JPH07259064A - Caisson for ocean current power generation - Google Patents

Caisson for ocean current power generation

Info

Publication number
JPH07259064A
JPH07259064A JP6336796A JP33679694A JPH07259064A JP H07259064 A JPH07259064 A JP H07259064A JP 6336796 A JP6336796 A JP 6336796A JP 33679694 A JP33679694 A JP 33679694A JP H07259064 A JPH07259064 A JP H07259064A
Authority
JP
Japan
Prior art keywords
ocean current
floating body
conduit
water
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6336796A
Other languages
Japanese (ja)
Inventor
Atsushi Iwamoto
淳 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6336796A priority Critical patent/JPH07259064A/en
Publication of JPH07259064A publication Critical patent/JPH07259064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To convert the ocean current energy into a large capacity electric power free from risk of generating a pollution which can be achieved by collecting the ocean current energy because the density of the flowing water energy per unit time and per unit area perpendicular to the ocean current is small despite a tremendous quantity in total of the ocean current energy. CONSTITUTION:In an oceanic region having an ocean current, a buoy B equipped with a conduit A directly confronting the stream is moored by its bow part. The conduit A has a water intake 1 at the bow in its whole surface and a water exhaust hole 2 at the stern. The central part of the conduit A is formed with a circular section having an area several percent of the water intake section area perpendicular to the ocean current, and there a hydraulic wheel 6 is mounted so that a power generator C is operated. The buoy R is submerged so that the center of the rotary shaft of hydraulic wheel 6 reaches a depth equal to the velocity head of the ocean current stream in the position of hydraulic wheel 6, and the whole current having come to the water intake 1 is taken in. An intermediate buoy D may be used in an oceanic region where the water depth exceeds several hundreds of meters.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】現在の大容量発電においては、火
力発電では大気汚染、原子力発電では放射能汚染の危
険、また、水力発電では立地適地の減少と、それぞれ構
造的な問題を抱えるとともに、多額の初期投資を必要と
する。現在、求められているのは無限の資源を活用、公
害のない、経済的な大容量の発電システムである。ここ
に本発明の海流発電潜水船が位置づけられる。
[Industrial application] In the current large-capacity power generation, there are structural problems such as air pollution in thermal power generation, radioactive contamination in nuclear power generation, and decrease in suitable sites for hydropower generation. Requires a large initial investment. Currently, what is needed is an economical, large-capacity power generation system that uses unlimited resources, is free of pollution. The ocean current power generation submersible of the present invention is positioned here.

【0002】[0002]

【従来の技術】大洋を流れる海流は後述するように壮大
なエネルギーを秘め、無限に供給され、安定した流速と
流向を持つ。この海流の壮大なエネルギーとその性質に
着目して、各国の研究者によって1980年頃までに
は、海流発電システムについて、多くの提案がなされて
きた。しかしながら、それらの提案の多くは方法や手段
は多岐にわたるも、奇抜なものを除いて、基本的にはプ
ロペラや水車を海流の中に置き、その回転運動を電気エ
ネルギーに変換するものであった。ところが、海流エネ
ルギーは総量では壮大であっても、単位時間当たり、海
流の流れに垂直な単位面積に流れる流水エネルギーの密
度は、大容量発電にとっては余りにも希薄である。海流
発電の出力計算は水車の海流に垂直な断面積に比例、海
流の流速の3乗に比例するから、高出力を期待して、水
車やプロペラを大きくして高速の海流を求めた。ところ
が構造物の大型化によって、その構造物の強度、工作方
法、またその係留や設置に技術的な開発が出来ず、ま
た、その建設費も増大、発電出力に見合う経済性が得ら
れず、未だに海上におけるテストも行なわれていないの
が、海流発電の技術開発の現状である。最近のクリーン
エネルギーに関する著書では海流発電は全く忘れられた
存在である。
2. Description of the Related Art The ocean current flowing through the ocean has a magnificent energy as will be described later, is supplied infinitely, and has a stable flow velocity and direction. Focusing on the magnificent energy of this ocean current and its properties, researchers in various countries have made many proposals for ocean current power generation systems by about 1980. However, many of these proposals, although diverse in methods and means, basically put propellers and turbines in the ocean current and convert their rotational motion into electrical energy, except for strange ones. . However, even if the total amount of ocean current energy is magnificent, the density of running water energy flowing in a unit area perpendicular to the ocean current flow per unit time is too lean for large-capacity power generation. Since the output calculation of the ocean current power generation is proportional to the cross-sectional area of the turbine that is perpendicular to the ocean current and proportional to the cube of the current velocity of the ocean current, in expectation of high output, we increased the turbine and propeller to obtain a high-speed ocean current. However, due to the increase in the size of the structure, it is not possible to develop the strength of the structure, the working method, and the mooring and installation of the structure, and the construction cost increases, and the economical efficiency corresponding to the power generation output cannot be obtained. It is the current state of technological development of ocean current power generation that tests have not yet been conducted at sea. Current ocean power generation is completely forgotten in recent clean energy books.

【0003】[0003]

【発明が解決しようとする課題】海流エネルギーは、総
量では壮大であっても、単位時間当たり、海流に垂直な
単位面積当たりに流れる流水エネルギーの密度は希薄で
ある。このような海流のエネルギーをどのようにして集
約し、公害のない、経済的にも採算の取れる装置で、大
容量の電力を取り出すかが、本発明の課題である。
Even if the total amount of ocean current energy is magnificent, the density of flowing water energy per unit time per unit area perpendicular to the ocean current is low. It is an object of the present invention how to condense the energy of such ocean currents and to extract a large amount of electric power with a device that is pollution-free and economically profitable.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、図1〜図4に示す浮体Bを海流のある海域に、取水
口1のある船首より係留索9、錨10で海底に係留す
る。浮体Bは無人であるから、浮体Bの潜水、浮上、深
度の調節には海上から音波の指示で、浮体Bの係留索巻
取機8で係留索9を巻取り、巻戻し、同時に前後、左右
および上下に分割されたエアタンク3に注水、排水によ
って操作する。船尾に近いエアタンク3の注水量の加減
により、浮体Bの水平を維持する。船尾外側の上下左右
の方向舵4は、船首の取水口1を常に海流に直面させ
る。また、浮体Bの稼動中は、浮体B、水車6、発電機
Cなどの稼動状態の把握と自動調整、さらに、浮体Bの
周囲の海流の状況を把握し、発電効率の最もよい深度
に、浮体Bの潜水深度を自動調節するコンピューターを
浮体Bに備える。遠隔の地上局からも浮体Bの状況確
認、と遠隔調整が出来るようにしておく。
In order to solve the above-mentioned problems, the floating body B shown in FIGS. 1 to 4 is moored to the sea area with the ocean current, and moored from the bow with the intake port 1 to the sea bottom with mooring lines 9 and anchors 10. To do. Since the floating body B is unmanned, in order to dive, float, and adjust the depth of the floating body B, the mooring rope winder 8 of the floating body B is used to wind and unwind the mooring rope 9 at the same time, and at the same time, before and after, The air tank 3 divided into left and right and up and down is operated by pouring water and draining water. The level of the floating body B is maintained horizontal by adjusting the amount of water injection in the air tank 3 near the stern. The up, down, left and right rudder 4 on the outside of the stern always causes the intake 1 of the bow to face the ocean current. Further, while the floating body B is in operation, the operating states of the floating body B, the water turbine 6, the generator C, etc. are grasped and automatically adjusted, and further, the state of the ocean current around the floating body B is grasped, and the depth of the power generation efficiency is optimized. The floating body B is equipped with a computer for automatically adjusting the diving depth of the floating body B. The status of Floating Body B can be checked and remotely adjusted from a remote ground station.

【0005】図1〜図4に示す浮体Bには、海流に直面
する船首全面に導管Aの取水口1を、また船尾全面に排
水口2を設ける。導管Aの取水口1と排水口2のほぼ中
央の海流に垂直な断面は、取水口1の同断面積の数十分
の一の円形の断面にして、その断面に水車6を装着す
る。以下、導管Aの水車6の位置の海流に垂直な断面積
と、取水口1の同断面積の割合を圧縮比と言う。
In the floating body B shown in FIGS. 1 to 4, an intake port 1 of the conduit A is provided on the entire bow face facing the ocean current, and a drain port 2 is provided on the entire stern face. The cross section of the conduit A perpendicular to the ocean current in the center of the water intake 1 and the water discharge port 2 is a circular cross section of a few tenths of the same cross sectional area of the water intake 1, and the water turbine 6 is attached to the cross section. Hereinafter, the ratio of the cross-sectional area of the conduit A perpendicular to the ocean current at the position of the turbine 6 and the cross-sectional area of the intake 1 will be referred to as the compression ratio.

【0006】海流のある海域は水深数百m以上の海域が
大部分を占める。水深が数百mを越えると、係留索9の
海中の重量で浮体Bの浮力が不安定になる。係留索9の
重量を軽減するために、中間浮力体Dを浮体Bより20
0mほど海底よりの係留索9に装着する。中間浮力体D
は中間浮力体Dから錨10までの係留索9の海中の重量
に見合う浮力があり、例えば図5〜図7に示すように、
海流の中にあって流体抵抗の少ない、安定のよいものに
する。中間浮力体Dによって、浮体Bの係留可能な海域
がより広範囲になる。
Most of the sea area with ocean currents has a depth of several hundred meters or more. When the water depth exceeds several hundred meters, the buoyancy of the floating body B becomes unstable due to the weight of the mooring line 9 in the sea. In order to reduce the weight of the mooring cable 9,
Attach it to mooring line 9 from the bottom of the sea about 0 m. Intermediate buoyancy body D
Has buoyancy corresponding to the weight of the mooring line 9 from the intermediate buoyancy body D to the anchor 10 in the sea. For example, as shown in FIGS.
Be stable in the ocean current with little fluid resistance. The intermediate buoyant body D makes the mooring area of the floating body B wider.

【0007】[0007]

【作用】浮体Bの作用について同じ流速(2m/se
c)の海流の中に、同じ海流に垂直な断面積(10
)の水車6(直径3.57m)を使用した次ぎの
(イ)、(ロ)及び(ハ)の三者の比較において説明す
る。(第8図参照)以下、説明の便宜上、海水の比重=
1として、また適宜四捨五入をしている。
[Operation] Regarding the operation of the floating body B, the same flow velocity (2 m / se
In the current of c), the cross-sectional area (10
An explanation will be given in the following comparison of the following three (a), (b) and (c) using the water turbine 6 (diameter 3.57 m) of m 2 ). (See FIG. 8) Hereinafter, for convenience of explanation, specific gravity of seawater =
1 is rounded off as appropriate.

【0008】(イ)の海流の中に直接、水車やプロペラ
をおいた場合。理論出力は次ぎのように計算される。 Q=1/2・S・Vo・Cp ここで、 Q:理論出力(kW) S:水車の位置における海流に垂直な断面積(m) Vo:海流の流速(m/s) Cp:ベッツの限界値 ベッツの限界値は海流の中に直接、変換効率100%の
水車をおいた場合、水車の海流に垂直な断面を通過する
海流エネルギーを水車の回転エネルギーに変換される割
合で16/27と言われる。 いま、 S=10m Vo=2m/s Cp=16/27 と設定すると 理論出力は Q=23.7kW にな
る。 最大出力は理論出力に水車と発電機の変換効率を乗じた
ものになる。
When a water wheel or propeller is directly placed in the ocean current of (a). The theoretical output is calculated as follows. Q = 1/2 · S · Vo 3 · Cp where: Q: theoretical output (kW) S: cross-sectional area perpendicular to the ocean current at the position of the turbine (m 2 ) Vo: ocean current velocity (m / s) Cp: Betz's limit value The Betz's limit value is the ratio of conversion of ocean current energy passing through a cross section perpendicular to the ocean current into rotational energy of the turbine when a turbine with a conversion efficiency of 100% is placed directly in the ocean current. It is said to be / 27. Now, if S = 10 m 2 Vo = 2 m / s Cp = 16/27 is set, the theoretical output becomes Q = 23.7 kW. The maximum output is the theoretical output multiplied by the conversion efficiency of the turbine and generator.

【0009】(ロ)の円筒型の導管の中に、水車をおい
た場合。理論出力は次ぎのように計算される。 Q=1/2・S・Vo ここで、 Q:理論出力(kW) S:水車の位置における海流に垂直な断面積(m) Vo:海流の流速(m/s) ベッツの限界値は限りなく1に近づき無視できる。い
ま、(イ)と同様に、 S=10m Vo=2m/s と設定すると 理論出力は Q=40kW にな
る。 最大出力は理論出力に水車と発電機の変換効率を乗じた
ものである。
A case where a water wheel is placed in the cylindrical conduit (b). The theoretical output is calculated as follows. Q = 1/2 · S · Vo 3 where: Q: theoretical output (kW) S: cross-sectional area perpendicular to the ocean current at the position of the turbine (m 2 ) Vo: ocean current velocity (m / s) Betz's limit value Is extremely close to 1 and can be ignored. Now, as in (a), if S = 10 m 2 Vo = 2 m / s is set, the theoretical output becomes Q = 40 kW. The maximum output is the theoretical output multiplied by the conversion efficiency of the turbine and generator.

【0010】(ハ)の圧縮比30の導管Aを持つ浮体B
の中に、水車6をおいた場合。理論出力は次ぎのように
計算される。 Q=1/2・S・V V=t・Vo So=t・S したが
って Q=1/2・S(t・Vo) Q=1/2・S・tVo または Q=1/2・So・t・Vo [注] ここで、 Q:理論出力(kW) S:水車6の位置における海流に垂直な断面積(m )V:水車6の位置における海流の流速(m/s) t:圧縮比 Vo:取水口1における海流の流速(m/s) いま、(イ)、(ロ)と同様に、 S=10m Vo=2m/s さらに t=30 と設定すると 理論出力は Q=1,080,000kW にな
る。
(C) Floating body B having a conduit A with a compression ratio of 30
If you put a water wheel 6 inside. The theoretical output is calculated as follows. Q = 1/2 · S · V 3 V = t · Vo So = t · S Therefore Q = 1/2 · S ( t · Vo) 3 Q = 1/2 · S · t 3 Vo 3 or Q = 1 / 2 · So · t 2 · Vo 3 [Note] where: Q: theoretical output (kW) S: cross-sectional area perpendicular to the ocean current at the position of the turbine 6 (m 2 ) V: velocity of the ocean current at the position of the turbine 6 (M / s) t: compression ratio Vo: current velocity of ocean current at intake 1 (m / s) Now, as in (a) and (b), S = 10 m 2 Vo = 2 m / s Furthermore, t = 30 When set, the theoretical output will be Q = 1,080,000 kW.

【0011】しかるに、浮体Bを海面の近くにおいた場
合、取水口1まで来た海流の大部分は、浮体Bの外側を
迂回して船尾に流れ、非常に効率の悪いものになる。と
ころが、浮体Bが潜水するにしたがって、取水口1まで
来た海流を導管Aの中に取り込む割合が増加する。水車
6の回転軸の中心の深度が、水車6の位置における海流
の流速の速度水頭の高さに等しい深度まで浮体Bが潜水
した場合、取水口1まで流れて来た海流を導管Aの中に
100%取り込み、先の理論出力が成立つことになる。
速度水頭とはベルヌーイの定理(流体力学)に出てくる
概念で、導管の中の流体の速度を水圧の高さで表現した
ものである。その関係式は次ぎの通りである。 V=t・Vo H=V/2・g ここで、 V:水車6の位置における海流の流速
(m/s) t:圧縮比 Vo:取水口1における海流の流速(m/s) H:速度水頭(m) g:重力の加速度 いま、 t=30 Vo=2m/s g=9.8 と設定すると 速度水頭は H=184m にな
る。 したがって、水車6の回転軸の中心の深度が184mに
なるように浮体Bを潜水させる。
However, when the floating body B is located near the sea surface, most of the ocean current that reaches the intake 1 bypasses the outside of the floating body B and flows to the stern, which is very inefficient. However, as the floating body B dives, the rate at which the ocean current that has reached the intake 1 is taken into the conduit A increases. When the floating body B dives to a depth where the center of the rotation axis of the water turbine 6 is equal to the velocity of the flow velocity of the sea current at the position of the water turbine 6, the sea current flowing to the intake 1 is transferred to the inside of the conduit A. Incorporate 100% of the above into the theoretical output.
Velocity head is a concept that appears in Bernoulli's theorem (fluid mechanics) and expresses the velocity of fluid in a conduit by the height of water pressure. The relational expression is as follows. In V = t · Vo H = V 2/2 · g where, V: flow velocity of ocean current at the position of the water turbine 6 (m / s) t: Compression ratio Vo: flow velocity of ocean current in intake 1 (m / s) H : Velocity head (m) g: Acceleration of gravity Now, setting t = 30 Vo = 2m / s g = 9.8, the velocity head becomes H = 184m. Therefore, the floating body B is submerged so that the center depth of the rotation axis of the water wheel 6 becomes 184 m.

【0012】最大出力は理論出力から次ぎのように計算
される。 P=n・Q ここで、 P:最大出力(kW) n:水車6と発電機Cの合成変換効率(%) Q:理論出力(kW) 水車6と発電機Cの変換効率は水力発電において使用さ
れるものを利用する。水車の効率は通常88〜91%、
発電機の効率は97%、それらの効率の積は85〜88
%である。以下、合成変換効率は87%で計算する。 いま、 Q=1,080,000kW n=87% を代入すると、 最大出力は P=939,600kW にな
る。
The maximum power is calculated from the theoretical power as follows. P = n · Q where: P: maximum output (kW) n: combined conversion efficiency of turbine 6 and generator C (%) Q: theoretical output (kW) conversion efficiency of turbine 6 and generator C Use what is used. Turbine efficiency is usually 88-91%,
The efficiency of the generator is 97%, and the product of those efficiencies is 85-88.
%. Hereinafter, the synthetic conversion efficiency is calculated at 87%. Now, substituting Q = 1,080,000 kW n = 87%, the maximum output becomes P = 939,600 kW.

【0013】以上の説明で、海流に垂直な単位面積当り
希薄な海流エネルギーを集約するために、浮体Bの構
造、導管Aの形状、および浮体Bの潜水の組合せが如何
に大きな作用をするかが理解できた。浮体Bの作用は、
その出力において、(ロ)の円筒型の導管の中に水車を
おいた場合と比較して、水車6の海流に垂直な断面積を
基準にすると導管Aの圧縮比の3乗倍になる。また、海
流が通過する海流に垂直な断面積を基準にすると圧縮比
の2乗倍になる。 (
In the above description, how the combination of the structure of the floating body B, the shape of the conduit A, and the diving of the floating body B has a great effect in concentrating the diluted ocean current energy per unit area perpendicular to the ocean current. Was understood. The action of the floating body B is
At the output, compared with the case where the turbine is placed in the cylindrical conduit (b), the compression ratio of the conduit A is cubed when the sectional area of the turbine 6 perpendicular to the ocean current is used as a reference. In addition, the compression ratio is squared when the cross-sectional area of the ocean current perpendicular to the ocean current is used as a reference. (

【0010】の[注])[Note])

【0014】[0014]

【実施例】本発明には実施例はないが、実在の水力発電
所と、その出力に等しい作用を持つように計算された浮
体Bの実施案との比較を検討する。
EXAMPLE Although there is no example in the present invention, a comparison is made between an actual hydroelectric power plant and an implementation plan of a floating body B calculated to have an effect equal to its output.

【0015】図9の(イ)の水力発電所は神奈川県相模
川水系の城山揚水発電所(稼動中)である。(ロ)は実
施案である。 (イ)の水力発電所の電力会社の公表数値 使用水量: Me=192m
s 有効落差: He=153m 最大出力: Pe=250,00
0kW (ロ)の実施案の設定数値 海流の流速: Vo=1.5m/s 取水口1の海流に垂直な断面積: So=128m 圧縮比: t=36.5 以下、(イ)と(ロ)の主要諸元について比較検討す
る。
The hydroelectric power plant of FIG. 9 (a) is the Shiroyama pumped-storage power plant (in operation) of the Sagami River system in Kanagawa prefecture. (B) is an implementation plan. Numerical value announced by the electric power company of the hydraulic power plant in (a) Water consumption: Me = 192m 3 /
s Effective head: He = 153m Maximum output: Pe = 250,000
Numerical value set for the implementation plan of 0 kW (b) Current velocity of ocean current: Vo = 1.5 m / s Cross-sectional area perpendicular to the ocean current at intake 1: So = 128 m 2 Compression ratio: t = 36.5 or less, and (a) We will compare and examine the main specifications of (b).

【0016】水車の位置における水流の流速は次ぎのよ
うに計算される。 (イ)の場合。 ここで、 Ve:水車の位置におけるの水流の流速
(m/s) g:重力の加速度 He:有効落差(m) いま、 g=9.8 He=153m を代入すると (イ)の水車の位置における水流の流速は Ve=54.8m/s (ロ)の場合。 V=t・Vo ここで、 V:水車6の位置における海流の流速
(m/s) t:圧縮比 Vo:取水口1における海流の流速(m/s) いま、 t=36.5 Vo=1.5m/s を代入すると (ロ)の水車6の位置における海流の流速は V=54.8m/s (イ)と(ロ)の水車の位置における水流の流速は一致
する。
The flow velocity of the water flow at the position of the water wheel is calculated as follows. In the case of (a). Here, Ve: Flow velocity of the water flow at the position of the water wheel (m / s) g: Acceleration of gravity He: Effective head (m) Now, substituting g = 9.8 He = 153m, the position of the water wheel at (a) The flow velocity of the water stream in Ve is 54.8 m / s (b). V = tVo Here, V: sea current flow velocity at the position of the water wheel 6 (m / s) t: compression ratio Vo: sea current flow velocity at the intake 1 (m / s) Now, t = 36.5 Vo = Substituting 1.5 m / s, the flow velocity of the ocean current at the position of the turbine 6 in (b) is V = 54.8 m / s (a) and the velocity of the water current at the position of the turbine in (b) is the same.

【0017】水車の位置の流量は次ぎのように計算され
る。 (イ)の場合。公表されている使用水量は Me=192m/s (ロ)の場合。 S=So/t M=V・S ここで、 S:水車6の位置における海流に垂直な
断面積(m) So:取水口1の海流に垂直な断面積(m) t:圧縮比 M:水車6の位置における海流の流量(m/s) V:水車6の位置における海流の流速(m/s) いま、 So=128m t=36.5 V=54.8m/s を代入すると (ロ)の水車6の位置における流量は M=192m/s となる。 (イ)の公表使用水量と(ロ)の水車6の位置における
海流の流量とは一致する。
The flow rate at the position of the turbine is calculated as follows. In the case of (a). The amount of water used announced is Me = 192 m 3 / s (b). S = So / t M = V · S where S: sectional area perpendicular to the ocean current at the position of the turbine 6 (m 2 ) So: sectional area perpendicular to the ocean current at the intake 1 (m 2 ) t: compression ratio M: Flow rate of ocean current at position of turbine 6 (m 3 / s) V: Velocity of ocean current at position of turbine 6 (m / s) Now, So = 128 m 2 t = 36.5 V = 54.8 m / s By substituting, the flow rate at the position of the turbine 6 in (b) becomes M = 192 m 3 / s. The published water consumption in (a) and the flow rate of the ocean current at the position of the water turbine 6 in (b) match.

【0018】(イ)の有効落差と(ロ)の水車6の位置
における海流の流速の速度水頭は、次ぎのように計算さ
れる。 (イ)の場合。 公表されている有効落差は He=153m (ロ)の場合。H=V/2g ここで、 H:水車6の位置における海流の流速の
速度水頭(m) V:水車6の位置における海流の流速(m/s) g:重力の加速度 いま、 V=54.8m/s g=9.8 を代入すると (ロ)の水車6の位置における海流の流速の速度水頭は H=153m となる。 (イ)の有効落差と(ロ)の水車6の位置における海流
の流速の速度水頭とは一致する。
The effective head of (a) and the velocity head of the flow velocity of the ocean current at the position of the water wheel 6 of (b) are calculated as follows. In the case of (a). The announced effective head is for He = 153m (b). H = V 2 / 2g where, H: velocity of the ocean current velocity at the position of the turbine 6 (m) V: velocity of ocean current at the position of the turbine 6 (m / s) g: acceleration of gravity Now V = 54 Substituting .8 m / s g = 9.8, the velocity head of the current velocity of the ocean current at the position of the turbine 6 in (b) becomes H = 153 m. The effective head of (a) and the velocity head of the current velocity of the ocean current at the position of the water turbine 6 of (b) match.

【0019】理論出力は次ぎのように計算される。 (イ)の場合。 Qe=g・He・Me ここで、 Qe:理論出力(kW) g:重力の加速度 He:有効落差 Me:使用水量 いま、 g=9.8 He=153m Me=192m/s を代入すると (イ)の理論出力は Qe=288,000kW となる。 (ロ)の場合。 Q=1/2・So・t・Vo ここで、 Q:理論出力(kW) So:取水口1の海流に垂直な断面積(m) t:圧縮比 Vo:取水口1における海流の流速(m/s) いま、 So=128m t=36.5 Vo=1.5m/s を代入すると (ロ)の理論出力は Q=288,000kW となる。(イ)と(ロ)
の理論出力は一致する。
The theoretical output is calculated as follows. In the case of (a). Qe = g · He · Me Here, Qe: theoretical output (kW) g: acceleration of gravity He: effective head Me: amount of water used Now, substituting g = 9.8 He = 153 m Me = 192 m 3 / s ( The theoretical output of b) is Qe = 288,000 kW. In the case of (b). Q = 1/2 · So · t 2 · Vo 3 where Q: theoretical output (kW) So: cross-sectional area perpendicular to the ocean current at intake 1 (m 2 ) t: compression ratio Vo: ocean current at intake 1 Flow velocity (m / s) Now, substituting So = 128 m 2 t = 36.5 Vo = 1.5 m / s, the theoretical output of (b) becomes Q = 288,000 kW. (A) and (b)
The theoretical output of is in agreement.

【0020】最大出力は次ぎのように計算される。 (イ)の場合。 公表されている最大出力 Pe=250,000kW (ロ)の場合。 P=n・Q ここで、 P:最大出力(kW) n:水車6と発電機Cの合成変換効率(%) Q:理論出力(kW) いま、 n=87% Q=288,000kW を代入すると (ロ)の最大出力は P=250,000kW (イ)と(ロ)の最大出力は一致する。以上の説明で水
力発電との比較において、海流発電潜水船がどのよう
に、具体化されるかが判明した。
The maximum power is calculated as follows. In the case of (a). Maximum output power Pe = 250,000 kW (b). P = n · Q where: P: maximum output (kW) n: combined conversion efficiency of turbine 6 and generator C (%) Q: theoretical output (kW) Now, n = 87% Q = 288,000 kW substituted Then, the maximum output of (B) is P = 250,000 kW (A) and the maximum output of (B) agree. In the above explanation, it became clear how the ocean current power generation submersible is embodied in comparison with hydroelectric power generation.

【0021】[0021]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載きれるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0022】浮体Bの資源、海流エネルギーは無限に近
い。例えば、黒潮は沖縄から房総半島まで1,500k
m,幅100〜200km,深さ1,000mにわたっ
て流れ、その中心部は、幅60〜100km、深さ20
0mで1〜1.5m/sの流速があり、中心部から周辺
部へ、また、深さ200m以上になると、流速は漸減す
る。この黒潮の総流量は60,000,000m/s
と言われる。その年間総流量は全国の年間降雨量の3,
000倍以上である。水力発電では全国降雨量の10%
も利用出来ず、河川に流れる雨水の落差による位置エネ
ルギーは上流から下流まで1回の利用にとどまる。一
方、海流エネルギーは、上流から下流まで何回でも利用
できる。その利用効率の悪い火力発電でも我国の電力総
需要の20%を担っている。如何に海流エネルギーが壮
大であるかが理解できる。
The resources of the floating body B and the ocean current energy are almost infinite. For example, Kuroshio is 1,500k from Okinawa to Boso Peninsula
m, width 100-200 km, depth 1,000 m, flowing in the center, width 60-100 km, depth 20
There is a flow velocity of 1 to 1.5 m / s at 0 m, and the flow velocity gradually decreases from the central portion to the peripheral portion and at a depth of 200 m or more. The total flow of this Kuroshio is 60,000,000 m 3 / s
Is said. Its annual total discharge is 3 of the annual rainfall of the whole country.
It is more than 000 times. 10% of national rainfall for hydropower
However, the potential energy due to the head of rainwater flowing through the river is only used once from upstream to downstream. On the other hand, ocean current energy can be used any number of times from upstream to downstream. Even thermal power generation, which has a low utilization efficiency, accounts for 20% of the total electricity demand in Japan. Understand how magnificent ocean current energy is.

【0023】低速(0.5m/s以下)の海流で高出力
の発電が可能である。表1の(イ)で見られるように
0.25m/sの流速の海流において、200,000
kw以上の発電が可能である。従来の海流発電の提案で
は高出力を求めて高速(1m/s以上)の海流を求め
て、黒潮やメキシコ湾流などに限られたが、0.5m/
s以下の海流となると世界の多くの海流の広範囲の海域
において浮体Bの繋留が可能になる。同表(ロ)は現在
の火力発電に匹敵する。また、同表(ハ)のように超高
出力のものも計算上は考えられるが、水車6や発電機C
などの周辺技術の開発を待たねばならない。
High-output power generation is possible with low-speed (0.5 m / s or less) ocean current. 200,000 in the ocean current with a flow rate of 0.25 m / s as seen in (a) of Table 1.
Power generation of kW or more is possible. In the conventional proposal of ocean current power generation, high current (1 m / s or more) ocean current was sought in order to obtain high output, and it was limited to the Kuroshio Current and Gulf of Mexico current.
When the ocean current is s or less, the floating body B can be moored in a wide area of many ocean currents in the world. The table (b) is comparable to the present thermal power generation. Also, as shown in the same table (c), ultra high output type is considered in the calculation, but the turbine 6 and the generator C
We have to wait for the development of peripheral technologies such as.

【0024】低速の海流では浮体Bに加わる流れによる
抗力(流体抗力)は少ない。さらに都合の良いことに
は、海流の流速が低速で良いとなると、浮体Bに加わる
流体抗力は少ない。流体抗力は海流の流速の2乗に比
例、海流に垂直な断面積(海流の上流から見た投影面
積)に比例するから従来の提案では高速(1m/s以
上)の海流の中に発電システムの構造物を繋留あるいは
設置しようとして非常に大きな流体抗力が考えられ、提
案の挫折の一因にもなった。それに対して、例えば同表
(ハ)においても流体抗力は31トンである。安全率を
乗じて繋留装置の荷重は100トンもあれば良いことに
なる。
In the low-speed ocean current, the drag force (fluid drag force) due to the flow applied to the floating body B is small. More conveniently, the lower the flow velocity of the ocean current is, the less the fluid drag force applied to the floating body B is. The fluid drag is proportional to the square of the current velocity of the ocean current, and is proportional to the cross-sectional area (projected area viewed from the upstream of the ocean current) perpendicular to the ocean current. Therefore, in the conventional proposal, the power generation system is generated in a high-speed (1 m / s or more) ocean current. Considering the enormous fluid drag force when attempting to moor or install the above structure, it also contributed to the failure of the proposal. On the other hand, for example, in the same table (c), the fluid drag force is 31 tons. Multiplying the safety factor, the weight of the mooring device should be 100 tons.

【0025】潮汐流や河川も利用できる。潮汐流や大河
の河口の場合のように、水深が100m未満の海域にお
いても、圧縮比を小さくして対応できる。ただ、潮潮流
では1日に4回の転流があり、浮体Bの稼動は1日10
時間にとどまるが、流速の変化が確実に予測できる。ま
た、陸地に近いと言う利点もある。河川では流砂の問題
がある。
Tidal currents and rivers are also available. Even in a sea area with a water depth of less than 100 m, such as in the case of a tidal current or the mouth of a big river, the compression ratio can be reduced. However, in tidal current, there are four commutations a day, and the operation of floating body B is 10 a day.
Although it is only time, changes in flow velocity can be predicted with certainty. It also has the advantage of being close to land. There is a problem of quicksand in rivers.

【0026】公害がない。浮体Bの設置は、広大な海洋
から見ると、ほとんど無視できるほどの海域で、深さ1
00m以上の海中である。また、排出物もない。したが
って公害は全く考えられない。荒天の時化からも全く開
放され、長時間の安定した稼動が可能である。また、付
近の海上を航海する船舶にも支障を与えない。
There is no pollution. Floating body B is installed in a water area that is almost negligible when viewed from the vast ocean, with a depth of 1
It is under the sea over 00m. Also, there are no emissions. Therefore, no pollution is considered. It is completely free from stormy weather and can be operated stably for a long time. In addition, it does not hinder ships sailing near the sea.

【0027】現在の大容量発電に比較して初期投資が少
なくて経済的である。海流の立体的な調査がゆきわた
り、浮体B、水車6および発電機Cの開発が進み、海流
の流速や設置海域の水深によって規格品ができると、大
量生産によるコストの大幅な低減を計ることができる。
大容量発電では、年1回の分解整備が要求され、3ヶ月
の運転休止で年間稼働率は75%になるが、浮体Bの場
合は年1回、整備された同規格の浮体Bと交換すればよ
く、年間稼働率100%に近い。浮体Bは一般船舶と同
様に、錆、電食、キャビテーション、および船底汚損生
物による被害から免れることはできないが、年間1回の
整備で対応できる。
Compared to the present large-capacity power generation, the initial investment is small and it is economical. If a three-dimensional survey of ocean currents spreads, the development of floating body B, turbine 6 and generator C progresses, and standardized products can be created depending on the velocity of ocean currents and the water depth of the installation area, it will be possible to significantly reduce costs by mass production. You can
For large-capacity power generation, disassembly and maintenance is required once a year, and the annual operation rate is 75% after three months of suspension of operation. In the case of the floating body B, the floating body B of the same standard is replaced once a year. The annual operating rate is close to 100%. Floating body B is inevitable from damage due to rust, electrolytic corrosion, cavitation, and ship bottom fouling organisms, like a general ship, but can be repaired once a year.

【図面の簡単な説明】[Brief description of drawings]

【図1】海流発電潜水船の全体構成の斜視図である。FIG. 1 is a perspective view of the overall configuration of an ocean current power generation submersible.

【図2】浮体の側面図である。FIG. 2 is a side view of a floating body.

【図3】浮体の平面図である。FIG. 3 is a plan view of a floating body.

【図4】浮体の正面図である。FIG. 4 is a front view of a floating body.

【図5】中間浮力体の側面図である。FIG. 5 is a side view of an intermediate buoyancy body.

【図6】中間浮力体の平面図である。FIG. 6 is a plan view of an intermediate buoyancy body.

【図7】中間浮力体の正面図である。FIG. 7 is a front view of an intermediate buoyancy body.

【図8】浮体の作用を説明する図である。FIG. 8 is a diagram illustrating the operation of a floating body.

【図9】水力発電所と海流発電潜水船の実施案との比較
図である。
FIG. 9 is a comparison diagram of a hydroelectric power plant and an implementation plan of a ocean current power generation submarine.

【符号の説明】[Explanation of symbols]

A 導管 B 浮体 C 発電機 D 中間浮力体 1 取水口 2 排水口 3 エアタンク 4 方向舵 5 ハッチ 6 水車 7 海底送電線 8 係留索巻取機 9 係留索 10 錨 S 水車の位置の海流に垂直な断面 So 取水口の海流に垂直な断面 A conduit B Floating body C Generator D Intermediate buoyancy body 1 Intake port 2 Drainage port 3 Air tank 4 Directional rudder 5 Hatch 6 Turbine 7 Seabed transmission line 8 Mooring line winder 9 Mooring line 10 Anchor S Cross section perpendicular to the ocean current A section perpendicular to the current at the So intake

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流速と流向が安定している海流、潮汐
流、または河川の水面に、図1に示すように、流れに直
面する導管Aと発電機Cを持つ浮体B(海流発電潜水
船)を船首から係留索9と錨10によって係留し、潜水
させる。導管Aに流れる海流エネルギーを水車6と発電
機Cによって電気エネルギーに変換し、海底送電線7で
陸地に送電する。図2〜図4に示すように、浮体Bの船
首全面を取水口1とし、取水口1と船尾の排水口2とを
結ぶ導管Aのほぼ中央の海流に垂直な断面積は、取水口
1の同断面積の数十分の一に圧縮して、円形にする。そ
こに水車6を装着する。その水車6の位置の海水の流速
は取水口1の海流の流速の数十倍に加速される。しかる
に浮体Bが海面近くにあると取水口1まで来た海水は導
管Aの中に吸込まれずに浮体Bの外側を迂回して船尾に
流れる。浮体Bの水車6の回転軸の中心の深度が、水車
6の位置における海流の流速の速度水頭(後出)の高さ
に等しい深度まで浮体Bを潜水させることによって、取
水口1まで流れてきた海流を導管Aの中に100%取り
込むことができる。本発明は浮体Bの構造、導管Aの形
状、および浮体Bの潜水の組合せによって、海流エネル
ギーと言う無限の資源を活用、公害のない、経済的にも
採算の合う大容量の電力を得るものである。
1. A floating body B (ocean current power generation submersible) having a conduit A and a generator C facing the flow, as shown in FIG. 1, on the surface of the ocean current, tidal current, or river where the flow velocity and direction are stable. ) Is moored from the bow by the mooring line 9 and the anchor 10 and is dived. The ocean current energy flowing in the conduit A is converted into electric energy by the water turbine 6 and the generator C, and the electricity is transmitted to the land by the undersea power transmission line 7. As shown in FIGS. 2 to 4, the entire surface of the bow of the floating body B is used as the water intake port 1, and the cross-sectional area of the conduit A connecting the water intake port 1 and the stern water discharge port 2 perpendicular to the ocean current is It is compressed to several tenths of the same cross-sectional area of to make a circle. The water wheel 6 is installed there. The seawater flow velocity at the position of the water wheel 6 is accelerated to several tens of times the seawater flow velocity at the intake 1. However, when the floating body B is near the sea surface, the seawater that has reached the intake port 1 does not get sucked into the conduit A and bypasses the outside of the floating body B and flows to the stern. The floating body B reaches the intake 1 by submersing the floating body B to a depth such that the center of the rotation axis of the turbine 6 of the floating body B is equal to the height of the velocity head (later described) of the velocity of the ocean current at the position of the turbine 6. 100% of the ocean current can be taken into the conduit A. The present invention utilizes the infinite resource called ocean current energy by combining the structure of the floating body B, the shape of the conduit A, and the diving of the floating body B, and obtains a large amount of electricity that is economically viable and economical without pollution. Is.
【請求項2】 水深数百m以上の海域において、浮体B
を係留する場合には係留索9の海中の重量を軽減するた
めに、図5〜図7に示す中間浮力体Dを浮体Bから20
0mほど海底よりの係留索9に装着する。中間浮力体D
には中間浮力体Dから錨10までの係留索9の海中の重
量に等しい浮力があり、装着によって、浮体Bの設置可
能海域がより広範囲になる。
2. A floating body B in a sea area having a depth of several hundred meters or more.
In order to reduce the weight of the mooring line 9 in the sea when mooring, the intermediate buoyancy body D shown in FIGS.
Attach it to mooring line 9 from the bottom of the sea about 0 m. Intermediate buoyancy body D
Has a buoyancy equal to the weight of the mooring line 9 from the intermediate buoyancy body D to the anchor 10 in the sea, and by mounting the buoyancy body B, the installable sea area becomes wider.
JP6336796A 1994-12-12 1994-12-12 Caisson for ocean current power generation Pending JPH07259064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6336796A JPH07259064A (en) 1994-12-12 1994-12-12 Caisson for ocean current power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6336796A JPH07259064A (en) 1994-12-12 1994-12-12 Caisson for ocean current power generation

Publications (1)

Publication Number Publication Date
JPH07259064A true JPH07259064A (en) 1995-10-09

Family

ID=18302769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6336796A Pending JPH07259064A (en) 1994-12-12 1994-12-12 Caisson for ocean current power generation

Country Status (1)

Country Link
JP (1) JPH07259064A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009833A (en) * 2005-07-01 2007-01-18 Masaharu Uchida Ocean current power-generating device and seabed installation type ocean current power generation facilities
JP2010507043A (en) * 2006-10-20 2010-03-04 オーシヤン・リニユーアブル・パワー・カンパニー・エルエルシー Submersible turbine generator unit for ocean and tidal currents
WO2013108412A1 (en) 2012-01-17 2013-07-25 Nishioka Toshihisa Marine power generating system and marine power generating method
JP2013224592A (en) * 2012-04-19 2013-10-31 Institute Of National Colleges Of Technology Japan Hydraulic power generating device
US8575771B2 (en) 2009-08-03 2013-11-05 Japan System Planning Co., Ltd. Installation structure for hydroelectric power generation apparatus
JP2015031168A (en) * 2013-07-31 2015-02-16 独立行政法人国立高等専門学校機構 Tidal force power generation device
JP2016112950A (en) * 2014-12-12 2016-06-23 株式会社新来島どっく Ship structure
JP2017025831A (en) * 2015-07-24 2017-02-02 株式会社ベルシオン Water-conveyance duct for water wheel
CN106460779A (en) * 2014-05-13 2017-02-22 申东琏 Floating body for tidal current power generation and power generation method using same
JP6393893B1 (en) * 2018-03-23 2018-09-26 義英 土橋 Acting waterway
US10087908B2 (en) 2015-07-30 2018-10-02 Japan System Planning Co., Ltd. Underwater installation-type water-flow power generation system
JP2020200824A (en) * 2019-06-13 2020-12-17 株式会社Ihi建材工業 Tidal flow power generator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595715B2 (en) * 2005-07-01 2010-12-08 正治 内田 Submarine type ocean current power generation equipment
JP2007009833A (en) * 2005-07-01 2007-01-18 Masaharu Uchida Ocean current power-generating device and seabed installation type ocean current power generation facilities
JP2010507043A (en) * 2006-10-20 2010-03-04 オーシヤン・リニユーアブル・パワー・カンパニー・エルエルシー Submersible turbine generator unit for ocean and tidal currents
US8575771B2 (en) 2009-08-03 2013-11-05 Japan System Planning Co., Ltd. Installation structure for hydroelectric power generation apparatus
WO2013108412A1 (en) 2012-01-17 2013-07-25 Nishioka Toshihisa Marine power generating system and marine power generating method
JP2013224592A (en) * 2012-04-19 2013-10-31 Institute Of National Colleges Of Technology Japan Hydraulic power generating device
JP2015031168A (en) * 2013-07-31 2015-02-16 独立行政法人国立高等専門学校機構 Tidal force power generation device
US10330073B2 (en) 2014-05-13 2019-06-25 Dong Ryun SHIN Floating body for tidal current power generation and power generation method using same
CN106460779A (en) * 2014-05-13 2017-02-22 申东琏 Floating body for tidal current power generation and power generation method using same
JP2017516028A (en) * 2014-05-13 2017-06-15 シン、ドンリョンSHIN, Dong Ryun Floating body for tidal current power generation and power generation method using the same
EP3144522A4 (en) * 2014-05-13 2017-12-27 Shin, Dong Ryun Floating body for tidal current power generation and power generation method using same
JP2016112950A (en) * 2014-12-12 2016-06-23 株式会社新来島どっく Ship structure
JP2017025831A (en) * 2015-07-24 2017-02-02 株式会社ベルシオン Water-conveyance duct for water wheel
US10087908B2 (en) 2015-07-30 2018-10-02 Japan System Planning Co., Ltd. Underwater installation-type water-flow power generation system
JP6393893B1 (en) * 2018-03-23 2018-09-26 義英 土橋 Acting waterway
JP2019167730A (en) * 2018-03-23 2019-10-03 義英 土橋 Curtain-type water channel
JP2020200824A (en) * 2019-06-13 2020-12-17 株式会社Ihi建材工業 Tidal flow power generator

Similar Documents

Publication Publication Date Title
US7948106B2 (en) Power generator and power generation method
US7492054B2 (en) River and tidal power harvester
US7228812B2 (en) Sea-based hydrogen-oxygen generation system
US3922012A (en) Power generator
EP2146089B1 (en) Water current power generation system
US20120187693A1 (en) Hydrokinetic energy transfer device and method
CN108716449B (en) U-shaped self-propelled wave power generation device
US8558403B2 (en) Single moored offshore horizontal turbine train
JPH05501901A (en) water flow energy converter
Gorlov Helical turbines for the gulf stream: conceptual approach to design of a large-scale floating power farm
WO2007130479A2 (en) Submersible electrical power generating plant and method
US10422311B2 (en) Hydroelectricity generating unit capturing marine current energy
CN102042174A (en) Water-float wind-water wheel sail wind driven generator
US20120086207A1 (en) Simplified Paddlewheel Energy Device
JPH07259064A (en) Caisson for ocean current power generation
JP2019513605A (en) Renewable energy barge
CN110332070A (en) A kind of apparatus for generating electricity by wave force to navigate
JP3530872B2 (en) Hydro energy converter
JP3460044B2 (en) Tidal power generation method
CN108100181A (en) A kind of floating type waving energy device and its movement and berthing methods
US20030080245A1 (en) Self-inflated marine airship or balloon
RU2722760C1 (en) Sailing power plant converting flow energy of two media
JP5656155B1 (en) Multihull type tidal current power generation facility
JPH06200516A (en) Water floating body breaking wind and wave, and wind and wave power generating set
CN204003259U (en) A kind of tidal current energy generating system