JPH07261135A - Optical waveguide device - Google Patents

Optical waveguide device

Info

Publication number
JPH07261135A
JPH07261135A JP4935794A JP4935794A JPH07261135A JP H07261135 A JPH07261135 A JP H07261135A JP 4935794 A JP4935794 A JP 4935794A JP 4935794 A JP4935794 A JP 4935794A JP H07261135 A JPH07261135 A JP H07261135A
Authority
JP
Japan
Prior art keywords
optical waveguide
waveguide device
substrate
optical
traveling wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4935794A
Other languages
Japanese (ja)
Other versions
JP3381367B2 (en
Inventor
Yoshinobu Kubota
嘉伸 久保田
Minoru Kiyono
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP04935794A priority Critical patent/JP3381367B2/en
Publication of JPH07261135A publication Critical patent/JPH07261135A/en
Application granted granted Critical
Publication of JP3381367B2 publication Critical patent/JP3381367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To provide an optical waveguide device, such as optical modulator or optical switch, for optical communication system operating in an ultra-high speed region, which has good microwave characteristics with decreased noises and is suitable for long-distance communication. CONSTITUTION:A plane inclusive of progressive wave electrodes 16 on a modulator chip 1 at its top end or a shielding member 35 existing on this plane is formed on the side wall of a housing container 3 in this optical waveguide device. The side faces of this shielding member 35 face the side ends of the progressive wave electrodes 16 via microspacings 36.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超高速域で動作する光通
信システム用の光変調器や光スイッチ等の光導波路デバ
イスに係り、特に極めて良好なマイクロ波特性を具備し
長距離光通信に適した光導波路デバイスの構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide device such as an optical modulator and an optical switch for an optical communication system operating in an ultrahigh speed range, and particularly to a long-distance optical communication having an excellent microwave characteristic. And a structure of an optical waveguide device suitable for.

【0002】高周波信号によって駆動され超高速域で動
作する光変調器や光スイッチ等は光通信システム等に用
いられているが、例えば、長距離通信に使用するにはマ
イクロ波の透過特性や反射特性に重畳するノイズが極め
て少ないことが要求される。
Optical modulators and optical switches that are driven by high frequency signals and operate in the ultra-high speed range are used in optical communication systems and the like. It is required that the noise superimposed on the characteristic is extremely small.

【0003】しかし、従来の光導波路デバイスは収納容
器の遮蔽効果が不足し透過特性や反射特性に多くのノイ
ズが重畳する。そこで、ノイズが少なく良好なマイクロ
波特性を具え長距離光通信に適した光導波路デバイスの
開発が要望されている。
However, in the conventional optical waveguide device, the shielding effect of the container is insufficient, and a lot of noise is superimposed on the transmission characteristic and the reflection characteristic. Therefore, there is a demand for the development of an optical waveguide device which has good microwave characteristics with little noise and is suitable for long-distance optical communication.

【0004】[0004]

【従来の技術】図5は従来の光変調器を示す斜視図、図
6は従来の光変調器のマイクロ波特性を示す図である。
2. Description of the Related Art FIG. 5 is a perspective view showing a conventional optical modulator, and FIG. 6 is a view showing a microwave characteristic of the conventional optical modulator.

【0005】図5において従来の光変調器は変調器チッ
プ1と変調器チップ1を収納する金属からなる収納容器
2とで構成され、変調器チップ1はLiNbO3からなる長方
形の基板11に長軸に沿って形成されたマッハツェンダ型
の光導波路12を具えている。
In FIG. 5, a conventional optical modulator comprises a modulator chip 1 and a metal container 2 for housing the modulator chip 1, and the modulator chip 1 is long on a rectangular substrate 11 made of LiNbO 3. It includes a Mach-Zehnder type optical waveguide 12 formed along the axis.

【0006】マッハツェンダ型の光導波路12は基板11上
にTiを蒸着してパターン化したあと拡散処理を施すこと
によって形成され、基板11上にはSiO2等からなるバッフ
ァ層13を介して金属薄膜からなるアース電極15と進行波
電極16とが形成されている。
The Mach-Zehnder type optical waveguide 12 is formed by depositing Ti on the substrate 11, patterning it, and then performing a diffusion process. On the substrate 11, a metal thin film is formed via a buffer layer 13 made of SiO 2 or the like. And a ground wave electrode 15 and a traveling wave electrode 16 are formed.

【0007】直線状に伸びる金属薄膜からなる単一のア
ース電極15は基板11が具えてなる光導波路12と平行に形
成されており、光導波路12の上に位置し高周波信号で光
導波路12の通過光を制御する進行波電極16はアース電極
15の両側に配設されている。
A single ground electrode 15 made of a thin metal film that extends linearly is formed in parallel with the optical waveguide 12 formed on the substrate 11, and is located on the optical waveguide 12 to generate a high-frequency signal from the optical waveguide 12. The traveling wave electrode 16 that controls the passing light is a ground electrode.
It is arranged on both sides of 15.

【0008】一方、収納容器2は側壁22の間に挟まれた
底面中央に変調器チップ1が載置される長方形の空間21
を具えており、4隅に配設されたセラミック板23を固着
する台座24が収納された変調器チップ1の両端近傍と側
壁22の間に形成されている。
On the other hand, the storage container 2 has a rectangular space 21 in which the modulator chip 1 is placed in the center of the bottom face sandwiched between the side walls 22.
The pedestals 24 for fixing the ceramic plates 23 arranged at the four corners are formed between the sidewalls 22 and the vicinity of both ends of the modulator chip 1 in which the pedestals 24 are accommodated.

【0009】セラミック板23は変調器チップ1の進行波
電極16に高周波信号を供給するマイクロストリップライ
ン25を具えており、変調器チップ1上の進行波電極16と
マイクロストリップライン25とはAuワイヤやAuリボン等
の導体を介して接続される。
The ceramic plate 23 has a microstrip line 25 for supplying a high frequency signal to the traveling wave electrode 16 of the modulator chip 1, and the traveling wave electrode 16 and the microstrip line 25 on the modulator chip 1 are Au wires. It is connected via conductors such as or Au ribbon.

【0010】[0010]

【発明が解決しようとする課題】長距離通信に使用され
る光変調器はマイクロ波の透過特性や反射特性に重畳す
るノイズの少ないことが要求されるが、信号電極と収納
容器の側壁との間に大きい隙間が介在する従来の光変調
器では収納容器の十分な遮蔽効果が得られない。
The optical modulator used for long-distance communication is required to have less noise superimposed on the transmission characteristics and reflection characteristics of microwaves. A conventional optical modulator having a large gap therebetween cannot provide a sufficient shielding effect for the storage container.

【0011】その結果、図6に示す如くマイクロ波の透
過特性や反射特性は複数の共振の他に極めて多くのノイ
ズが重畳されて、従来の構造では良好なマイクロ波特性
を具え長距離通信において使用可能な光変調器を実現で
きないという問題があった。
As a result, as shown in FIG. 6, the microwave transmission characteristics and reflection characteristics have a plurality of resonances and an extremely large amount of noise is superposed thereon, so that the conventional structure has good microwave characteristics and long-distance communication. However, there is a problem in that it is impossible to realize an optical modulator that can be used.

【0012】本発明の目的はノイズが少なく良好なマイ
クロ波特性を具え長距離通信に適した光導波路デバイス
を提供することにある。
An object of the present invention is to provide an optical waveguide device suitable for long-distance communication, which has good microwave characteristics with little noise.

【0013】[0013]

【課題を解決するための手段】図1は本発明になる光導
波路デバイスの構造を示す斜視図である。なお全図を通
し同じ対象物は同一記号で表している。
FIG. 1 is a perspective view showing the structure of an optical waveguide device according to the present invention. Note that the same object is denoted by the same symbol throughout the drawings.

【0014】上記課題は電気光学効果を有する基板11の
表面に基板11の長さ方向に伸びる光導波路12が形成さ
れ、金属薄膜からなり光導波路12の延伸方向に配置され
た単一のアース電極15、およびアース電極15の両側に配
設され光導波路12の通過光を制御する進行波電極16が、
基板11上に形成された変調器チップ1と、金属からなり
変調器チップ1を収納する収納容器3を具えた光導波路
デバイスであって、上端が進行波電極16を含む平面また
は平面の上に位置する遮蔽部材35が収納容器3の側壁に
形成され、遮蔽部材35の側面が微小間隔36を介し進行波
電極16の側端と対向してなる本発明の光導波路デバイス
によって達成される。
The above problem is that a single earth electrode is formed on the surface of a substrate 11 having an electro-optical effect, and an optical waveguide 12 extending in the length direction of the substrate 11 is formed of a metal thin film and is arranged in the extending direction of the optical waveguide 12. 15, and traveling wave electrodes 16 arranged on both sides of the ground electrode 15 to control the light passing through the optical waveguide 12,
An optical waveguide device comprising a modulator chip (1) formed on a substrate (11) and a storage container (3) made of metal and containing the modulator chip (1), the upper end of which is on a plane including a traveling wave electrode (16) or on a plane. This is achieved by the optical waveguide device of the present invention in which the positioned shielding member 35 is formed on the side wall of the storage container 3, and the side surface of the shielding member 35 faces the side end of the traveling wave electrode 16 with a minute gap 36 therebetween.

【0015】[0015]

【作用】図1において収納容器の側壁に形成され上端が
進行波電極を含む平面または平面の上に位置する遮蔽部
材の側面を、微小間隔を介して信号電極と対向させるこ
とによって変調器チップを収納する収納容器の遮蔽効果
が向上し、ノイズの少ない良好なマイクロ波特性を具え
長距離通信に適した光導波路デバイスを実現することが
できる。
In the modulator chip shown in FIG. 1, the side surface of the shield member, which is formed on the side wall of the storage container and has the upper end located on or above the plane including the traveling wave electrode, is opposed to the signal electrode through a minute gap. It is possible to realize an optical waveguide device suitable for long-distance communication, in which the shielding effect of the storage container to be stored is improved and which has good microwave characteristics with little noise.

【0016】[0016]

【実施例】以下添付図により本発明の実施例について説
明する。なお、図2は本発明の一実施例におけるマイク
ロ波特性を示す図、図3は本発明の他の実施例を示す平
面図、図4は本発明の他の実施例におけるマイクロ波特
性を示す図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 2 is a diagram showing a microwave characteristic in one embodiment of the present invention, FIG. 3 is a plan view showing another embodiment of the present invention, and FIG. 4 is a microwave characteristic in another embodiment of the present invention. FIG.

【0017】図1において本発明になる光変調器は変調
器チップ1と変調器チップ1を収納する金属からなる収
納容器3を有し、変調器チップ1はLiNbO3からなる長方
形の基板11に長軸に沿って形成されたマッハツェンダ型
の光導波路12を具えている。
In FIG. 1, the optical modulator according to the present invention has a modulator chip 1 and a metal container 3 for housing the modulator chip 1. The modulator chip 1 is formed on a rectangular substrate 11 made of LiNbO 3. It has a Mach-Zehnder type optical waveguide 12 formed along the major axis.

【0018】マッハツェンダ型の光導波路12は基板11上
にTiを蒸着して厚さが1000Å程度の金属薄膜を形成しパ
ターン化したあと、湿式酸素雰囲気中において1050℃で
10時間の拡散処理を施し基板11の中にTiを拡散させるこ
とによって形成されている。
The Mach-Zehnder type optical waveguide 12 is formed by depositing Ti on the substrate 11 to form a metal thin film having a thickness of about 1000 Å and patterning it, and then at 1050 ° C. in a wet oxygen atmosphere.
It is formed by performing diffusion processing for 10 hours and diffusing Ti into the substrate 11.

【0019】表面に基板11の長さ方向に伸びる光導波路
12が形成された基板11上にはSiO2を堆積させたバッファ
層13が形成され、バッファ層13の上には金属薄膜からな
るアース電極15と光導波路12の透過光を変調する進行波
電極16とが形成されている。
An optical waveguide whose surface extends in the longitudinal direction of the substrate 11.
A buffer layer 13 in which SiO 2 is deposited is formed on the substrate 11 on which the 12 is formed. On the buffer layer 13, a ground electrode 15 made of a metal thin film and a traveling wave electrode for modulating the transmitted light of the optical waveguide 12 are formed. 16 and are formed.

【0020】直線状に伸びる金属薄膜からなる単一のア
ース電極15は基板11が具えてなる光導波路12と平行に形
成されており、光導波路12の上に位置し高周波信号で光
導波路12の通過光を制御する進行波電極16はアース電極
15の両側に配設されている。
The single ground electrode 15 made of a thin metal film extending linearly is formed in parallel with the optical waveguide 12 provided on the substrate 11, and is located on the optical waveguide 12 to generate a high frequency signal from the optical waveguide 12. The traveling wave electrode 16 that controls the passing light is a ground electrode.
It is arranged on both sides of 15.

【0021】一方、収納容器3は側壁32の間に挟まれた
底面中央に変調器チップ1が載置される長方形の空間31
を具えており、4隅に配設されたセラミック板33を固着
する台座34が収納された変調器チップ1の両端近傍と側
壁32の間に形成されている。
On the other hand, the storage container 3 has a rectangular space 31 in which the modulator chip 1 is placed in the center of the bottom face sandwiched between the side walls 32.
Is formed between the side walls 32 and the vicinity of both ends of the modulator chip 1 in which the pedestals 34 for fixing the ceramic plates 33 arranged at the four corners are housed.

【0022】セラミック板33は変調器チップ1の進行波
電極16に高周波信号を供給するマイクロストリップライ
ン25を具えており、変調器チップ1上の進行波電極16と
マイクロストリップライン25とはAuワイヤやAuリボン等
の導体を介して接続される。
The ceramic plate 33 has a microstrip line 25 for supplying a high frequency signal to the traveling wave electrode 16 of the modulator chip 1, and the traveling wave electrode 16 and the microstrip line 25 on the modulator chip 1 are Au wires. It is connected via conductors such as or Au ribbon.

【0023】従来の収納容器と異なり収納容器3は上端
が進行波電極16の上面と同一平面をなす遮蔽部材35が側
壁32に形成され、遮蔽部材35の側面は収納された変調器
チップ1上の進行波電極16の側端と 100μm 以下の微小
間隔36を介し対向している。
Unlike the conventional storage container, the storage container 3 has a shield member 35 whose upper end is flush with the upper surface of the traveling wave electrode 16 on the side wall 32, and the side surface of the shield member 35 is on the modulator chip 1 housed therein. It faces the side edge of the traveling wave electrode 16 via a minute gap 36 of 100 μm or less.

【0024】本発明になる光変調器におけるマイクロ波
の透過特性は図2(a) に示す如く複数の共振を有するが
ノイズが少なく、マイクロ波の反射特性も図2(b) に示
す如く複数の共振を有するが全般にノイズが減少し滑ら
かな曲線になっている。
The transmission characteristic of microwaves in the optical modulator according to the present invention has a plurality of resonances as shown in FIG. 2 (a), but there is little noise, and the reflection characteristics of microwaves have a plurality of resonances as shown in FIG. 2 (b). Although it has resonance of, the noise is reduced in general and the curve is smooth.

【0025】図3(a) に示す如く前記実施例はアース電
極15がAuワイヤやAuリボン等の導体37でセラミック板33
上の電極に接続され、進行波電極16はAuワイヤやAuリボ
ン等の導体38でセラミック板33上のマイクロストリップ
ライン25に接続されている。
As shown in FIG. 3A, in the above embodiment, the earth electrode 15 is the conductor 37 such as Au wire or Au ribbon and the ceramic plate 33.
The traveling wave electrode 16 is connected to the upper electrode, and is connected to the microstrip line 25 on the ceramic plate 33 by a conductor 38 such as an Au wire or an Au ribbon.

【0026】収納容器3の側壁32に形成された遮蔽部材
35は図3(c) に示す如く上端が変調器チップ1の進行波
電極と同一平面をなし、かかる遮蔽部材35を有する収納
容器3に変調器チップ1を収納することにより遮蔽効果
を向上させることができる。
Shielding member formed on the side wall 32 of the storage container 3
As shown in FIG. 3 (c), the upper end of 35 is flush with the traveling wave electrode of the modulator chip 1, and the shielding effect is improved by accommodating the modulator chip 1 in the storage container 3 having the shielding member 35. be able to.

【0027】それに対し本発明の他の実施例は図3(b)
に示す如くアース電極15が導体37でセラミック板33上の
電極に接続され、進行波電極16も同様にAuワイヤやAuリ
ボン等の導体38でセラミック板33のマイクロストリップ
ライン25に接続されている。
On the other hand, another embodiment of the present invention is shown in FIG.
As shown in, the ground electrode 15 is connected to the electrode on the ceramic plate 33 by the conductor 37, and the traveling wave electrode 16 is similarly connected to the microstrip line 25 of the ceramic plate 33 by the conductor 38 such as Au wire or Au ribbon. .

【0028】また、変調器チップ1上のアース電極15は
先端近傍がAuワイヤやAuリボン等の導体39を介して遮蔽
部材35に接続され、変調器チップ1上の進行波電極16と
その上方を横切る前記導体39との間は空間を介在させる
等の手段で絶縁されている。
The ground electrode 15 on the modulator chip 1 is connected to the shield member 35 in the vicinity of the tip via a conductor 39 such as an Au wire or Au ribbon, and the traveling wave electrode 16 on the modulator chip 1 and the upper part thereof are connected. It is insulated by a means such as interposing a space between the conductor 39 and the conductor 39 that traverses.

【0029】収納容器3の側壁32に形成された遮蔽部材
35は図3(d) に示す如く上端が変調器チップ1の進行波
電極より上にあり、遮蔽部材35の上端を進行波電極の上
面より数百μm 上に位置させることにより遮蔽効果を更
に向上させることができる。
Shielding member formed on the side wall 32 of the storage container 3
As shown in FIG. 3 (d), the upper end of 35 is above the traveling-wave electrode of the modulator chip 1, and the upper end of the shielding member 35 is located several hundreds of μm above the upper surface of the traveling-wave electrode to further enhance the shielding effect. Can be improved.

【0030】本発明の他の実施例におけるマイクロ波の
透過特性は図4(a) に示す如く前記実施例に比べ更にノ
イズが少なく、マイクロ波の反射特性も図4(b) に示す
如く前記実施例に比べてノイズが極めて少なく一層滑ら
かな曲線を描いている。
As shown in FIG. 4 (a), the microwave transmission characteristic of another embodiment of the present invention is less noise than that of the above embodiment, and the microwave reflection characteristic thereof is also as shown in FIG. 4 (b). A smoother curve with less noise is drawn compared to the embodiment.

【0031】このように収納容器の側壁に形成され上端
が進行波電極を含む平面または平面の上に位置する遮蔽
部材の側面を、微小間隔を介して信号電極と対向させる
ことによって収納容器の遮蔽効果が向上して、ノイズが
少ない良好なマイクロ波特性を具え長距離通信に適した
光導波路デバイスを実現することができる。
In this way, the side surface of the shield member, which is formed on the side wall of the storage container and whose upper end is located on the plane including the traveling wave electrode or on the plane, is opposed to the signal electrode through a minute gap to shield the storage container. It is possible to realize an optical waveguide device which is improved in effect and has good microwave characteristics with less noise and which is suitable for long-distance communication.

【0032】[0032]

【発明の効果】上述の如く本発明によればノイズが少な
く良好なマイクロ波特性を具え長距離通信に適した光導
波路デバイスを提供することができる。
As described above, according to the present invention, it is possible to provide an optical waveguide device which has good microwave characteristics with little noise and is suitable for long-distance communication.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明になる光導波路デバイスの構造を示す
斜視図である。
FIG. 1 is a perspective view showing a structure of an optical waveguide device according to the present invention.

【図2】 本発明の一実施例におけるマイクロ波特性を
示す図である。
FIG. 2 is a diagram showing a microwave characteristic in an example of the present invention.

【図3】 本発明の他の実施例を示す平面図である。FIG. 3 is a plan view showing another embodiment of the present invention.

【図4】 本発明の他の実施例におけるマイクロ波特性
を示す図である。
FIG. 4 is a diagram showing a microwave characteristic in another example of the present invention.

【図5】 従来の光変調器を示す斜視図である。FIG. 5 is a perspective view showing a conventional optical modulator.

【図6】 従来の光変調器のマイクロ波特性を示す図で
ある。
FIG. 6 is a diagram showing a microwave characteristic of a conventional optical modulator.

【符号の説明】[Explanation of symbols]

1 変調器チップ 3 収納容器 11 基板 12 光導波路 13 バッファ層 15 アース電極 16 進行波電極 25 マイクロストリッ
プライン 31 空間 32 側壁 33 セラミック板 34 台座 35 遮蔽部材 36 微小間隔 37、38、39 導体
1 Modulator Chip 3 Storage Container 11 Substrate 12 Optical Waveguide 13 Buffer Layer 15 Earth Electrode 16 Traveling Wave Electrode 25 Microstrip Line 31 Space 32 Sidewall 33 Ceramic Plate 34 Pedestal 35 Shielding Member 36 Minute Spacing 37, 38, 39 Conductor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を有する基板(11)の表面に
該基板(11)の長さ方向に伸びる光導波路(12)が形成さ
れ、金属薄膜からなり該光導波路(12)の延伸方向に配置
されたアース電極(15)、および該アース電極(15)の両側
に配設され該光導波路(12)の通過光を制御する進行波電
極(16)が、該基板(11)上に形成された変調器チップ(1)
と、金属からなり該変調器チップ(1) を収納する収納容
器(3) とを具えた光導波路デバイスであって、 上端が該進行波電極(16)を含む平面または該平面の上に
位置する遮蔽部材(35)を該収納容器(3) の側壁に形成さ
れ、該遮蔽部材(35)の側面が微小間隔(36)を介し該進行
波電極(16)の側端と対向してなることを特徴とする光導
波路デバイス。
1. An optical waveguide (12) is formed on the surface of a substrate (11) having an electro-optical effect and extends in the length direction of the substrate (11), and the optical waveguide (12) is formed of a metal thin film and extends in the extending direction. On the substrate (11), a ground electrode (15) arranged on the substrate (11), and traveling wave electrodes (16) arranged on both sides of the ground electrode (15) for controlling light passing through the optical waveguide (12). Formed Modulator Chip (1)
And a container (3) made of metal and containing the modulator chip (1), the upper end of which is located on the plane including the traveling wave electrode (16) or on the plane. The shielding member (35) is formed on the side wall of the storage container (3), and the side surface of the shielding member (35) faces the side end of the traveling wave electrode (16) through a minute gap (36). An optical waveguide device characterized by the above.
【請求項2】 変調器チップ(1) 上のアース電極(15)と
収納容器(3) の遮蔽部材(35)が導体(39)を介して電気的
に接続されてなる請求項1記載の光導波路デバイス。
2. The ground electrode (15) on the modulator chip (1) and the shielding member (35) of the storage container (3) are electrically connected via a conductor (39). Optical waveguide device.
【請求項3】 微小間隔(36)が 100μm 以下である請求
項1、2記載の光導波路デバイス。
3. The optical waveguide device according to claim 1, wherein the minute interval (36) is 100 μm or less.
【請求項4】 光導波路(12)がマッハツェンダ型光導波
路である請求項1、2、3記載の光導波路デバイス。
4. The optical waveguide device according to claim 1, 2, or 3, wherein the optical waveguide (12) is a Mach-Zehnder type optical waveguide.
【請求項5】 基板(11)がLiNbO3からなる請求項1、
2、3記載の光導波路デバイス。
5. A substrate (11) comprising LiNbO 3
2. The optical waveguide device described in 2 and 3.
JP04935794A 1994-03-18 1994-03-18 Optical waveguide device Expired - Fee Related JP3381367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04935794A JP3381367B2 (en) 1994-03-18 1994-03-18 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04935794A JP3381367B2 (en) 1994-03-18 1994-03-18 Optical waveguide device

Publications (2)

Publication Number Publication Date
JPH07261135A true JPH07261135A (en) 1995-10-13
JP3381367B2 JP3381367B2 (en) 2003-02-24

Family

ID=12828774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04935794A Expired - Fee Related JP3381367B2 (en) 1994-03-18 1994-03-18 Optical waveguide device

Country Status (1)

Country Link
JP (1) JP3381367B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991491A (en) * 1996-11-08 1999-11-23 Nec Corporation Optical waveguide type device for reducing microwave attenuation
US6980706B2 (en) 2003-03-24 2005-12-27 Fujitsu Limited Waveguide optical modulator
JP2012048121A (en) * 2010-08-30 2012-03-08 Fujitsu Optical Components Ltd Optical modulator module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991491A (en) * 1996-11-08 1999-11-23 Nec Corporation Optical waveguide type device for reducing microwave attenuation
US6980706B2 (en) 2003-03-24 2005-12-27 Fujitsu Limited Waveguide optical modulator
JP2012048121A (en) * 2010-08-30 2012-03-08 Fujitsu Optical Components Ltd Optical modulator module
US8712195B2 (en) 2010-08-30 2014-04-29 Fujitsu Optical Components Limited Optical modulator module
USRE46932E1 (en) 2010-08-30 2018-07-03 Fujitsu Optical Components Limited Optical modulator module

Also Published As

Publication number Publication date
JP3381367B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
US4006963A (en) Controllable, electro-optical grating coupler
US5138480A (en) Traveling wave optical modulator
US20130243364A1 (en) Optical control device
JP2008116865A (en) Nested modulator
JPH03203716A (en) Electrooptical modulator
US5991491A (en) Optical waveguide type device for reducing microwave attenuation
US6646776B1 (en) Suppression of high frequency resonance in an electro-optical modulator
JP2758538B2 (en) Light modulation element, light modulation device, and driving method thereof
US20020110302A1 (en) Resonant optical modulators with zero chirp
JPH1090638A (en) Optical control element
JPH09211402A (en) Broad-band light modulator
JP3381367B2 (en) Optical waveguide device
JPH06235891A (en) Optical waveguide device
US6885780B2 (en) Suppression of high frequency resonance in an electro-optical modulator
JPH09304746A (en) Waveguide device
US5459800A (en) Optical modulation device and method of driving the same
JPH0588124A (en) Optical modulator
JPH08166566A (en) Optical control device
JPH05173099A (en) Optical control element
JP3362105B2 (en) Waveguide type optical modulator
JPH0713711B2 (en) High speed optical modulator
JP3654992B2 (en) Light control element
CA2433317C (en) Optical waveguide device
JPH05264937A (en) Light control device
JPH06308437A (en) Optical control element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees