JPH07258702A - Aluminum alloy reinforced by dispersing intermetallic compound, its powder and its production - Google Patents

Aluminum alloy reinforced by dispersing intermetallic compound, its powder and its production

Info

Publication number
JPH07258702A
JPH07258702A JP6078185A JP7818594A JPH07258702A JP H07258702 A JPH07258702 A JP H07258702A JP 6078185 A JP6078185 A JP 6078185A JP 7818594 A JP7818594 A JP 7818594A JP H07258702 A JPH07258702 A JP H07258702A
Authority
JP
Japan
Prior art keywords
powder
intermetallic compound
alloy
producing
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6078185A
Other languages
Japanese (ja)
Inventor
Nobuaki Suzuki
延明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP6078185A priority Critical patent/JPH07258702A/en
Publication of JPH07258702A publication Critical patent/JPH07258702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the production cost of Al alloy reinforced by dispersing intermetallic compound by weighing powders of constituent elements, mixing them with Al powder and subjecting the resultant mixture to mechanical alloying treatment. CONSTITUTION:Powders of elements A, B are weighed in accordance with the stoichiometric compsn. of the constituent elements of an intermetallic compd. acting as reinforcing particles and they are mixed to prepare a powdery mixture I. This mixture I is mixed with Al powder weighted as an element for a matrix. The resultant powdery mixture II is subjected to mechanical alloying treatment, discharged, classified, compacted into a billet, degassed and subjected to hot plastic working typified by hot extrusion. Toughness of the alloy can be improved by this method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温域(300〜50
0℃)でも従来のAl合金展伸材等に比べ著しく高強度
を有する軽量高強度の金属間化合物分散強化Al合金
(粉末)とその製造方法に関する。
The present invention relates to a high temperature range (300 to 50).
The present invention relates to a light weight and high strength intermetallic compound dispersion strengthened Al alloy (powder) having a significantly higher strength than conventional Al alloy wrought materials even at 0 ° C., and a method for producing the same.

【0002】[0002]

【従来の技術】従来、特公平3−20452号のよう
に、セラミック粒子を強化粒子としてAl合金中に取り
込んだもの、あるいは、特開平3−72047号のよう
にAl粉末にMg2 Si粒子を混合し、もしくは、アト
マイズ法等によりAl−Mg−Si粉末を調製し、合金
をAlマトリックス中に取り込んだものが知られてい
る。
2. Description of the Related Art Conventionally, as disclosed in Japanese Examined Patent Publication No. 3-20452, ceramic particles are incorporated as reinforcing particles into an Al alloy, or as disclosed in JP-A-3-72047, Mg powder is replaced with Mg 2 Si particles. It is known that Al-Mg-Si powder is mixed or prepared by an atomizing method and the alloy is incorporated into an Al matrix.

【0003】[0003]

【発明が解決しようとする課題】Alのマトリックス中
に、セラミックス粒子を分散して強化したものでは、A
lとセラミックス粒子との硬さが違いすぎ、そのため強
化した材料の被切削性が著しく悪くなるという欠点があ
った。またAlマトリックスと強化粒子との間の濡れ性
に問題があり、そのため粒子の凝集が多く、強度のバラ
つきが大きくなり十分な強化効果が得られないおそれも
あった。その他、硬さ,引張強さ等は向上するが、伸び
は激減し、衝撃値や破壊じん性値も低下し、その結果、
材料としての信頼性も損なわれるおそれがあった。また
熱間押し出しなどの熱間加工が難しいという問題もあっ
た。そして、マトリックスには純Alを用いたものが多
く、300℃以上の高温域では十分な強度を示さないも
のが多い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In the case where ceramic particles are dispersed and strengthened in an Al matrix,
There is a drawback in that the hardness of 1 and the ceramic particles are too different, so that the machinability of the reinforced material is significantly deteriorated. In addition, there is a problem in the wettability between the Al matrix and the reinforcing particles, so that the particles are often aggregated and the strength is greatly varied, so that the sufficient reinforcing effect may not be obtained. In addition, although hardness and tensile strength are improved, elongation is drastically reduced and impact value and fracture toughness value are also reduced.
There is a possibility that the reliability of the material may be impaired. There is also a problem that hot working such as hot extrusion is difficult. Many of the matrices use pure Al, and many do not show sufficient strength in a high temperature range of 300 ° C. or higher.

【0004】一方、Mg2 Si粉末(又は金属間化合物
粉末)を強化材に用いるものでは、それ自体が高価であ
るためコスト的に負担が大きいという欠点があった。ま
た、Mg2 Siに限らず、強化材に用いる金属間化合物
が高融点元素を含むものからなる場合には、アトマイズ
法の利用も難しく、目的とする成分組成が得られないば
かりか、金属間化合物を均一に分散させることが困難で
あった。したがって、本発明者は、Alマトリックス中
に後に金属間化合物になりうる前駆複合体粉をまず作
り、次に、この前駆複合体粉をAl中に均一・微細に取
り込んだAl合金粉を作り、これを熱間塑性加工するこ
とによって金属間化合物分散強化Al合金を作る技術を
開発提案して、前記課題を解消した。本発明において
は、この提案を更に改善し、製造プロセスを単純化した
金属間化合物分散強化Al合金(粉末)と、その製造方
法を提供することを目的とする。
On the other hand, the one using Mg 2 Si powder (or intermetallic compound powder) as a reinforcing material has a drawback that the cost is heavy because it itself is expensive. In addition to Mg 2 Si, when the intermetallic compound used for the reinforcing material is one containing a high melting point element, it is difficult to use the atomizing method, and the desired component composition cannot be obtained. It was difficult to disperse the compound uniformly. Therefore, the present inventor first creates a precursor composite powder that can later become an intermetallic compound in an Al matrix, and then creates an Al alloy powder in which the precursor composite powder is uniformly and finely incorporated in Al, The above problems were solved by developing and proposing a technique for forming an intermetallic compound dispersion strengthened Al alloy by hot plastic working this. It is an object of the present invention to provide an intermetallic compound dispersion-strengthened Al alloy (powder) that further improves this proposal and simplifies the manufacturing process, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】前記目的に添い、本発明
は請求項1に記載のように、強化粒子となる金属間化合
物の各構成元素の粉末を化学量論組成となるように秤量
するとともに、これを純Al粉末またはAl合金粉末に
混合し、これにメカニカルアロイング処理を施すAl合
金粉末の製造方法とすることによって、前記課題を解消
した。また本発明は、請求項4に記載のように、請求項
1ないし請求項3のいずれか一によって得られたAl合
金粉末を、ビレット成形,熱間加工を含む後の工程によ
り加工し、金属間化合物を均一・微細に分散させた素材
を得る金属間化合物分散強化Al合金の製造方法とする
ことによって、前記課題を解消した。さらに本発明は、
請求項5に記載のように請求項4の製造方法によって製
造される金属間化合物分散強化Al合金とすることによ
って、前記課題を解消した。本発明によって金属間化合
物分散強化Al合金の製造工程が単純化される。
According to the present invention, in accordance with the above object, the powders of the respective constituent elements of the intermetallic compound to be the reinforcing particles are weighed so as to have a stoichiometric composition. At the same time, the above problems were solved by providing a method for producing an Al alloy powder by mixing this with pure Al powder or Al alloy powder and subjecting this to mechanical alloying treatment. Further, according to the present invention, as described in claim 4, the Al alloy powder obtained according to any one of claims 1 to 3 is processed by a subsequent step including billet forming and hot working to obtain a metal. The above problems were solved by providing a method for producing an intermetallic compound dispersion strengthened Al alloy that obtains a material in which an intermetallic compound is uniformly and finely dispersed. Further, the present invention is
The above problems are solved by using an intermetallic compound dispersion strengthened Al alloy manufactured by the manufacturing method of claim 4 as described in claim 5. The present invention simplifies the manufacturing process of an intermetallic compound dispersion strengthened Al alloy.

【0006】以下、本発明にかかる金属間化合物分散強
化Al合金の製造方法を図1を参照しながら説明する。
まず、強化粒子となる金属間化合物の各構成元素A,
B,C・・・(通常2種類以上である。ここでは、A,
B2元素の場合について説明する。)の各粉末を用意す
る。次に目標とする金属間化合物の各構成元素の化学量
論組成に従ってA,B2元素の粉末を秤量した後混合し
混合粉Iを作る。ここで、化学量論組成とは、本来構造
式で示される化学組成のことで、例えば、Al3 Tiな
らばAl原子とTi原子の構成比が3:1で化合してい
ること、即ちAl−25at(原子)%TiがAl3
iの化学量論組成ということで、Mg2 SiならばMg
とSiが2:1だからMg−33.3at%Siが化学
量論組成である。この化学量論組成ABは、そこからA
側かB側のいずれかにシフトした組成であっても化学量
論組成ABからなる金属間化合物が、後の熱間加工で生
成し、強化作用を示す。したがって、この化学量論組成
ABを中心に前後10wt(重量)%程度が有意性を示
す組成範囲となる。例えば、A元素を基にB元素を添加
していって、Xwt%が化学量論組成ABだとすると、
A−(X−10)wt%〜A−(X+10)wt%程度
が有意性を持つ。次に前記混合粉Iが全体の40重量%
以下となるようにマトリックス用元素として純Al粉又
はAl合金粉を秤量し、これを混合粉Iに添加し、混合
して混合粉IIを作る。なお、混合粉Iが全体の40重量
%以上になると押出しなどの加工性が低下し、衝撃値も
低下するので好ましくない。また、あまり少いと本来の
強化の効果が得られない。また、本発明に用いる強化粒
子は、破砕性に優れた元素であることが必要で、例えば
Siを用いる。破砕性が悪いと微細で好ましい品質の粉
末が得られない。また本発明では、用いるAl粉の比率
が全体の90原子%以下の時に有効である。これ以上で
は好ましい結果が得られない。
A method for producing an intermetallic compound dispersion strengthened Al alloy according to the present invention will be described below with reference to FIG.
First, each constituent element A of the intermetallic compound that becomes the strengthening particles,
B, C ... (Normally two or more types. Here, A,
The case of B2 element will be described. ) Each powder is prepared. Next, powders of the elements A and B2 are weighed and mixed according to the target stoichiometric composition of each constituent element of the intermetallic compound to prepare a mixed powder I. Here, the stoichiometric composition means the chemical composition originally represented by the structural formula, and for example, in the case of Al 3 Ti, the composition ratio of Al atoms and Ti atoms is 3: 1, that is, Al -25 at (atom)% Ti is Al 3 T
The stoichiometric composition of i means that if Mg 2 Si, then Mg
And Si is 2: 1, Mg-33.3 at% Si has a stoichiometric composition. This stoichiometric composition AB is
Even if the composition is shifted to either the B side or the B side, an intermetallic compound having the stoichiometric composition AB is generated in the subsequent hot working and exhibits a strengthening effect. Therefore, about 10 wt% around this stoichiometric composition AB is a composition range showing significance. For example, if B element is added based on A element and Xwt% is stoichiometric composition AB,
A- (X-10) wt% to A- (X + 10) wt% are significant. Next, the mixed powder I is 40% by weight of the whole.
Pure Al powder or Al alloy powder is weighed as a matrix element as described below, and this is added to the mixed powder I and mixed to prepare a mixed powder II. If the mixed powder I is 40% by weight or more of the whole, workability such as extrusion is deteriorated and impact value is also decreased, which is not preferable. If the amount is too small, the original strengthening effect cannot be obtained. Further, the reinforcing particles used in the present invention need to be an element having excellent friability, and for example, Si is used. If the crushability is poor, fine powder having a preferable quality cannot be obtained. Further, the present invention is effective when the ratio of the Al powder used is 90 atomic% or less of the whole. If it is more than this, a desirable result cannot be obtained.

【0007】次に、この混合粉IIをボールミル処理好ま
しくは高エネルギ型のアトライタを用いてメカニカルア
ロイング処理を行う。このアトライタの一例を図2に示
す。図2のアトライタ1では、シャフト2の回転によっ
てアジテータ3を回転させ、これによってボール4を運
動させる。このボール4の運動によって原料を混合す
る。混合操作中、ガス流入口5からガスを流入させ、混
合雰囲気を一定に保つ。また、水流入口6から冷却水を
流入させ温度を一定に保つ。なお、7はガス排出口、8
は水排出口である。上記ボール4は最大1インチ好まし
くは3/8インチの鋼球であることが好ましい。シャフ
ト2の回転数は好ましくは250rpmである。混合雰
囲気としてはArあるいはHe等を使用した非酸化雰囲
気で行う。アジテータ3の先端の周速度は、3.5m/
秒以内とし、最大でも1インチのボールを使用して20
時間以内の時間好適には10〜15時間で処理すること
が必要である。20時間以上ではコストが上昇し、Fe
が混入して完成品の伸びを低下させてしまう。
Next, the mixed powder II is subjected to a ball mill treatment, preferably a mechanical alloying treatment using a high energy type attritor. An example of this attritor is shown in FIG. In the attritor 1 of FIG. 2, the rotation of the shaft 2 causes the agitator 3 to rotate, which causes the ball 4 to move. The raw materials are mixed by the movement of the balls 4. During the mixing operation, gas is introduced from the gas inlet 5 to keep the mixed atmosphere constant. Further, cooling water is introduced from the water inlet 6 to keep the temperature constant. In addition, 7 is a gas outlet, 8
Is the water outlet. The ball 4 is preferably a steel ball having a maximum size of 1 inch, preferably 3/8 inch. The rotation speed of the shaft 2 is preferably 250 rpm. The mixed atmosphere is a non-oxidizing atmosphere using Ar, He or the like. The peripheral speed of the tip of the agitator 3 is 3.5 m /
Within 20 seconds, using a 1-inch ball at the maximum, 20
It is necessary to carry out the treatment within a time of preferably 10 to 15 hours. Cost rises over 20 hours and Fe
Mixes in with the product and reduces the growth of the finished product.

【0008】なお、メカニカルアロイングの際は、粉の
分散性、または潤滑効果も考慮してメタノールまたはエ
タノールを分散剤として適量添加して行う。添加量は、 [分散剤量(ml)/粉末総重量(g)]×100=1
〜5 とする。分散剤の量が少ないと純Alがアトライタ内の
ボール表面に付着し、十分なメカニカルアロイング処理
ができない。逆に多すぎると処理粉末が細かくなりすぎ
排出後に急速に酸化して発火する。そのため不活性ガス
雰囲気又は真空の粉末回収装置が必要となるばかりか、
ブリケット成形まで非酸化性雰囲気中で行う必要があり
コスト高となる。また、粒子が細かくなると表面積が大
きくなるため酸化量も上昇するし、残さとして残る炭素
がAlと反応し、アルミニウム炭化物を形成して素材を
脆化させる。なお、アルコールの残さから混入する炭素
量が1重量%以下であれば好適である。
The mechanical alloying is carried out by adding an appropriate amount of methanol or ethanol as a dispersant in consideration of the dispersibility of powder or the lubricating effect. The amount added is [dispersant amount (ml) / total powder weight (g)] × 100 = 1.
Set to ~ 5. When the amount of the dispersant is small, pure Al adheres to the ball surface in the attritor, and sufficient mechanical alloying treatment cannot be performed. On the contrary, if the amount is too large, the treated powder becomes too fine and is rapidly oxidized and ignited after being discharged. Therefore, not only an inert gas atmosphere or a vacuum powder recovery device is required,
It is necessary to perform briquette forming in a non-oxidizing atmosphere, resulting in high cost. Further, as the particles become finer, the surface area becomes larger and the amount of oxidation also increases. The carbon that remains as a residue reacts with Al to form aluminum carbide and embrittle the material. It is preferable that the amount of carbon mixed from the residue of alcohol is 1% by weight or less.

【0009】上記の工程を経た後、粉末を排出する。こ
の排出が完了した粉末を分級し、48メッシュより細か
い粉末を以後用いる。好ましくは、150メッシュより
細かい方が良い。次に閉塞した金型内にこのメカニカル
アロイング粉末を充填し、圧縮してビレット成形する。
形状は、押出に適した形状、例えば円柱状とする。次に
このビレットを真空熱処理炉で加熱し、脱ガスを行う。
粉末表面には吸着水分や水酸化物があり、加熱時にガス
を発生するので成形したビレットの脱ガスを十分にして
おく。通常、350〜500℃で2時間以上行う。脱ガ
スの完了したビレットを熱間塑性加工を施すことにより
素材(合金の完成品)を作製する。代表的な方法として
熱間押出しがある。410〜500℃、押出し比5以上
好ましくは10以上で行う。前記の加熱と塑性変形時に
隣接する粉同士の摩擦熱等によって反応が起り、金属間
化合物がAlマトリックスのなかに分散して生成する。
すなわちメカニカルアロイング処理で機械的に合金化さ
れた粉末は、ビレット成形から熱間加工に至る工程で反
応を起して、Alマトリックス中に金属間化合物が微細
に分散した状態の素材が得られる。なお、合金粉末の酸
化量に依存した熱間加工後の全酸素量が5重量%以下で
あるようにする。酸化量がこれを超えると伸びが低下
し、押出し性が悪くなり、後の形状付与のための熱間加
工が難しくなるからである。
After the above steps, the powder is discharged. The powder thus discharged is classified, and powder finer than 48 mesh is used thereafter. Preferably, it is finer than 150 mesh. Next, this mechanical alloying powder is filled in a closed mold and compressed to form a billet.
The shape is a shape suitable for extrusion, for example, a cylindrical shape. Next, this billet is heated in a vacuum heat treatment furnace to degas.
Since there is adsorbed moisture or hydroxide on the powder surface and gas is generated during heating, degassing of the formed billet should be sufficient. Usually, it is carried out at 350 to 500 ° C. for 2 hours or more. A material (complete alloy product) is produced by subjecting the degassed billet to hot plastic working. A typical method is hot extrusion. It is carried out at 410 to 500 ° C. and an extrusion ratio of 5 or more, preferably 10 or more. At the time of heating and plastic deformation, a reaction occurs due to frictional heat between adjacent powders and the like, and an intermetallic compound is dispersed and generated in the Al matrix.
That is, the powder mechanically alloyed by the mechanical alloying process reacts in the steps from billet forming to hot working to obtain a raw material in which the intermetallic compound is finely dispersed in the Al matrix. . The total amount of oxygen after hot working depending on the amount of oxidation of the alloy powder is set to 5% by weight or less. This is because if the amount of oxidation exceeds this, the elongation decreases, the extrudability deteriorates, and it becomes difficult to perform hot working for imparting shape later.

【0010】[0010]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れらの実施例に限定されるものではない。実施例として
強化粒子にMg2 Siを分散させた金属間化合物分散強
化Al合金について図3に従って説明する。まず、純M
g、純Siの各粉末を用意し、Mg2 Siの化学量論組
成であるMg−38wt%Siとなるように既述の各粉
末を秤量した。本実施例では、Mg=37.2g、Si
=22.8gとし、全体で60gを用意した。Mg粉
は、純度99.9%以上、粒度100メッシュ以下のも
のを用意した。純Si粉末は、純度98%以上、粒度2
50メッシュ以下のものを使用した。同時に既述の純A
l粉240gを用意し、これらを良く混合した。次に、
この混合粉を図2に示す装置に投入しメカニカルアロイ
ング処理を施した。すなわち、アジテータ回転数を25
0rpmとして、メタノールを5.5cc添加して、6
時間にわたって処理した。冷却後、処理粉体を排出し
た。排出に先立ってメタノールを1.2cc添加して
た。次に、この粉体について粒径が106μm またはこ
れ以下のものを分級し、以後、これを使用した。次に、
この粉末をビレット成形し、真空雰囲気6×10-3To
rrのもとで温度400℃で5時間にわたって加熱し、
脱ガス処理をおこなった。脱ガス処理の終ったビレット
を押出比10、温度450℃の熱間押出し加工を施して
素材を得た。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples. As an example, an intermetallic compound dispersion strengthened Al alloy in which Mg 2 Si is dispersed in reinforcing particles will be described with reference to FIG. First, pure M
g, each powder of pure Si was prepared, and each powder described above was weighed so as to be Mg-38 wt% Si, which is the stoichiometric composition of Mg 2 Si. In this example, Mg = 37.2 g, Si
= 22.8 g, and a total of 60 g was prepared. As the Mg powder, one having a purity of 99.9% or more and a particle size of 100 mesh or less was prepared. Pure Si powder has a purity of 98% or more and a particle size of 2
The one having 50 mesh or less was used. At the same time, the pure A described above
240 g of 1 powder was prepared and mixed well. next,
This mixed powder was put into the apparatus shown in FIG. 2 and mechanically alloyed. That is, the agitator rotation speed is 25
At 0 rpm, 5.5 cc of methanol was added,
Processed over time. After cooling, the treated powder was discharged. 1.2 cc of methanol was added prior to discharge. Next, the powder having a particle size of 106 μm or less was classified, and thereafter, the powder was used. next,
This powder is formed into a billet, and the vacuum atmosphere is 6 × 10 −3 To.
heating at a temperature of 400 ° C. under rr for 5 hours,
Degassing treatment was performed. The billet that had been degassed was hot extruded at an extrusion ratio of 10 and a temperature of 450 ° C. to obtain a raw material.

【0011】〔比較例〕先に開発したところの金属間化
合物となりうる前駆複合体粉を作ってからAl粉を混合
して処理する方法を比較例とし、これを図8に示すプロ
セスを参照しながら以下説明する。まず、前記実施例と
同品質のMg粉37.2g、Si粉22.8gとを用意
し、これを混合する。次にこの混合粉のみにメカニカル
アロイング処理を施す。アジテータ回転数を250rp
mとし、メタノールを3cc添加して、3時間にわたっ
て処理した。この処理によってMgとSiからMg2
iとなりうる前駆複合体粉を得た。次に、アトライタ内
のMg2 Si前駆複合体粉に実施例と同品質の純Al粉
240gを投入し混合した。そして、この混合粉に対
し、再びメカニカルアロイング処理を施した。アジテー
タ回転数250rpmとして、メタノールを2cc添加
して2時間にわたって処理した。冷却後、処理粉体を排
出した。排出に先立ってメタノールを0.5cc添加し
た。次に、この粉体を実施例の場合と同様に、粒径10
6μm またはこれ以下のものを分級し、以後これを使用
した。同様にこの粉体でビレットを成形したあと、同条
件の真空雰囲気のもとで温度350℃で3時間にわたっ
て脱ガス処理をおこなった。そして脱ガス処理の終った
ビレットと同様な条件で熱間押し加工を施して比較用の
素材を得た。
[Comparative Example] A method of preparing a precursor composite powder that can be an intermetallic compound, which has been developed earlier, and then processing by mixing with Al powder is used as a comparative example, and this is referred to the process shown in FIG. However, it will be described below. First, 37.2 g of Mg powder and 22.8 g of Si powder having the same quality as those in the above-described embodiment are prepared and mixed. Next, only this mixed powder is mechanically alloyed. 250 rpm agitator rotation speed
m, 3 cc of methanol was added, and the mixture was treated for 3 hours. By this treatment, Mg and Si are converted into Mg 2 S
A precursor composite powder that can be i was obtained. Next, 240 g of pure Al powder having the same quality as that of the example was put into the Mg 2 Si precursor composite powder in the attritor and mixed. Then, the mixed powder was subjected to mechanical alloying treatment again. At an agitator rotation speed of 250 rpm, 2 cc of methanol was added and the mixture was treated for 2 hours. After cooling, the treated powder was discharged. 0.5 cc of methanol was added prior to discharge. Next, this powder was used in the same manner as in the example to obtain a particle size of 10
Particles having a size of 6 μm or less were classified and used thereafter. Similarly, after forming a billet with this powder, degassing treatment was carried out at a temperature of 350 ° C. for 3 hours in a vacuum atmosphere under the same conditions. Then, hot pressing was performed under the same conditions as for the billet that had been degassed to obtain a comparative material.

【0012】以上の処理によって得られた実施例と比較
例の物性を比較し、次のような結果と結論が得られた。
まず、実施例におけるメカニカルアロイング粉と、これ
を用いて押出した素材のX線回析結果をそれぞれ図4,
図5に示す。図4に示す粉体の状態ではAl,Mg,S
iの各ピークしか認められず、金属間化合物であるMg
2 Siの生成は生じていないことが判る。一方、図5の
熱間押出し後では、Al,Mg2 Si,Siの各ピーク
が認められ2Mg+Si→Mg2 Siの反応が生じたこ
とが判る。次に実施例と比較例の400倍に拡大した金
属組織を図6,図7に示す。いずれも1μm 以下のMg
2 Siと最大3μm 以下のSiが均一に分散しており、
ほぼ同等の組織をもつことが判る。表1に引張強さ,伸
び,硬さについて実施例と比較例とについての数値を示
す。
The physical properties of the examples and comparative examples obtained by the above treatment were compared, and the following results and conclusions were obtained.
First, the results of X-ray diffraction of the mechanical alloying powder and the material extruded using the powder in Example are respectively shown in FIG.
As shown in FIG. In the powder state shown in FIG. 4, Al, Mg, S
Only each peak of i is observed, and Mg which is an intermetallic compound
It can be seen that the formation of 2 Si did not occur. On the other hand, after hot extrusion in FIG. 5, the peaks of Al, Mg 2 Si, and Si are recognized, and it can be seen that the reaction of 2Mg + Si → Mg 2 Si occurs. Next, FIGS. 6 and 7 show the metallographic structures which are magnified 400 times that of the examples and comparative examples. Mg less than 1 μm
2 Si and up to 3μm or less of Si are uniformly dispersed,
It turns out that they have almost the same organization. Table 1 shows the values of the tensile strength, elongation and hardness of the examples and comparative examples.

【0013】[0013]

【表1】 [Table 1]

【0014】表1によれば室温(R・T)での物性、即
ち、引張強さ,伸び,硬さについては、両者はほぼ同等
である。これに対し高温域(300℃)では本発明によ
る実施例の伸びが比較例より著しく大きいことが判る。
よって本発明では高温での伸びが要求される素材として
適していることが確認できた。
According to Table 1, the physical properties at room temperature (RT), that is, the tensile strength, elongation and hardness, are almost the same. On the other hand, in the high temperature range (300 ° C.), the elongation of the example according to the present invention is significantly higher than that of the comparative example.
Therefore, it was confirmed that the present invention is suitable as a material requiring elongation at high temperature.

【0015】[0015]

【発明の効果】本発明によれば次のような効果が得られ
る。即ち、比較例でおこなう前駆複合体の製造を経るプ
ロセスが省略できるため工程が単純になる。また結果的
にメカニカルアロイング処理の時間を短縮することがで
き、製造コストを下げることができる。さらに粉末が酸
化される機会が少ないため靭性を改善することができ
る。素材を構成する元素を同時に混合するため、調整し
た組成比と製造した押出し素材の成分組成比との間に大
差が生じない。即ち、目標とする組成の素材が得やす
い。そして高温での伸びが優れたものが得られる。ま
た、Mg2 Siの前駆複合体を経る工程では、この前駆
複合体の凝集が生じやすい。この場合、排出したメカニ
カルアロイング粉を再度メカニカルアロイング処理する
ことで改善可能であるが、本発明ではこのような凝集が
起ることはない。よってMg2 Si粒子を分散させたA
l合金を製造する場合にはより有利な方法である。
According to the present invention, the following effects can be obtained. That is, since the process for manufacturing the precursor composite, which is performed in the comparative example, can be omitted, the process is simplified. As a result, the time for mechanical alloying processing can be shortened, and the manufacturing cost can be reduced. Further, since the powder is less likely to be oxidized, the toughness can be improved. Since the constituent elements of the raw material are mixed at the same time, a large difference does not occur between the adjusted composition ratio and the component composition ratio of the manufactured extrusion material. That is, it is easy to obtain a material having a target composition. Then, an excellent elongation at high temperature can be obtained. Further, in the step of passing through the precursor composite of Mg 2 Si, the precursor composite easily aggregates. In this case, the discharged mechanical alloying powder can be improved by subjecting it to mechanical alloying treatment again, but in the present invention, such agglomeration does not occur. Therefore, A in which Mg 2 Si particles are dispersed
This is a more advantageous method for producing an 1-alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る製造プロセスを説明する図であ
る。
FIG. 1 is a diagram illustrating a manufacturing process according to the present invention.

【図2】本発明の実施例で使用するアトライタの説明図
である。
FIG. 2 is an explanatory diagram of an attritor used in an embodiment of the present invention.

【図3】本発明に係る製造プロセスの一実施例を説明す
る図である。
FIG. 3 is a diagram illustrating an example of a manufacturing process according to the present invention.

【図4】同実施例の粉末のX線回折チャート図である。FIG. 4 is an X-ray diffraction chart of the powder of the example.

【図5】同実施例の熱間加工後の素材のX線回折チャー
ト図である。
FIG. 5 is an X-ray diffraction chart of the material after hot working according to the same example.

【図6】同実施例の素材の金属組織で、図面に代る写真
である。
FIG. 6 is a photograph as a drawing substitute for a metallographic structure of the material of the example.

【図7】比較例の素材の金属組織で、図面に代る写真で
ある。
FIG. 7 is a photograph as a drawing, which shows a metallographic structure of a material of a comparative example.

【図8】比較例の製造プロセスの説明図である。FIG. 8 is an explanatory diagram of a manufacturing process of a comparative example.

【符号の説明】[Explanation of symbols]

1 アトライタ 3 アジテータ 4 ボール 1 Attritor 3 Agitator 4 Ball

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 強化粒子となる金属間化合物の各構成元
素の粉末を化学量論組成となるように秤量するととも
に、これを純Al粉末またはAl合金粉末に混合し、こ
れにメカニカルアロイング処理を施すことを特徴とする
Al合金粉末の製造方法。
1. A powder of each constituent element of an intermetallic compound which becomes a strengthening particle is weighed so as to have a stoichiometric composition, and this is mixed with pure Al powder or Al alloy powder, and mechanical alloying treatment is applied to this. A method for producing an Al alloy powder, comprising:
【請求項2】 請求項1のAl合金粉末の製造方法にお
いて、金属間化合物の各構成元素の粉末が、全体の40
重量%以下であり、かつ破砕性に優れた元素であること
を特徴とするAl合金粉末の製造方法。
2. The method for producing an Al alloy powder according to claim 1, wherein the powder of each constituent element of the intermetallic compound is 40% of the whole.
A method for producing an Al alloy powder, characterized in that the content is less than or equal to wt% and the element is excellent in friability.
【請求項3】 請求項1または請求項2に記載のAl合
金粉末の製造方法において、メカニカルアロイング処理
中に分散剤としてアルコールを用い、該アルコールの残
さから混入する炭素量が1重量%以下であることを特徴
とするAl合金粉末の製造方法。
3. The method for producing an Al alloy powder according to claim 1, wherein alcohol is used as a dispersant during the mechanical alloying process, and the amount of carbon mixed from the residue of the alcohol is 1% by weight or less. And a method for producing an Al alloy powder.
【請求項4】 請求項1ないし請求項3のいずれか一に
よって得られたAl合金粉末を、ビレット成形,熱間加
工を含む後の工程により加工し、金属間化合物を均一・
微細に分散させた素材を得ることを特徴とする金属間化
合物分散強化Al合金の製造方法。
4. The Al alloy powder obtained by any one of claims 1 to 3 is processed in a subsequent step including billet forming and hot working to uniformly form an intermetallic compound.
A method for producing an intermetallic compound dispersion-strengthened Al alloy, characterized in that a finely dispersed material is obtained.
【請求項5】 請求項4の製造方法によって製造される
金属間化合物分散強化Al合金。
5. An intermetallic compound dispersion strengthened Al alloy manufactured by the manufacturing method according to claim 4.
【請求項6】 熱間加工後の素材の全酸素量が5重量%
以下であることを特徴とする請求項5に記載の金属間化
合物分散強化Al合金。
6. The total oxygen content of the material after hot working is 5% by weight.
The intermetallic compound dispersion strengthened Al alloy according to claim 5, wherein:
JP6078185A 1994-03-24 1994-03-24 Aluminum alloy reinforced by dispersing intermetallic compound, its powder and its production Pending JPH07258702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6078185A JPH07258702A (en) 1994-03-24 1994-03-24 Aluminum alloy reinforced by dispersing intermetallic compound, its powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6078185A JPH07258702A (en) 1994-03-24 1994-03-24 Aluminum alloy reinforced by dispersing intermetallic compound, its powder and its production

Publications (1)

Publication Number Publication Date
JPH07258702A true JPH07258702A (en) 1995-10-09

Family

ID=13654923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6078185A Pending JPH07258702A (en) 1994-03-24 1994-03-24 Aluminum alloy reinforced by dispersing intermetallic compound, its powder and its production

Country Status (1)

Country Link
JP (1) JPH07258702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123258A1 (en) * 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123258A1 (en) * 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof
US7976775B2 (en) 2007-03-26 2011-07-12 National Institute For Materials Science Sintered binary aluminum alloy powder sintered material and method for production thereof
JP5665037B2 (en) * 2007-03-26 2015-02-04 独立行政法人物質・材料研究機構 Binary aluminum alloy powder sintered material and method for producing the same

Similar Documents

Publication Publication Date Title
US4624705A (en) Mechanical alloying
JP2864287B2 (en) Method for producing high strength and high toughness aluminum alloy and alloy material
US4297136A (en) High strength aluminum alloy and process
DE102008061024B4 (en) A method of making TiB reinforced composite titanium alloy based components by powder metallurgy methods
EP1405927A1 (en) Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
JPH0217601B2 (en)
KR20010022884A (en) Titanium alloy based dispersion-strengthened composites
US4797155A (en) Method for making metal matrix composites
JPH0217602B2 (en)
CN112063869A (en) Preparation method of hydrogen-assisted powder metallurgy titanium-based composite material
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
US5000910A (en) Method of manufacturing intermetallic compound
JP3419582B2 (en) Method for producing high-strength aluminum-based composite material
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPS5931838A (en) Production of dispersion reinforced copper alloy material having heat resistance and electrical conductivity
JPH07258702A (en) Aluminum alloy reinforced by dispersing intermetallic compound, its powder and its production
JPH083660A (en) Member having al-base intermetallic compound-reinforced composite part and its production
JP3252481B2 (en) Tungsten alloy having fine crystal grains and method for producing the same
JPH07188701A (en) Al3ti dispersion strengthened aluminum alloy, its powder, and their production
JPH0688153A (en) Production of sintered titanium alloy
JPH07331356A (en) 3aluminum-iron dispersed reinforced aluminum alloy and powder and production thereof
JPH07305124A (en) Oxide dispersion reinforced al alloy and its production
JPH0892603A (en) Intermetallic compound-dispersed al alloy and its powder and their production
JPH03166329A (en) Oxide dispersion reinforced cu-zr alloy and its manufacture
JPH05214477A (en) Composite material and its manufacture