JP4595715B2 - Submarine type ocean current power generation equipment - Google Patents
Submarine type ocean current power generation equipment Download PDFInfo
- Publication number
- JP4595715B2 JP4595715B2 JP2005193593A JP2005193593A JP4595715B2 JP 4595715 B2 JP4595715 B2 JP 4595715B2 JP 2005193593 A JP2005193593 A JP 2005193593A JP 2005193593 A JP2005193593 A JP 2005193593A JP 4595715 B2 JP4595715 B2 JP 4595715B2
- Authority
- JP
- Japan
- Prior art keywords
- ocean current
- conduit
- power generation
- ocean
- current power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Description
本発明は、海流のエネルギーを利用して発電を行う海流発電装置を組み込んで海底に設置される海流発電設備に関するものである。 The present invention relates to marine current power equipment installed in seabed incorporate marine current power equipment for generating electric power by utilizing the energy of ocean currents.
近年、世界規模でのエネルギー需要の急速な増大に伴い、これまでもっぱら依存していた石油やLNG等の化石燃料や原子力等のエネルギー源の代替あるいは新たに加えるエネルギー源として、枯渇や公害の虞のない自然エネルギーを利用しようとする様々な研究開発が積極的に進められている。 In recent years, with the rapid increase in energy demand on a global scale, there is a risk of depletion and pollution as an alternative or newly added energy source such as fossil fuels such as oil and LNG, nuclear power, etc. Various research and development efforts are being made to use natural energy without energy.
このような自然エネルギーとしては、太陽光、潮流、風力等が利用可能であるが、いずれも時間や季節によって変動するという欠点を有している。これに対して、特に我が国においては、面積が小さい反面、周囲が海に囲まれているために、時間や季節に関係なく、しかも無限であってエネルギー密度の高い海流を利用した発電が可能となれば、有力なエネルギー源として活用することが可能になる。 As such natural energy, sunlight, tidal current, wind power, and the like can be used, but all have the disadvantage of fluctuating with time and season. On the other hand, especially in Japan, the area is small, but the surrounding area is surrounded by the sea, so it is possible to generate power using ocean currents that are infinite and have high energy density regardless of time or season. Then, it can be used as a powerful energy source.
図5は、下記特許文献1において提案されている海流を利用した海流発電潜水船を示すものである。
この海流発電潜水船は、流速と流向が安定している海流に、流れに直面する導管Aと発電機Cを持つ浮体Bを、船首から係留索9と錨10によって所定の深さに係留したものであり、導管Aに流れる海流エネルギーを水車6と発電機Cによって電気エネルギーに変換し、海底送電線7で陸地に送電するようにしたものである。
FIG. 5 shows an ocean current power generation submarine utilizing ocean currents proposed in Patent Document 1 below.
In this ocean current power generation submarine, a floating body B having a conduit A and a generator C facing a flow is moored at a predetermined depth from the bow by a mooring line 9 and a anchor 10 in a current with a stable flow velocity and direction. The ocean current energy flowing in the conduit A is converted into electrical energy by the water turbine 6 and the generator C, and is transmitted to the land by the submarine power transmission line 7.
ここで、浮体Bは、その船首全面が取水口1とされ、水車6が装着される取水口1と船尾の排水口2とを結ぶ導管Aのほぼ中央の海流に垂直な断面積は、取水口1の同断面積の数十分の一に圧縮した円形に形成されている。この結果、水車6の位置の海水の流速は取水口1の海流の流速の数十倍に加速されるために、海流エネルギーを活用して、大容量の電力を得ることができるとされている。
しかしながら、上記従来の海洋発電潜水船にあっては、導管Aの中央における断面積を、取水口1の断面積の数十分の一に圧縮しているために、理論上は水車6の取付部における海流の速度が数十倍に加速されることになるが、実際には、発電機Cによる水車6の回転負荷抵抗や、導管A内における流路抵抗によって、導管A内における海流の流量が浮体Bの周囲よりも遙かに小さくなってしまう。 However, in the conventional marine power generation submersible, since the cross-sectional area at the center of the conduit A is compressed to several tenths of the cross-sectional area of the intake port 1, the mounting of the water turbine 6 is theoretically performed. The speed of the ocean current in the section is accelerated several tens of times. Actually, however, the flow rate of the ocean current in the conduit A depends on the rotational load resistance of the water turbine 6 by the generator C and the channel resistance in the conduit A. Becomes much smaller than the periphery of the floating body B.
この結果、両者間の海水流量の差に起因して、浮体Bには、海流方向にその断面積に比例する大きな押圧力が作用し、このため、特に発電に適した流速の高い海流にあっては、係留索9によって浮体6を定位置に保持しておくことが困難になるという問題点がある。
さらに、万一水車6が回転不能に陥ったような際には、浮体Bの全断面積に対して、海流が圧力として作用するために、係留索9が切断される虞もある。
As a result, due to the difference in the seawater flow rate between them, a large pressing force proportional to the cross-sectional area acts on the floating body B in the direction of the ocean current. Therefore, there is a problem that it becomes difficult to hold the floating body 6 in a fixed position by the mooring cable 9.
Furthermore, in the unlikely event that the water turbine 6 becomes unrotatable, the mooring line 9 may be cut because the ocean current acts as pressure on the entire cross-sectional area of the floating body B.
また、浮体Bを係留索9によって所定の深さに浮遊状態で係留しているために、その姿勢を安定的に保持させることが難しいという問題点もある。
加えて、1基の水車6および発電機Cによって大容量の電力を得ようとするものであるために、故障やメンテナンスを考慮すると、連続して所望の電力を得ることが難しいという欠点もある。
Moreover, since the floating body B is moored in a floating state at a predetermined depth by the mooring line 9, there is also a problem that it is difficult to stably maintain the posture.
In addition, since a large amount of power is to be obtained by the single water turbine 6 and the generator C, there is a drawback that it is difficult to obtain desired power continuously in consideration of failure and maintenance. .
この発明は、かかる事情に鑑みてなされたもので、発電用の翼体が設けられた海流導管内に円滑に所望の海流を形成することができ、よって高い発電性能を得ることができる海流発電装置を組み込んだ据え付け性および操業安定性に優れる海底設置型海流発電設備を提供することを課題とするものである。 The present invention has been made in view of such circumstances, and it is possible to smoothly form a desired ocean current in an ocean current conduit provided with a power generation wing body, thereby obtaining high power generation performance. it is an object of the present invention to provide a seabed installation type ocean current power generation equipment having excellent mounting property and operation stability incorporating equipment.
上記課題を解決するために、請求項1に記載の本発明に係る海底設置型海流発電設備は、曳航可能な浮力を有する構造体に、両端に海流の流入口と流出口が形成された筒状の第1の海流導管と、この第1の海流導管内に設けられ、両端に形成された海流の流入口および流出口がそれぞれ上記第1の海流導管の内部に位置する筒状の第2の海流導管と、この第2の海流導管内に回転自在に設けられ、上記海流によって回転する翼体と、この翼体の回転によって発電する発電装置とを備えた海流発電装置が組み込まれるとともに、上記構造体には、当該構造体を海底に着底させるに十分な容量の海水を貯水可能なバラストタンクと、このバラストタンクに上記海水を流入させる貯水手段とが設けられていることを特徴とするものである。 In order to solve the above-mentioned problems, the submarine installation type ocean current power generation facility according to the present invention described in claim 1 is a cylinder having a towable buoyancy structure and an ocean current inlet and outlet formed at both ends. A first ocean current conduit having a cylindrical shape, and a cylindrical second current outlet provided in the first ocean current conduit and having an inlet and an outlet of the ocean current formed at both ends are located inside the first ocean current conduit, respectively. An ocean current power generation device including a current flow conduit, a wing body rotatably provided in the second current flow conduit and rotating by the ocean current, and a power generation device generating electric power by the rotation of the wing body ; the aforementioned structure, and store water ballast tanks seawater sufficient capacity to bottom landing the structure to the seabed, and features that you have a water storage means for flowing the seawater are provided in the ballast tank To do.
ここで、請求項2に記載の発明は、請求項1に記載の発明において、上記第1の海流導管および/または第2の海流導管は、少なくともその両端部が上記流入口または流出口に向けて漸次内法寸法が大きくなるテーパー状に形成されていることを特徴とするものである。 The invention according to claim 2 is the invention according to claim 1, wherein at least both ends of the first ocean current conduit and / or the second ocean current conduit are directed toward the inlet or the outlet. Thus, it is formed in a taper shape with gradually increasing internal dimensions.
さらに、請求項3に記載の発明は、請求項1または2に記載の構造体に、複数基の上記海流発電装置が並列的に組み込まれていることを特徴とするものである。 The present invention as described in claim 3, the structure according to claim 1 or 2, in which the marine current power device of the plurality groups is equal to or incorporated in parallel.
請求項1〜3のいずれかに記載の海底設置型海流発電設備においては、発電を行う海流発電装置が、両端に海流の流入口と流出口が形成された筒状の第1の海流導管内に、この第1の海流導管よりも長さの短い第2の海流導管を設けた2重管構造とし、この第2の海流導管内に発電を行うための翼体を回転自在に設けているので、流入口から第1の海流導管内に導かれた海流は、第2の海流導管内への流れと、その外方の第1の海流導管と第2の海流導管との間の流れとに分流される。 In the submarine installation type ocean current power generation equipment according to any one of claims 1 to 3, an ocean current power generation device for generating power is provided in a cylindrical first ocean current conduit having an ocean current inlet and an outlet formed at both ends. In addition, a double-pipe structure is provided in which a second ocean current conduit having a length shorter than that of the first ocean current conduit is provided, and a wing body for generating power is rotatably provided in the second ocean current conduit. Therefore, the ocean current guided from the inlet into the first ocean current conduit is a flow into the second ocean current conduit and a flow between the first ocean current conduit and the second ocean current conduit outside thereof. To be diverted to
次いで、第2の海流導管内に流入した海流によって、翼体が回転し、発電装置によって発電が行われる。そして、翼体を回転させることによりエネルギーが減少した海流は、その流速を落として第2の海流導管内を流出口に向けて流れ、第1および第2の海流導管間を流れた海流と合流する。 Next, the wing body is rotated by the ocean current flowing into the second ocean current conduit, and power generation is performed by the power generator. Then, the ocean current whose energy has been reduced by rotating the wing body decreases its flow velocity and flows in the second ocean current conduit toward the outlet, and merges with the ocean current that flows between the first and second ocean current conduits. To do.
この際に、第1および第2の海流導管間を流れる海流は、エネルギーを減じることなく、流入時の流速とほぼ等しい流速で流れるために、第2の海流導管内の海水は、いわゆるエジェクター効果により第1および第2の海流導管間を流れる海流によって吸引される。
この結果、第2の海流導管内の海水の流れが促進されて発電効率が向上する。
At this time, the ocean current flowing between the first and second ocean current conduits flows at a flow velocity substantially equal to the flow velocity at the time of inflow without reducing energy, so that the seawater in the second ocean current conduit is a so-called ejector effect. By the ocean current flowing between the first and second ocean current conduits.
As a result, the flow of seawater in the second ocean current conduit is promoted, and the power generation efficiency is improved.
また、第2の海流導管へと流入する海流と、第1および第2の海流導管間へと流入する海流との圧力は略等しいために、万一第2の海流導管側への流入抵抗が高くなった場合においても、海流がその外周側の第1および第2の海流導管間へと迂回流入するために、装置全体に海流方向へ過度の押圧力が作用することがない。 In addition, since the pressure of the ocean current flowing into the second ocean current conduit and the ocean current flowing between the first and second ocean current conduits are substantially equal, the inflow resistance to the second ocean current conduit side should be reduced. Even when it becomes high, since the ocean current flows in detour between the first and second ocean current conduits on the outer peripheral side, excessive pressing force does not act on the entire device in the ocean current direction.
さらに、請求項2に記載の発明によれば、第1の海流導管および/または第2の海流導管の少なくとも両端部を、流入口または流出口に向けて漸次内法寸法が大きくなるテーパー状に形成しているので、第2の海流導管内に流入する海流の速度を高めて大きな発電容量を得ることができる。したがって、上記第1の海流導管および第2の海流導管共に、それらの少なくとも両端部を、流入口または流出口に向けて漸次内法寸法が大きくなるテーパー状に形成すれば、一層大きな発電容量を得ることが可能になって好適である。 Furthermore, according to the invention described in claim 2, at least both ends of the first ocean current conduit and / or the second ocean current conduit are tapered so that the inner dimension gradually increases toward the inlet or the outlet. Since it forms, the speed of the ocean current flowing into the second ocean current conduit can be increased to obtain a large power generation capacity. Therefore, if both the first ocean current conduit and the second ocean current conduit are formed in a tapered shape in which the inner dimensions gradually increase toward the inlet or the outlet, a larger power generation capacity can be obtained. It can be obtained and is preferable.
さらに、請求項3に記載の発明によれば、上記構造体に、複数基の上記海流発電装置を並列的に組み込んでいるために、仮に1基または数基の発電装置が損傷を受けた場合にも、得られる電力は低下するものの、継続的な電力供給を行うことが可能になる。また、メンテナンス時においても、順次上記海流発電装置を停止させることにより、必要な電力供給に支承を招くことがない。 Further, according to the invention described in claim 3, in the structure, if in order to incorporate the ocean current power generation system of the plurality groups in parallel, if 1 group or several groups power generator is damaged In addition, although the obtained power is reduced, it is possible to continuously supply power. In addition, even during maintenance, the above-mentioned ocean current power generation device is sequentially stopped, so that support for necessary power supply is not caused.
図1〜図4は、本発明に係る海底設置型海流発電設備の一実施形態を示すもので、図中符号20が構造体である。
この構造体20は、底板21と天板22とが一対の側板23によって一体化された外観略筒状のもので、長手方向の両端に開口部が形成されている。そして、一方の開口部に、海流の流入口24が形成されるとともに、他方の開口部に、海流の流出口25が形成されている。
1 to 4, shows one embodiment of a locking Ru submarine stationary marine current power equipment present invention,
The
また、この構造体20の内部には、断面積が流入口24および流出口25の面積よりも小さい角筒状の据付枠26が配設されている。そして、構造体20の底板21、天板22および側板23と、対向する据付枠26の底板、天板および側板との間が、傾斜板状の内壁板20a、20b、20cによって塞がれることにより、構造体20の上下部および側部には、それぞれバラストタンク27が形成されている。
In addition, a rectangular
なお、バラストタンク27は、空の状態で構造体20に曳航可能な浮力を与えるとともに、内部に海水を貯水した際に、当該構造体20を海底40に着底させるに十分な容量に設定されている。
The
これにより、流入口24から取付枠26の一端開口側に向けて漸次内法寸法が小さくなる海流の流入路28が形成されるとともに、さらに取付枠28の他端開口側から流出口25に向けて漸次内法寸法が大きくなる海流の流出路29が形成されている。
また、構造体20の天板22の四角隅部には、それぞれバラストタンク27内を開閉する開閉弁(貯水手段)34aが設けられるとともに、側板23の下部角隅部にも、同様の開閉弁(貯水手段)34bが取り付けられている。
As a result, an
In addition, on the square corners of the
他方、取付枠26内は、水平方向中央部に設けられた1枚の隔壁26aおよび上下方向に設けられた4枚の隔壁26bによって合計10の海流導管(第1の海流導管)30が区画形成されている。なお、中央部の隔壁26aは、さらに流入口24および流出口26に向けて延出されることにより、流入路28および流出路29の約1/2を仕切るように形成されている。
On the other hand, in the
そして、各海流導管30内には、当該海流導管30と2重管構造となる海流導管(第2の海流導管)31が設けられている。この海流導管31は、外側の海流導管30よりも長さ寸法が小さい角管状に形成されており、これにより両端に海流の流入口32と流出口33とが形成されるとともに、両端部31aがそれぞれ流入口32または流出口33に向けて漸次内法寸法が大きくなるテーパー状に形成されている。
In each ocean
そして、各々の海流導管31における流入口32および流出口33の間の中央部に、軸流水車(翼体)35が回転自在に取り付けられるとともに、この軸流水車35の回転軸と一体化された発電機(発電装置)36が設けられている。これにより、構造体20内の内壁板20a、20bによって形成される海流の流入路28および流出路29と、取付枠26によって画成された海流導管30と、各海流導管30内に設けられた海流導管31と、この海流導管31内に設けられた軸流水車35および発電機36によって、海流発電装置が構成されている。
An axial water turbine (blade body) 35 is rotatably attached to a central portion between the inlet 32 and the outlet 33 in each ocean
なお、図中符号37は、構造体20の底板21に長手方向に突設されて、海底40の砂地内に食い込む係留板であり、符号38は、構造体20の天板22の4隅に一端が固定され、他端に係留用の錨39が取り付けられた錨鎖である。
In the figure,
以上の構成からなる海流発電装置が組み込まれた海底設置型海流発電設備においては、バラストタンク27をほぼ空の状態で、別途タグボート等によって、例えば津軽海峡等の常時流速の高い海流が得られる海域に曳航する。次いで、据付海域において、構造体20の海水の流入口24を海流の流れ方向に対向させた状態で、開閉弁34a、34bを開くことによりバラストタンク27内に海水を流入させ、海底40に着底させる。すると、係留板37が海底40の砂地に食い込んで当該海底40に姿勢保持されるとともに、さらに錨鎖38を引き延ばして投錨する。
In the seafloor-type ocean current power generation facility incorporating the ocean current power generation apparatus having the above-described configuration, a sea area where a high current velocity such as the Tsugaru Strait can be obtained with a separate tugboat or the like with the
このようにして海底40に据え付けられた海底設置型海流発電設備によれば、海流が構造体20の流入口24から流入路28内へと流れ込み、流速を増しながら据付枠26によって仕切られた各々の海流発電設備における海流導管30内へと流入する。そして、各海流発電設備においては、海流導管30内にさらに海流導管31を設けた2重管構造としているために、海流導管30内に流入した海流は、流入口32から海流導管31内への流れと、その外方の海流導管31と据付枠26との間の海流導管30への流れとに分流される。
According to the submarine installation type ocean current power generation equipment installed on the
次いで、海流導管31内に流入した海流によって、軸流水車35が回転し、その回転軸に一体化された発電機36によって発電が行われる。そして、得られた電力は、発電機36から図示されない電線によって構造体20の天板22上に集電され、さらに近隣の陸地まで送られる。他方、軸流水車35を回転させることによりエネルギーが減少した海流は、その流速V1を落として流出口33側に向けて流れ、外側の海流導管30を流れた海流と合流する。
Next, the
この際に、外側の海流導管30を流れる海流は、エネルギーを減じることなく、流入時の流速とほぼ等しい流速V0で流れるために、海流導管31内の海水は、いわゆるエジェクター効果によりその外側の海流導管30内を流れる海流によって吸引される。この結果、海流導管31内の海水の流れが促進されて発電効率が向上する。
At this time, since the ocean current flowing through the outer ocean
また、海流導管31へと流入する海流と、外側の海流導管30へと流入する海流との圧力は略等しいために、万一軸流水車35の故障等によって海流導管31側への流入抵抗が高くなった場合においても、海流がその外周側の海流導管30へと迂回流入するために、装置全体に海流方向へ過度の押圧力が作用することがない。
In addition, since the pressure of the ocean current flowing into the ocean
さらに、構造体20の流入路28が、海流導管30に向けて漸次内法寸法が小さくなるテーパー状に形成されているとともに、さらに海流導管31も流入口32から内方に向けて漸次内法寸法が小さくなるテーパー状に形成されているために、海流導管31内において流入する海流の速度を高めて大きな発電容量を得ることができる。
Further, the
また、この海底設置型海流発電設備によれば、構造体20を曳航して所望の海域まで搬送した後に、開閉弁34a、34bによってバラストタンク27内に海水を注入することにより、海底40に着底させて使用することができるため、上記海流発電装置が、海流導管30,31による2重管構造とした結果、海流側から過度の押圧力を受けないことと相俟って、安定的な発電を行うことができる。
In addition, according to the submarine installation type ocean current power generation facility, after the
さらに、構造体20に、複数基(本実施形態においては10基)の海流発電装置を並列的に組み込んでいるために、仮に1基または数基の発電装置が損傷を受けた場合にも、得られる電力は低下するものの、継続的な電力供給を行うことが可能になる。また、メンテナンス時においても、順次上記海流発電装置を停止させることにより、必要な電力供給に支承を招くことがない。
Furthermore, since a plurality of (10 in this embodiment) ocean current power generators are incorporated in the
しかも、バラストタンク27に設けた開閉弁34aを閉じて、一方の側板23側に設けた開閉弁34bを開くとともに、他方の側板23側に設けた開閉弁34bから圧縮空気を導入して、内部の海水を上記一方の側板23の開閉弁34bから排水することにより、再び海面上に浮上させて、別の海域に曳航し、再設置して発電を行うこともできる。
Moreover, the on-off valve 34a provided on the
なお、上記実施の形態においては、構造体20内に10基の海流発電装置を組み込んだ場合についてのみ説明したが、これに限定されるものではなく、それ以上、あるいはそれ以下の海流発電装置を組み込むこともできる。
また、発電手段としては、上記軸流水車35に変えて、プロペラ状の発電機等の他の翼体および発電装置を使用することも可能である。
In the above-described embodiment, only the case where 10 ocean current power generators are incorporated in the
Further, as the power generation means, instead of the
20 構造体
24、32 流入口
25、33 流出口
26 据付枠
27 バラストタンク
30 海流導管(第1の海流導管)
31 海流導管(第2の海流導管)
31a 端部
34a、34b 開閉弁(貯水手段)
35 軸流水車
36 発電機(発電装置)
40 海底
20
31 ocean current conduit (second ocean current conduit)
35
40 Seabed
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005193593A JP4595715B2 (en) | 2005-07-01 | 2005-07-01 | Submarine type ocean current power generation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005193593A JP4595715B2 (en) | 2005-07-01 | 2005-07-01 | Submarine type ocean current power generation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007009833A JP2007009833A (en) | 2007-01-18 |
JP4595715B2 true JP4595715B2 (en) | 2010-12-08 |
Family
ID=37748658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005193593A Expired - Fee Related JP4595715B2 (en) | 2005-07-01 | 2005-07-01 | Submarine type ocean current power generation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4595715B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015075090A (en) * | 2013-10-04 | 2015-04-20 | 谷電機工業株式会社 | Power generator |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100868854B1 (en) * | 2002-08-29 | 2008-11-14 | 오리온오엘이디 주식회사 | Mask supporting board |
JP4695128B2 (en) * | 2007-11-06 | 2011-06-08 | 通博 大江 | Tidal current generator |
KR101015572B1 (en) * | 2008-04-16 | 2011-02-17 | 최병구 | Water mill turbine developing tide |
JP2009264119A (en) * | 2008-04-22 | 2009-11-12 | Yoshiyasu Muraoka | Ocean current power generation system dedicated to future of our dear earth and children |
KR100985803B1 (en) | 2008-05-27 | 2010-10-06 | 김양중 | Power generation apparatus from tide and installation method therefor |
KR101001723B1 (en) * | 2008-09-19 | 2010-12-17 | 김형은 | Floating tidal power generation system having propellers |
JP5396838B2 (en) | 2008-12-04 | 2014-01-22 | 日本電気株式会社 | Power generation device, fluid sensor, and fluid sensor network |
WO2010074670A1 (en) * | 2008-12-22 | 2010-07-01 | Anthony Branco | Fluid turbine for generating electricity |
KR101039080B1 (en) | 2009-05-29 | 2011-06-07 | 김충부 | Tanker type tidal power station device |
KR20110114493A (en) * | 2010-04-13 | 2011-10-19 | 우르 레흐만 알비 무지브 | Tunnel terbine system generating potential energy from dorment kinetic energy |
AU2011203539A1 (en) * | 2010-07-13 | 2012-02-02 | Kittel Corporation Ptyltd | Extracting energy from flowing fluids |
KR101177805B1 (en) | 2010-09-06 | 2012-08-30 | 삼성중공업 주식회사 | Electrical power generating apparatus using waveforce |
JP5720379B2 (en) | 2011-03-31 | 2015-05-20 | 日本電気株式会社 | Water current generator |
JP5833342B2 (en) * | 2011-05-19 | 2015-12-16 | 株式会社ベルシオン | Wave turbine |
JP5073087B1 (en) * | 2011-08-01 | 2012-11-14 | 有限会社マツムラ | Water current generator, tidal current generator and tidal current power generation method using the same |
JP4977798B1 (en) * | 2011-12-08 | 2012-07-18 | 正雄 江口 | Ocean current power generator |
WO2013108412A1 (en) | 2012-01-17 | 2013-07-25 | Nishioka Toshihisa | Marine power generating system and marine power generating method |
JP5612726B2 (en) * | 2012-06-14 | 2014-10-22 | 敏雄 美藤 | Running water power generator with auxiliary device THE |
CN104074670B (en) | 2013-03-25 | 2017-11-17 | 杭州林黄丁新能源研究院有限公司 | Modular marine energy TRT |
CN105736221A (en) * | 2014-03-04 | 2016-07-06 | 杭州林黄丁新能源研究院有限公司 | Modularized ocean energy power generation device |
KR101722082B1 (en) * | 2014-10-24 | 2017-03-31 | 삼성중공업 주식회사 | Apparatus for decreasing the fluid impact |
GB2552950B (en) * | 2016-08-10 | 2018-10-03 | Verderg Renewable Energy Ltd | Bidirectional system and apparatus for generating power |
KR102039782B1 (en) * | 2017-06-27 | 2019-11-01 | 현대건설주식회사 | FD Type Direct Bottoming Caisson for Tidal Current Power Generator |
FR3073905A1 (en) * | 2017-11-20 | 2019-05-24 | Gerard Issartel | TURBO ALTERNATOR MOBILE IN A FLUID ENVIRONMENT |
JP6840451B1 (en) * | 2020-12-18 | 2021-03-10 | 義英 土橋 | Stage decompression type waterway type water collection type hydroelectric power generation device |
CN112610390A (en) * | 2021-01-19 | 2021-04-06 | 广州市南沙区哦卡商贸有限公司 | Ocean current power generation device with filter screen capable of being replaced |
FR3138672B1 (en) * | 2022-08-08 | 2024-08-30 | Chaudronnerie Agricol Repar Ind Cari | HYDROELECTRIC POWER PLANT |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5320038A (en) * | 1976-08-06 | 1978-02-23 | William J Mouton Jr | River flow motor |
JPS54106741A (en) * | 1978-02-10 | 1979-08-22 | Saito Kunio | Tidal current generator |
GB1574379A (en) * | 1977-08-24 | 1980-09-03 | English Electric Co Ltd | Turbines and like rotary machines |
FR2503268A1 (en) * | 1981-03-31 | 1982-10-08 | Mirguet Paul | Ocean energy extractor utilising wind and waves - incident on anchored and steerable floating barrage with funnels channelling flow towards turbogenerator |
JPS58158378A (en) * | 1982-03-15 | 1983-09-20 | Nippon Kokan Kk <Nkk> | Power plant utilizing water current |
JPH07259064A (en) * | 1994-12-12 | 1995-10-09 | Atsushi Iwamoto | Caisson for ocean current power generation |
JP2005504227A (en) * | 2001-10-04 | 2005-02-10 | ローテック ホールディングズ リミテッド | Power generation device and turbine unit |
JP2008513650A (en) * | 2004-09-17 | 2008-05-01 | クリーン カーレント パワー システムズ インコーポレイテッド | Increased flow for underwater turbine generators. |
-
2005
- 2005-07-01 JP JP2005193593A patent/JP4595715B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5320038A (en) * | 1976-08-06 | 1978-02-23 | William J Mouton Jr | River flow motor |
GB1574379A (en) * | 1977-08-24 | 1980-09-03 | English Electric Co Ltd | Turbines and like rotary machines |
JPS54106741A (en) * | 1978-02-10 | 1979-08-22 | Saito Kunio | Tidal current generator |
FR2503268A1 (en) * | 1981-03-31 | 1982-10-08 | Mirguet Paul | Ocean energy extractor utilising wind and waves - incident on anchored and steerable floating barrage with funnels channelling flow towards turbogenerator |
JPS58158378A (en) * | 1982-03-15 | 1983-09-20 | Nippon Kokan Kk <Nkk> | Power plant utilizing water current |
JPH07259064A (en) * | 1994-12-12 | 1995-10-09 | Atsushi Iwamoto | Caisson for ocean current power generation |
JP2005504227A (en) * | 2001-10-04 | 2005-02-10 | ローテック ホールディングズ リミテッド | Power generation device and turbine unit |
JP2008513650A (en) * | 2004-09-17 | 2008-05-01 | クリーン カーレント パワー システムズ インコーポレイテッド | Increased flow for underwater turbine generators. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015075090A (en) * | 2013-10-04 | 2015-04-20 | 谷電機工業株式会社 | Power generator |
Also Published As
Publication number | Publication date |
---|---|
JP2007009833A (en) | 2007-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4595715B2 (en) | Submarine type ocean current power generation equipment | |
US7291936B1 (en) | Submersible electrical power generating plant | |
RU2742012C2 (en) | Unidirectional hydrokinetic turbine (variants) and enclosure for such a turbine | |
US7755211B2 (en) | Rigid structural array | |
EP1849999A2 (en) | Floating hydroelectric power generation plant | |
AU2018101951A4 (en) | Apparatus and method for extracting energy from a fluid | |
AU2007280570B2 (en) | Apparatus for converting energy from wave or current flow using pipes acting as venturi pumps | |
JP4422789B1 (en) | Installation structure of hydroelectric generator | |
US8558403B2 (en) | Single moored offshore horizontal turbine train | |
JP2010025100A (en) | Water current power generation system | |
Gorlov | Helical turbines for the gulf stream: conceptual approach to design of a large-scale floating power farm | |
JPH05501901A (en) | water flow energy converter | |
CN108603481B (en) | Wide wave spectrum wave energy recovery device | |
BR112021007337A2 (en) | underwater electricity generation | |
US8653682B2 (en) | Offshore hydroelectric turbine assembly and method | |
EP2593665B1 (en) | Extracting energy from flowing fluids | |
JP6754752B2 (en) | Floating body for tidal current power generation and power generation method using this | |
GB2443697A (en) | Floating water wheel with buoyant blades | |
US20100096856A1 (en) | Apparatus and method for generating electric power from a liquid current | |
KR200443636Y1 (en) | Omiitted | |
KR100822089B1 (en) | A tide generation system | |
KR100795516B1 (en) | Tidal current energy converter | |
JP2010203319A (en) | Installation structure for hydraulic power generation device | |
CA2694150A1 (en) | The helical pathway system and method for harvesting electrical power from water flows using oval helical turbines | |
KR101958615B1 (en) | Wave power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100824 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100906 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |