a roll shape on the outer periphery of the shaft, or may be entirely formed of a magnetic material including the shaft. However, in order to prevent uneven development, the permanent magnet member must be seamlessly formed in the circumferential direction and the axial direction and integrally formed.

【0015】上記永久磁石部材の表面には,異極性の磁
極が微小間隔を置いて円周方向に交互に配設されている
ため,磁極数が増加すると表面磁束密度が減少する。一
方磁性現像剤の飛散防止の点から,永久磁石部材の表面
磁束密度は50G以上であることが好ましく,またトナ
ーが像担持体の表面に形成された静電荷像に付着し易く
するために,1200G以下であることが好ましい。ま
た磁極数は,上記表面磁束密度50〜1200Gに対応
する8〜60極とすることが好ましい。なお上記表面磁
束密度のより好ましい範囲は100〜800Gである。
On the surface of the permanent magnet member, magnetic poles having different polarities are alternately arranged in the circumferential direction with a minute interval, so that the surface magnetic flux density decreases as the number of magnetic poles increases. On the other hand, from the viewpoint of preventing the magnetic developer from scattering, the surface magnetic flux density of the permanent magnet member is preferably 50 G or more, and in order to make toner easily adhere to the electrostatic charge image formed on the surface of the image carrier, It is preferably 1200 G or less. The number of magnetic poles is preferably 8 to 60 corresponding to the surface magnetic flux density of 50 to 1200G. A more preferable range of the surface magnetic flux density is 100 to 800G.

【0016】次に磁極数を大にすると,永久磁石部材の
周囲に形成される磁界が小さくなり,永久磁石部材の表
面への磁性現像剤の付着量が少なくなる。このため永久
磁石部材の表面に形成される磁性現像剤層の厚さが不均
一となり易いので,このような非所望な現象を防止する
ために永久磁石部材を高速で回転させる必要がある。し
かしながら永久磁石部材の回転速度が早すぎると,駆動
トルクが大になったり,磁性現像剤を構成するキャリア
の摩耗が発生する。一方上記回転速度が遅すぎると,画
像に濃度ムラが発生する。従って永久磁石部材の周速V
m(mm/秒)は像担持体の周速Vp(mm/秒)の1〜1
0倍に設定することが好ましく,より好ましくは2〜6
倍である。
Next, when the number of magnetic poles is increased, the magnetic field formed around the permanent magnet member is reduced, and the amount of the magnetic developer attached to the surface of the permanent magnet member is reduced. For this reason, the thickness of the magnetic developer layer formed on the surface of the permanent magnet member is likely to be nonuniform, and therefore the permanent magnet member must be rotated at a high speed in order to prevent such an undesired phenomenon. However, if the rotation speed of the permanent magnet member is too fast, the driving torque becomes large and the carrier constituting the magnetic developer is worn. On the other hand, if the rotation speed is too slow, density unevenness occurs in the image. Therefore, the peripheral speed V of the permanent magnet member is
m (mm / sec) is 1 to 1 of the peripheral velocity Vp (mm / sec) of the image carrier.
It is preferably set to 0 times, more preferably 2 to 6
Double.

【0017】次に永久磁石部材の外径をD(mm),表面
に設けられる磁極数をMとすると,下記の式で表される
h(mm)の値が2より小になるように,D,M,Vmを
設定することが好ましい。
Next, assuming that the outer diameter of the permanent magnet member is D (mm) and the number of magnetic poles provided on the surface is M, the value of h (mm) represented by the following equation is smaller than 2. It is preferable to set D, M and Vm.

【0018】h=πD・Vp/M・Vm 上記hは,像担持体の表面が単位時間内に永久磁石部材
の磁極と対面するピッチであるが,hが2mm以上である
と,現像ムラが目立つため2mmより小とするのが好まし
く,より好ましくは1mm以下とするのがよい。この場
合,hの値を小にするためには,永久磁石部材の磁極数
Mと周速Vmを大にすればよいが,磁極数Mが多すぎる
と表面磁束密度が低下して,磁性現像剤の飛散が発生し
易く,周速Vmが大きすぎると前記のような不具合が発
生するので,実用上hの値は0.4〜1.0mmとするのが好
ましい。
H = πD · Vp / M · Vm The above h is the pitch where the surface of the image carrier faces the magnetic poles of the permanent magnet member within a unit time. If h is 2 mm or more, uneven development occurs. Since it is conspicuous, it is preferably smaller than 2 mm, more preferably 1 mm or less. In this case, in order to reduce the value of h, the number of magnetic poles M and the peripheral speed Vm of the permanent magnet member may be increased. However, if the number of magnetic poles M is too large, the surface magnetic flux density decreases and the magnetic development Since the agent is likely to be scattered and the above-mentioned problems occur when the peripheral speed Vm is too high, the value of h is preferably set to 0.4 to 1.0 mm in practical use.

【0019】また永久磁石部材の表面とドクターブレー
ド先端との間隙であるドクターギャップtを設ける場合
には,画像品質の点から永久磁石部材と像担持体との間
隙である現像ギャップgとの差を,(g−t)=0.2±
0.15mmとすることが好ましい。なお上記ドクターブレ
ードを永久磁石部材の表面に接触若しくは圧接させてt
=0としてもよい。この場合においては,ドクターブレ
ードをSK材などの磁性材料またはSUS304やリン
青銅などの非磁性材料によって弾性ブレード状に形成
し,その一端を現像剤槽に固定し,他端を前記永久磁石
部材の表面に接触させればよい。
When the doctor gap t, which is the gap between the surface of the permanent magnet member and the tip of the doctor blade, is provided, the difference between the developing gap g, which is the gap between the permanent magnet member and the image bearing member, from the viewpoint of image quality. (G−t) = 0.2 ±
It is preferably 0.15 mm. The doctor blade is brought into contact with or pressed against the surface of the permanent magnet member to t
It may be = 0. In this case, the doctor blade is made of a magnetic material such as SK material or a non-magnetic material such as SUS304 or phosphor bronze into an elastic blade shape, one end of which is fixed to the developer tank and the other end of which is formed of the permanent magnet member. It may be brought into contact with the surface.

【0020】次に本発明における永久磁石部材が,半導
電性若しくは絶縁性の材料である場合は,バイアス電圧
を印加する箇所としてはドクターブレードが好ましく,
この場合ドクターブレードは金属等の導電性材料によっ
て形成すればよい。また永久磁石部材が導電性の材料で
ある場合は,バイアス電圧はシャフト等から印加するこ
とが好ましい。
Next, when the permanent magnet member of the present invention is made of a semiconductive or insulating material, a doctor blade is preferable as a portion for applying a bias voltage,
In this case, the doctor blade may be made of a conductive material such as metal. When the permanent magnet member is a conductive material, the bias voltage is preferably applied from the shaft or the like.

【0021】次に二成分系の磁性現像剤としては,予め
所定のトナー濃度に調整されたものを現像剤槽内に投入
するか,または永久磁石部材の表面にキャリアを付着さ
せておき,その後現像剤槽内にトナーのみを補給するよ
うにすればよい。これにより,トナー濃度制御手段が不
要となり,現像装置の小型化が図れる。
Next, as the two-component magnetic developer, one prepared in advance to have a predetermined toner concentration is put into the developer tank, or a carrier is attached to the surface of the permanent magnet member, and then, Only the toner may be replenished in the developer tank. As a result, the toner density control means is not required, and the developing device can be downsized.

【0022】磁性現像剤を構成するキャリアとしては,
平均粒径が5〜20μmであり,1000Oeの磁界中
で測定した時の磁化σ1000が50emu/g以下の磁性
粒子(鉄粉,フェライト,マグネタイト,樹脂中に磁性
粉が分散されたバインダー型粒子等)を使用することが
できる。磁化σ1000が50emu/gより大であると,
磁性現像剤の吸着搬送に要するトルクが大となり,キャ
リアのスペント現象が発生し易くなり,キャリアの寿命
低下,かぶりの発生を招来するため好ましくない。
As the carrier constituting the magnetic developer,
Magnetic particles having an average particle size of 5 to 20 μm and a magnetization σ 1000 of 50 emu / g or less when measured in a magnetic field of 1000 Oe (iron powder, ferrite, magnetite, binder type particles in which magnetic powder is dispersed in resin) Etc.) can be used. If the magnetization σ 1000 is greater than 50 emu / g,
The torque required for attracting and transporting the magnetic developer becomes large, the spent phenomenon of the carrier is likely to occur, the life of the carrier is shortened, and fogging is unfavorable.

【0023】更にキャリアの平均粒径は,20μm以下
であればトナーの帯電量が充分に得られるが,平均粒径
が5μmより小であるとキャリア付着を生じ易くなるた
め好ましくない。なおキャリアは上記の磁性粒子を2種
以上混合したものでもよく,混合比率は磁性粒子の大き
さや磁気特性などを考慮して定めればよい。
Further, if the average particle size of the carrier is 20 μm or less, a sufficient charge amount of the toner can be obtained, but if the average particle size is less than 5 μm, carrier adhesion tends to occur, which is not preferable. The carrier may be a mixture of two or more of the above magnetic particles, and the mixing ratio may be determined in consideration of the size of the magnetic particles, magnetic characteristics, and the like.

【0024】次に上記キャリアと混合させるべきトナー
としては,磁性若しくは非磁性の何れのものでもよい
が,転写性を向上させる点から体積固有抵抗が1014Ω
・cm以上の絶縁性のものが好ましく,またキャリアとド
クターブレードとの摩擦により帯電し易いもの(摩擦帯
電量が10μc/g以上)が好ましい。なおトナーの平
均粒径は高精細画像を得るために,平均粒径を5〜10
μmに形成するのが好ましい。
The toner to be mixed with the carrier may be either magnetic or non-magnetic, but has a volume resistivity of 10 14 Ω from the viewpoint of improving transferability.
An insulating material having a cm or more is preferable, and one easily charged by friction between a carrier and a doctor blade (a triboelectric charge amount of 10 μc / g or more) is preferable. The average particle size of the toner is 5 to 10 in order to obtain a high-definition image.
It is preferably formed to have a thickness of μm.

【0025】トナーの組成は通常使用されるトナーと同
様に,結着樹脂(スチレン−アクリル系共重合体,ポリ
エステル樹脂等),着色剤(カーボンブラック等,但し
後述する磁性粉としてマグネタイトを使用する場合には
特に添加しなくてもよい)を必須成分とし,任意成分と
して磁性粉(マグネタイト,ソフトフェライト等),帯
電制御剤(ニグロシン,含金属アゾ染料等),離型剤
(ポリオレフィン等),流動化剤(疏水性シリカ)を含
有(内添および/または外添)したものを使用できる。
なお磁性トナーとする場合は,磁性粉が少ないとトナー
飛散が多くなり,一方磁性粉が多いと定着性が低下する
ので,20〜70重量%の範囲とするのが好ましい。ま
た着色剤を適宜選定することにより,カラートナーを作
製することもできる。
The composition of the toner is the same as that of a commonly used toner, such as a binder resin (styrene-acrylic copolymer, polyester resin, etc.), a coloring agent (carbon black, etc., but magnetite is used as the magnetic powder described later). In this case, it does not need to be added in particular, and magnetic powder (magnetite, soft ferrite, etc.), charge control agent (nigrosine, metal-containing azo dye, etc.), release agent (polyolefin, etc.) Those containing (internally and / or externally added) a fluidizing agent (hydrophobic silica) can be used.
In the case of using a magnetic toner, if the amount of the magnetic powder is small, the toner is scattered, and if the amount of the magnetic powder is large, the fixing property is deteriorated. Further, a color toner can be produced by appropriately selecting a colorant.

【0026】なお上記磁化の値の測定は,振動試料型磁
力計(東英工業製VSM−3型)を使用し,トナーの平
均粒径(体積)は,粒度分析計(コールターエレクトロ
ニクス社製コールターカウンターモデルTA−II)を使
用して測定した。
A vibrating sample magnetometer (VSM-3 manufactured by Toei Industry Co., Ltd.) was used for the measurement of the magnetization value, and the average particle size (volume) of the toner was measured by a particle size analyzer (Coulter Electronics Coulter Co., Ltd.). It was measured using a counter model TA-II).

【0027】また体積固有抵抗は,DC4KV/cmの電
場で,内径3.05mmのテフロン(商品名)製シリンダー
中に試料を10数mg充填し,100gfの荷重を印加し
て,絶縁抵抗計(横河ヒューレットパッカード製432
9A型)により測定した値である。更に摩擦帯電量は市
販のブローオフ摩擦帯電量測定器(東芝ケミカル製TB
−200型)により,トナー濃度5%(標準キャリアと
してフェライトキャリア(日立金属製KBN−100)
を使用)にて測定した値である。
The volume resistivity is DC4KV / cm electric field, and 10 mg of the sample is filled in a Teflon (trade name) cylinder having an inner diameter of 3.05 mm, and a load of 100 gf is applied to the insulation resistance meter ( Yokogawa Hewlett Packard 432
9A type). Further, the triboelectric charge amount is a commercially available blow-off triboelectric charge amount measuring device (TB manufactured by Toshiba Chemical Co., Ltd.
-200 type), toner concentration 5% (ferrite carrier as standard carrier (KBN-100 made by Hitachi Metals))
Is used).

【0028】[0028]

【作用】上記の構成により,スリーブを欠如する構成の
磁性現像剤支持搬送手段である小型のものを使用し,広
いトナー濃度範囲において,地かぶりのない高品質の画
像を現像することができるのである。
With the above construction, a small-sized magnetic developer supporting and conveying means having a sleeve-less construction can be used to develop a high-quality image without background fog in a wide toner density range. is there.

【0029】[0029]

【実施例】図1は本発明の実施例における現像手段の例
を示す要部横断面図であり,同一部分は前記図2と同一
の参照符号で示す。図1において永久磁石部材4は体積
固有抵抗が106 Ω・cmを超える半導電性ないし絶縁性
の例えば等方性フェライト磁石により形成し,外周面に
軸方向に延びる複数個の磁極を設け,円柱状に形成し,
現像剤槽1の下方に回転自在に設ける。10は直流電源
であり,ドクターブレード8と感光体ドラム7との間に
接続する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a transverse cross-sectional view of an essential part showing an example of a developing means in an embodiment of the present invention, and the same parts are designated by the same reference numerals as those in FIG. In FIG. 1, the permanent magnet member 4 is formed of a semi-conductive or insulating, for example, isotropic ferrite magnet having a volume resistivity of more than 10 6 Ω · cm, and a plurality of magnetic poles extending in the axial direction are provided on the outer peripheral surface. Formed into a cylindrical shape,
It is rotatably provided below the developer tank 1. A DC power source 10 is connected between the doctor blade 8 and the photosensitive drum 7.

【0030】次に磁性トナーとして,平均粒径7μm,
体積固有抵抗2×1014Ω・cm, 摩擦帯電量−21.5μc
/gのものを作製した。なお配合比は重量比で,ポリエ
ステル樹脂(日本カーバイト工業製 NCP33B)7
0,マグネタイト(戸田工業製 EPT500)25,
ポリプロピレン(三洋化成製 TP32)4,帯電制御
剤(オリエント化学製 ボントロンE81)1とし,こ
れらによって形成された粒子に外添剤(日本アエロジル
製 R972) 0.5を添加した。
Next, as a magnetic toner, an average particle size of 7 μm,
Volume resistivity 2 × 10 14 Ω · cm, triboelectric charge −21.5 μc
/ G was produced. In addition, the compounding ratio is a weight ratio, and is a polyester resin (NCP33B manufactured by Nippon Carbide Industry) 7
0, magnetite (Toda Kogyo EPT500) 25,
Polypropylene (TP32 manufactured by Sanyo Kasei) 4 and charge control agent (Bontron E81 manufactured by Orient Chemical Co., Ltd.) 1 were used, and an external additive (R972 manufactured by Nippon Aerosil) 0.5 was added to the particles formed by these.

【0031】磁性キャリアとしては,粒度分布10〜3
7μm,平均粒径18.5μm,1000Oeにおける磁化
σ1000が表1に示すもの,体積固有抵抗 7.2×108 Ω
・cmのBa−Ni−Znフェライト(日立金属製 KB
N−100)を使用した。
The magnetic carrier has a particle size distribution of 10 to 3
7 μm, average particle size 18.5 μm, magnetization σ 1000 at 1000 Oe is shown in Table 1, volume resistivity 7.2 × 10 8 Ω
・ Cm Ba-Ni-Zn ferrite (KB, Hitachi Metals
N-100) was used.

【0032】一方感光体ドラム7はOPCにより形成
し,表面電位−700V,周速25mm/秒とした。永久
磁石部材4は,外径20mm,16極,表面磁束密度50
0Gに形成し,現像ギャップg= 0.4mm,ドクターギャ
ップt= 0.3mm,直流バイアス電圧−550Vとした。
表1はトナー濃度およびσ1000を変化させた場合の画像
評価結果である。
On the other hand, the photosensitive drum 7 was formed by OPC and had a surface potential of -700 V and a peripheral speed of 25 mm / sec. The permanent magnet member 4 has an outer diameter of 20 mm, 16 poles, and a surface magnetic flux density of 50.
It was formed at 0 G, and the developing gap g was 0.4 mm, the doctor gap was t 0.3 mm, and the DC bias voltage was -550V.
Table 1 shows the image evaluation results when the toner density and σ 1000 are changed.

【0033】[0033]

【表1】 [Table 1]

【0034】表1から明らかなように,σ1000を一定に
してトナー濃度を変化させた場合,No. 1においてはト
ナー濃度が低いため,画像濃度が低い値を示している。
またNo. 6においては,トナー濃度が高いため,かぶり
の発生が認められる。これに対してNo. 2〜5において
は,画像濃度が高く,かつかぶりのない良好な画像が得
られている。
As is clear from Table 1, when the toner density is changed while keeping σ 1000 constant, the toner density is low in No. 1 and the image density is low.
In No. 6, since the toner concentration is high, the occurrence of fogging is recognized. On the other hand, in Nos. 2 to 5, good image with high image density and no fog was obtained.

【0035】なおトナー濃度を一定にしてσ1000を低い
値に変化させたNo. 7〜9においても,キャリア付着,
かぶり等の欠陥のない良好な画像が得られている。次に
表1のNo. 4の条件にて,1万枚の連続プリントテスト
を実施したところ,トナー濃度は45〜60重量%で推
移し,画像濃度1.35以上, かぶり 0.5以下の良好な画像
が得られた。なお永久磁石部材4(図1参照)のトルク
は 0.7kg-cm の値に留まった。
Even in Nos. 7 to 9 in which the toner concentration was kept constant and σ 1000 was changed to a low value, carrier adhesion,
A good image without defects such as fogging is obtained. Next, under the condition of No. 4 in Table 1, a continuous print test of 10,000 sheets was carried out, and the toner density remained at 45 to 60% by weight, and a good image with an image density of 1.35 or more and fog of 0.5 or less was obtained. Was obtained. The torque of the permanent magnet member 4 (see FIG. 1) stayed at 0.7 kg-cm.

【0036】一方比較例として上記磁性現像剤を,上記
永久磁石部材4の外方にスリーブを配設し,スリーブの
みを回転させる型式の画像形成手段に適用して画像形成
をしたところ,永久磁石部材4の表面磁束密度850G
(スリーブ上の表面磁束密度790G)であったが,か
ぶりを発生しないトナー濃度範囲は20〜30重量%に
留まり,トナー濃度30重量%を超えるとかぶりが 0.5
%以上となり,一方トナー濃度20重量%未満ではキャ
リア付着が発生した。
On the other hand, as a comparative example, the magnetic developer is applied to an image forming means of a type in which a sleeve is provided outside the permanent magnet member 4 and only the sleeve is rotated to form an image. Surface magnetic flux density of member 4 850G
(The surface magnetic flux density on the sleeve was 790 G), but the toner concentration range in which fogging did not occur was 20 to 30% by weight, and when the toner concentration exceeded 30% by weight, fogging was 0.5.
%, While carrier concentration occurred when the toner concentration was less than 20% by weight.

【0037】次に非磁性トナーとして,平均粒径 8.5μ
m,体積固有抵抗5×1014Ω・cm,摩擦帯電量−25.8
μc/g のものを作製した。配合比は重量比で, スチレン
−アクリル樹脂87,カーボンブラック(三菱化成工業
製 MA−100)8,帯電制御剤(オリエント化学製
ボントロンS−34)1,ポリプロピレン(三洋化成
製 TP32)4とし,これらによって形成された粒子
に外添剤(ヘキストワッカー製 H2000) 0.5を添
加した。
Next, as the non-magnetic toner, the average particle size is 8.5 μm.
m, volume resistivity 5 × 10 14 Ω · cm, triboelectric charge-25.8
A microc / g one was prepared. The mixing ratio is a weight ratio of styrene-acrylic resin 87, carbon black (Mitsubishi Chemical Co., Ltd. MA-100) 8, charge control agent (Orient Chemical Co., Ltd. Bontron S-34) 1, polypropylene (Sanyo Chemical Co., Ltd. TP32) 4, An external additive (H2000 manufactured by Hoechst Wacker) 0.5 was added to the particles formed by these.

【0038】磁性キャリアとしては,平均粒径10μ
m,体積固有抵抗5×108 Ω・cm,σ1000=35em
u/gの樹脂複合キャリアを使用した。配合比は重量比
で,スチレン−アクリル樹脂49,マグネタイト(日立
金属製 KBC−100)50,帯電制御剤(オリエン
ト化学製 オイルブラックBY)1からなり,粒子表面
にカーボンブラック(三菱化成工業製 MA600)を
0.5重量%付着させた。なお摩擦帯電量は+ 5.1μc/
gであった。
The magnetic carrier has an average particle size of 10 μm.
m, volume resistivity 5 × 10 8 Ω · cm, σ 1000 = 35 em
A u / g resin composite carrier was used. The compounding ratio is a weight ratio and is composed of styrene-acrylic resin 49, magnetite (KBC-100 manufactured by Hitachi Metals) 50, and a charge control agent (oil black BY manufactured by Orient Chemical Co., Ltd.) 1, and carbon black (MA600 manufactured by Mitsubishi Kasei Kogyo) on the particle surface. )
0.5 wt% was adhered. The triboelectric charge is +5.1 μc /
It was g.

【0039】一方感光体ドラム7(図1参照)は前記実
施例と同様とし,永久磁石部材4は,外径20mm,32
極,表面磁束密度400Gに形成し,現像ギャップg=
0.4mm,ドクターギャップt=0.25mm,直流バイアス電
圧−600Vとした。表2はトナー濃度を変化させた場
合の画像評価結果である。
On the other hand, the photosensitive drum 7 (see FIG. 1) is the same as in the above embodiment, and the permanent magnet member 4 has an outer diameter of 20 mm, 32 mm.
Pole, surface magnetic flux density 400G, development gap g =
0.4 mm, doctor gap t = 0.25 mm, and DC bias voltage −600 V. Table 2 shows the image evaluation results when the toner density is changed.

【0040】[0040]

【表2】 [Table 2]

【0041】表2から明らかなように,トナー濃度3%
のNo. 11においては画像濃度が低く,一方トナー濃度
85%のNo. 15においてはかぶりが発生している。こ
れに対してNo. 12〜14においては,かぶりがなく,
画像濃度の高い良好な画像が得られた。
As is clear from Table 2, the toner density is 3%.
In No. 11 of No. 11, the image density is low, while in No. 15 of 85% of toner density, fogging occurs. On the other hand, in Nos. 12 to 14, there is no fogging,
A good image with high image density was obtained.

【0042】次に表2のNo. 13の条件にて1万枚の連
続プリントテストを実施したところ,トナー濃度センサ
を装着しない状態でトナー濃度は40〜65重量%で推
移し,画像濃度1.35以上,かぶり 0.5%以下の良好な画
像が得られた。なお永久磁石部材4(図1参照)のトル
クは 0.3kg-cm の値に留まった。
Next, when a continuous print test of 10,000 sheets was carried out under the condition of No. 13 in Table 2, the toner density was 40 to 65% by weight without the toner density sensor, and the image density was 1.35. As described above, good images with fog of 0.5% or less were obtained. The torque of the permanent magnet member 4 (see FIG. 1) remained at 0.3 kg-cm 3.

【0043】一方比較例として上記磁性現像剤と,平均
粒径100μm(粒度分布74〜149μm)の球形還
元鉄粉キャリア(σ1000=125emu/g)とからな
る磁性現像剤を使用し,上記同様の現像条件(初期トナ
ー濃度10重量%)で画像形成を行ったところ,トナー
濃度は10〜20重量%で推移した。トナー濃度15重
量%以上ではかぶりの発生が認められ,永久磁石部材4
のトルクは 2.0kg-cmを要した。
On the other hand, as a comparative example, a magnetic developer comprising the above magnetic developer and a spherical reduced iron powder carrier (σ 1000 = 125 emu / g) having an average particle size of 100 μm (particle size distribution 74 to 149 μm) was used. When an image was formed under the developing conditions (10% by weight of initial toner concentration), the toner concentration was changed to 10 to 20% by weight. When the toner concentration is 15% by weight or more, fogging is recognized, and the permanent magnet member 4
The torque required was 2.0 kg-cm.

【0044】また初期トナー濃度10重量%でトナー濃
度センサ装着の状態で連続プリントテストを実施したと
ころ,5千枚以上ではかぶりが 0.5%を超え,1万枚で
はかぶりが1%を越えた。なお磁性キャリアの表面には
スペント現象が認められた。
Further, when a continuous print test was carried out with the toner concentration sensor attached at an initial toner concentration of 10% by weight, fog exceeded 0.5% after 5,000 sheets and fog exceeded 1% after 10,000 sheets. Spent phenomenon was observed on the surface of the magnetic carrier.

【0045】[0045]

【発明の効果】本発明は以上記述のような構成および作
用であるから,下記の効果を奏し得る。
EFFECTS OF THE INVENTION Since the present invention has the structure and operation as described above, the following effects can be obtained.

【0046】(1) 現像ロールの構成部材を永久磁石部材
のみとしたものであるため,現像装置を小型化すること
ができ,画像形成装置全体を小型化することができる。 (2) 磁性現像剤の支持手段である永久磁石部材が硬質で
あるため,表面の摩耗が少なく,経時変化が少なく,耐
久性を向上させ得る。
(1) Since only the permanent magnet member is used as the constituent member of the developing roll, the developing device can be downsized and the image forming apparatus as a whole can be downsized. (2) Since the permanent magnet member, which is the means for supporting the magnetic developer, is hard, the surface wear is small, the change over time is small, and the durability can be improved.

【0047】(3) 小粒径の磁性キャリアを使用すること
により,高精細,高品質の画像が得られる。 (4) 磁性現像剤中のトナー濃度を広い範囲に設定できる
ため,例えばトナー濃度制御手段を使用する必要がな
く,装置全体をコンパクト化し得る。
(3) High-definition and high-quality images can be obtained by using a magnetic carrier having a small particle size. (4) Since the toner concentration in the magnetic developer can be set in a wide range, it is not necessary to use a toner concentration control means, for example, and the entire apparatus can be made compact.

【0048】(5) 現像ロールを構成する永久磁石部材を
必要以上に高精度加工する必要がなく,製作コストを低
減させ得る。
(5) It is not necessary to process the permanent magnet member constituting the developing roll with higher precision than necessary, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における現像手段の例を示す要
部横断面図である。
FIG. 1 is a lateral cross-sectional view of an essential part showing an example of a developing unit in an embodiment of the present invention.

【図2】従来の現像手段の例を示す要部横断面図であ
る。
FIG. 2 is a cross-sectional view of a main part showing an example of a conventional developing unit.

【符号の説明】[Explanation of symbols]

4 永久磁石部材 7 感光体ドラム 4 Permanent magnet member 7 Photoconductor drum

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 静電荷像を担持して移動する像担持体上
の静電荷像を二成分系の磁性現像剤を使用して現像する
画像形成方法において,磁性現像剤を支持搬送する手段
を,表面に複数個の磁極を設け円筒状にかつ回転可能に
形成した永久磁石部材によって構成すると共に,この永
久磁石部材の表面に吸着搬送される磁性現像剤を構成す
る磁性キャリアを,平均粒径5〜20μm,トナーと逆
帯電極性,1000Oeの磁場中における磁化σ1000
50emu/g以下に形成したことを特徴とする画像形
成方法。
1. An image forming method for developing an electrostatic charge image on an image carrier, which carries and moves an electrostatic charge image, using a two-component magnetic developer, comprising means for supporting and conveying the magnetic developer. , A magnetic carrier that is composed of a permanent magnet member that is cylindrically and rotatably formed by providing a plurality of magnetic poles on the surface, and that constitutes a magnetic developer that is attracted and conveyed to the surface of the permanent magnet member. An image forming method characterized in that the magnetization σ 1000 in a magnetic field of 1000 Oe is set to 50 emu / g or less.
JP6046289A 1994-02-09 1994-03-17 Image forming method Pending JPH07261556A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6046289A JPH07261556A (en) 1994-03-17 1994-03-17 Image forming method
US08/385,418 US5717983A (en) 1994-02-09 1995-02-08 Simultaneous developing/cleaning method using magnetic support member
DE19504285A DE19504285A1 (en) 1994-02-09 1995-02-09 Electrostatic latent image developer
US08/917,557 US6075964A (en) 1994-02-09 1997-08-26 Image forming developing method
US08/917,426 US5926677A (en) 1994-02-09 1997-08-26 Image forming developing method
US08/917,686 US6072974A (en) 1994-02-09 1997-08-26 Image forming developing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6046289A JPH07261556A (en) 1994-03-17 1994-03-17 Image forming method

Publications (1)

Publication Number Publication Date
JPH07261556A true JPH07261556A (en) 1995-10-13

Family

ID=12743063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6046289A Pending JPH07261556A (en) 1994-02-09 1994-03-17 Image forming method

Country Status (1)

Country Link
JP (1) JPH07261556A (en)

Similar Documents

Publication Publication Date Title
US5554479A (en) Image formation method
JP3639382B2 (en) Developer for developing electrostatic image and method for developing electrostatic image using the same
JP3384106B2 (en) Development method
JPH07261556A (en) Image forming method
JPH08194333A (en) Image forming method
JPH0822152A (en) Image forming method
JPS59218458A (en) Developer for electrostatic charge image
JPH10142937A (en) Developing device
JP3422107B2 (en) Development method
US5669051A (en) Method of electrostatically forming visual image
JPS62294259A (en) Developer for electrostatic charge image
JPH0990760A (en) Developing roller
JPH09325611A (en) Image forming method
JPH10123838A (en) Developing roll
JP2669962B2 (en) Developer
JPH08328387A (en) Developing method
JPH07209994A (en) Developing method
JPH05150667A (en) Developing device
JPH09197829A (en) Developing method
JPH0990758A (en) Developing device
JPH08262875A (en) Developing method
JPH1048954A (en) Magnet roll
JPH07104580A (en) Developing roller
JPH08272155A (en) Developing method
JPH07234588A (en) Image forming method