JPH0725857B2 - Continuous bulk polymerization of impact-resistant styrenic resin - Google Patents

Continuous bulk polymerization of impact-resistant styrenic resin

Info

Publication number
JPH0725857B2
JPH0725857B2 JP61180763A JP18076386A JPH0725857B2 JP H0725857 B2 JPH0725857 B2 JP H0725857B2 JP 61180763 A JP61180763 A JP 61180763A JP 18076386 A JP18076386 A JP 18076386A JP H0725857 B2 JPH0725857 B2 JP H0725857B2
Authority
JP
Japan
Prior art keywords
line
polymerization
initial polymerization
initial
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61180763A
Other languages
Japanese (ja)
Other versions
JPS6337110A (en
Inventor
昌 榎本
毅 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP61180763A priority Critical patent/JPH0725857B2/en
Priority to EP87110640A priority patent/EP0254304B1/en
Priority to DE3750561T priority patent/DE3750561T2/en
Publication of JPS6337110A publication Critical patent/JPS6337110A/en
Priority to US07/209,958 priority patent/US4952627A/en
Publication of JPH0725857B2 publication Critical patent/JPH0725857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐衝撃性スチレン系樹脂の連続塊状重合法に
関し、さらに詳しくは樹脂中のグラフト化されたゴム質
重合体の粒子径が均一であり、かつ強度、光沢の優れた
耐衝撃性スチレン系樹脂の連続塊状重合法に関するもの
である。
TECHNICAL FIELD The present invention relates to a continuous bulk polymerization method for impact-resistant styrenic resin, and more specifically, it has a uniform particle size of the grafted rubbery polymer in the resin. In addition, the present invention relates to a continuous bulk polymerization method of an impact resistant styrene resin having excellent strength and gloss.

〔従来の技術〕[Conventional technology]

ゴム質重合体の存在下でスチレン系単量体をグラフト重
合させ、耐衝撃性スチレン系樹脂を製造するにああり、
グラフト重合中、ゴム質重合体の分散による微粒子化と
マトリックス樹脂中でのゴム微粒子の安定化をいかにコ
ントロールするかが、得られる樹脂の品質を決定する上
で特に重要であり、最終の樹脂のゴム粒子径、その分布
及びグラフト比率等が、衝撃強度と光沢に、大きく影響
を与える。
In producing impact-resistant styrene-based resin by graft-polymerizing styrene-based monomer in the presence of rubbery polymer,
During the graft polymerization, how to control the atomization by the dispersion of the rubbery polymer and the stabilization of the rubber particles in the matrix resin is particularly important in determining the quality of the resin to be obtained, and the final resin The rubber particle size, its distribution, and the graft ratio have a great influence on impact strength and gloss.

従来、耐衝撃性ポリスチレンの工業的な製造方法に関し
ては、回分式の塊状−懸濁重合法及び連続式塊状重合法
が、一般に採用されているが、その生産性と経済性から
連続法の優位性が認められ、連続式塊状重合法が主流に
なってきている。
Conventionally, as for the industrial production method of impact-resistant polystyrene, batch-type bulk-suspension polymerization method and continuous bulk-polymerization method are generally adopted, but the continuous method is superior because of its productivity and economy. The continuous bulk polymerization method is becoming the mainstream because of its excellent properties.

通常、連続塊状重合法においては、特開昭60−28407号
公報で提案されている様に、数個の攪拌式槽型反応器を
連ねて原料溶液を連続的に供給せしめて重合を進めてい
く製造方法が一般的である。
Usually, in the continuous bulk polymerization method, as proposed in JP-A-60-28407, several stirring tank type reactors are connected in series to continuously supply the raw material solution to proceed the polymerization. Some manufacturing methods are common.

さらに詳細には、初期重合段階でグラフト化ゴム質重合
体を分散微粒子化するにあたり、攪拌式槽型反応器内で
所定の剪断作用を施すことにより達成し、その後複数個
の攪拌式槽型反応器へ連続移送せしめ、重合を進行させ
ていく製造法が提案されている。
More specifically, it is achieved by subjecting the grafted rubbery polymer to fine particles dispersed in the initial polymerization stage by applying a predetermined shearing action in a stirred tank reactor, and then a plurality of stirred tank reactions. A production method has been proposed in which it is continuously transferred to a vessel and polymerization is allowed to proceed.

しかしながら、上記の槽型反応器を用いた連続塊状重合
法の場合には、攪拌機による動的混合に付随した欠点が
指摘されている。すなわち、重合が進につれて槽内重合
液の粘度が上昇し、攪拌を持続するに要する動力の増加
及び攪拌翼の強度設計上から槽内でのスチレン系単量体
の重合転化一端部の上昇が制限されること、又、過分な
攪拌混合を行なう為に一旦分散微粒子化されたグラフト
化ゴム質重合体に過分な剪断力が加わり、その為分散ゴ
ム微粒子の破壊が起り、ゴム粒子径の分布が広くなった
りして、結果的には、製品強度の低下を来すことが多
い。又、攪拌式槽型反応器を使用する限り構造上過分な
容積を有するため、例えばゴム微粒子径の異なる製品を
作り分けるにあたて、異製品銘柄への切替えに要する時
間的な劣性も、見逃すことの出来ない欠点でもある。そ
のために、攪拌式槽型反応器に関して攪拌羽根の構造に
よる影響、予備重合の実施、管状反応器あるいは塔型反
応器との組み合せ等の幾つかの改良が為されてきている
が、まだ十分ではない。
However, in the case of the continuous bulk polymerization method using the above-mentioned tank type reactor, the drawbacks associated with the dynamic mixing with a stirrer have been pointed out. That is, as the polymerization progresses, the viscosity of the polymerization liquid in the tank increases, the power required to continue stirring increases and the one end of the polymerization conversion of the styrene-based monomer in the tank increases due to the strength design of the stirring blade. In addition, due to excessive stirring and mixing, excessive shearing force is applied to the grafted rubbery polymer that has been made into dispersed fine particles, so that the dispersed rubber fine particles are broken and the rubber particle diameter distribution is increased. Often results in a decrease in product strength. Further, as long as the stirring tank reactor is used, it has an excessively large volume in terms of its structure. Therefore, for example, when different products having different rubber particle diameters are produced, the time inferiority required for switching to different product brands is It is also a drawback that cannot be overlooked. Therefore, some improvements such as the influence of the structure of stirring blades on the stirring tank reactor, the implementation of prepolymerization, and the combination with a tubular reactor or a tower reactor have been made, but they are still insufficient. Absent.

〔本発明が解決しようとする問題点〕[Problems to be Solved by the Present Invention]

本発明者らは、かかる現状を鑑み攪拌式槽型反応器をい
っさい使用しないで、内部に重合液混合用の静的混合用
構造部、例えばスタティックミキサーを備えた、管状反
応器での耐衝撃性スチレン系樹脂の連続的製法について
検討した。
In view of such a situation, the present inventors have not used any stirred tank reactor, and have a static mixing structure for mixing a polymerization liquid therein, for example, a shock resistance in a tubular reactor provided with a static mixer. The continuous production method of the functional styrene resin was examined.

従来、連続重合法でかかる管状反応器の利用について、
例えば、特開昭55−38893号公報では攪拌手段を備えた
初期重合槽と主重合を行なうための管状反応器からなる
プロセスが提案されているが、この場合にも槽内攪拌機
による動的混合に付随した欠点は解消されず、協力な攪
拌混合に起因する過分な剪断が加わってゴム粒子径の分
布が広くなり、しかもグラフト比率も向上せず、やはり
満足できるものではない。
Conventionally, regarding the use of such a tubular reactor in a continuous polymerization method,
For example, Japanese Patent Application Laid-Open No. 55-38893 proposes a process comprising an initial polymerization tank equipped with a stirring means and a tubular reactor for performing main polymerization. The disadvantages associated with (1) are not eliminated, excessive shear due to cooperative stirring and mixing is added, and the distribution of rubber particle diameters is widened, and the graft ratio is not improved either.

そこで、管状反応器を用いて重合を行ないゴム質重合体
を分散微粒子化させる方法に関して発明者らが検討した
結果、以下のような事とが明らかとなった。即ち、ゴム
質重合体の分散を起こすためには、重合の初期において
適度な剪断が必要であり、その為に混合を付与するため
のミキサーの存在が不可欠である。ところが、管状反応
器内の静的混合用構造部、例えば、スタティックミキサ
ーによる混合の度合は、反応器内での重合液の線速度に
よって決まり、それは流量と管径に依存するため、十分
な混合を行うには流速を著しく高める必要がある。しか
しながら管状反応器で流速を著しく高めることは、重合
が進むにつれ著しく粘性が増大し、管内の圧力損失が大
きくなるため技術的に限界があり、十分な剪断が得られ
ない。そこで通常の管状反応器の場合、その弱い剪断の
ため、例えば、ゴム質重合体の分散微粒子化は可能なも
のの、望ましい粒子径が得られなかったり、初期重合時
に析出したグラフト化されたゴム質重合体が反応器内の
壁に付着したりすることが多い。特に付着したグラフト
化されたゴム質重合体が成長して樹脂中に混入すると、
フィッシュアイとして製品の外観上でのトラブルの原因
となり問題である。
Then, as a result of the inventors' investigation on a method of polymerizing the rubbery polymer into fine particles by using a tubular reactor, the following things have been clarified. That is, in order to cause the dispersion of the rubber-like polymer, proper shearing is necessary at the initial stage of the polymerization, and therefore the presence of a mixer for providing mixing is indispensable. However, the degree of mixing by a static mixing structure in the tubular reactor, for example, a static mixer, is determined by the linear velocity of the polymerization liquid in the reactor, which depends on the flow rate and the pipe diameter, and therefore sufficient mixing is achieved. In order to perform, it is necessary to significantly increase the flow rate. However, increasing the flow rate significantly in the tubular reactor is technically limited because the viscosity increases remarkably as the polymerization proceeds and the pressure loss in the tube increases, and sufficient shearing cannot be obtained. Therefore, in the case of an ordinary tubular reactor, due to its weak shearing, for example, although it is possible to disperse the rubbery polymer into fine particles, the desired particle size cannot be obtained, or the grafted rubbery substance precipitated during the initial polymerization is obtained. Polymers often adhere to the walls inside the reactor. Especially when the adhered grafted rubbery polymer grows and mixes into the resin,
This is a problem that causes problems in the appearance of the product as fish eyes.

こうした問題点を解決すべく、ゴム質重合体の分散微粒
子化を行なわしめる初期重合の段階において、初期重合
液の一部乃至大部分を還流させ、供給原料溶液と連続的
に合流させ、次いで管状反応器により初期重合と同時に
混合させる方法につき検討したところ、還流比を高くし
て長時間かけて循環混合させればゴム粒子径およびその
分布を改善することはある程度可能であるが、ゴム含有
量が多くなるほどゴム粒子の微細化、均一化が困難とな
り、強度、光沢に優れる耐衝撃性スチレン系樹脂が得に
くくなるという欠点があった。
In order to solve these problems, at the stage of the initial polymerization in which the rubber-like polymer is dispersed into fine particles, a part or most of the initial polymerization liquid is refluxed, continuously joined with the feedstock solution, and then tubular. When the method of mixing simultaneously with the initial polymerization in a reactor was examined, it was possible to improve the rubber particle size and its distribution to some extent by increasing the reflux ratio and circulating mixing for a long time. As the amount increases, it becomes difficult to make the rubber particles finer and more uniform, and it is difficult to obtain an impact-resistant styrene resin having excellent strength and gloss.

〔問題点を解決するための手段〕[Means for solving problems]

この様な状況に鑑み、本発明者らは、鋭意検討した結
果、スタティックミキサー等の如き、静的混合用構造器
を内部に有する管状反応器を用いて連続的に塊状重合を
行いその初期重合液の一部乃至大部分を還流させて供給
原料と連続的に合流させ、次いで管状反応器により初期
重合させると同時に混合させると共に、初期重合ライン
と還流ラインとからなる循環ラインの任意の位置、好ま
しくは合流後の初期重合ライン内に動的インラインミキ
サーを組み込み、これにより更に混合させると、該供給
原料溶液および初期重合液中のグラフト化されたゴム質
重合体が容易に微粒子化して均一に分散すると共にグラ
フト比率が向上し、グラフト化されたゴム質重合体の粒
子径が均一で強度、光沢の優れた耐衝撃性スチレン系樹
脂が容易に得られることを見い出し、本発明を完成する
に至った。
In view of such a situation, as a result of intensive studies, the present inventors have conducted a bulk polymerization continuously using a tubular reactor having a structure for static mixing therein such as a static mixer, and the initial polymerization thereof. A part or most of the liquid is refluxed so as to be continuously merged with the feedstock, and then at the same time with initial polymerization by a tubular reactor and simultaneously mixed, at any position of a circulation line consisting of an initial polymerization line and a reflux line, Preferably, when a dynamic in-line mixer is incorporated in the initial polymerization line after merging and further mixing is carried out by this, the grafted rubbery polymer in the feed solution and the initial polymerization solution is easily made into fine particles to be uniform. Along with dispersion, the graft ratio is improved, and the impact-resistant styrenic resin having a uniform particle size and excellent strength and gloss of the grafted rubbery polymer can be easily obtained. Found the door, which resulted in the completion of the present invention.

すなわち、本発明は、内部に静的混合用構造部を有する
管状反応器を組み込んでなる、初期重合ラインと、これ
から続き内部に静的混合用構造部を有する管状反応器を
組み込んでなる主重合ラインと、初期重合ラインと主重
合ラインとの間から分枝して初期重合ライン入り口に戻
る還流ラインとを有する重合ラインを用い、ゴム質重合
体の存在下にスチン系単量体をグラフト重合させる連続
塊状重合法であって、かつ初期重合時において初期重合
液の一部乃至大部分を、還流ラインを通して還流させて
供給原料と連続的に合流させ、次いで管状反応器により
初期重合と同時に混合させると共に、初期重合ラインと
還流ラインとからなる循環ライン内に動的インラインミ
キサーを組み込み、これにより更に混合させることを特
徴とする耐衝撃性スチレン系樹脂の連続塊状重合法を提
供するものである。
That is, the present invention relates to an initial polymerization line that incorporates a tubular reactor having a static mixing structure inside, and a main polymerization that incorporates a tubular reactor having a static mixing structure inside subsequently. Using a polymerization line having a line and a reflux line branching from between the initial polymerization line and the main polymerization line and returning to the entrance of the initial polymerization line, the stin-based monomer is graft-polymerized in the presence of the rubbery polymer. In the continuous bulk polymerization method, at the time of initial polymerization, a part or most of the initial polymerization liquid is refluxed through a reflux line to continuously combine with the feedstock, and then mixed with the initial polymerization in a tubular reactor at the same time. Impact resistance characterized by incorporating a dynamic in-line mixer in the circulation line consisting of the initial polymerization line and the reflux line, and further mixing And it provides a continuous bulk polymerization process styrene-based resin.

本発明で用いるゴム質重合体として代表的なものを例示
すれば、ポリブタジエン・ゴム、スチレン・ブタジエン
共重合ゴム、スチレン・ブタジエン・スチエンブロック
共重合ゴム、エチレン・プロピレンターポリマー系ゴ
ム、ブタジエン・アクリロニトリル共重合ゴム、ブチル
ゴム、アクリル系ゴム、スチレン・イソブチレン・ブタ
ジエン共重合ゴム、またはイソプレン・アクリル酸エス
テル系共重合ゴムをはじめとするイソプレンもしくはク
ロロプレンの如き共役1,3−ジエン系単量体を用いて得
られるゴムなどがあるが、これらは1種あるいは2種以
上の組合せで用いられる。
Typical examples of the rubbery polymer used in the present invention are polybutadiene / rubber, styrene / butadiene copolymer rubber, styrene / butadiene / styrene block copolymer rubber, ethylene / propylene terpolymer rubber, butadiene / butadiene rubber. Conjugated 1,3-diene-based monomers such as isoprene or chloroprene, including acrylonitrile copolymer rubber, butyl rubber, acrylic rubber, styrene / isobutylene / butadiene copolymer rubber, or isoprene / acrylic ester copolymer rubber. There are rubbers obtained by using these, and these are used alone or in combination of two or more.

本発明で用いるスチレン系単量体とは、スチレン、α−
メチルスチレン、およびベンゼン核の水素原子がハロゲ
ン原子はC1〜C4なるアルキル基で置換されたスチレン誘
導体などを総称するものであり、かかるスチレン系単量
体として代表的なものを例示すれば、スチレン、o−ク
ロルスチレン、p−クロルスチレン、p−メチルスチレ
ン、2,4−ジメチルスチレンまたはt−ブチルスチレン
などである。
The styrene-based monomer used in the present invention includes styrene and α-
Methylstyrene, and benzene nucleus hydrogen atom is a generic name for styrene derivatives in which a halogen atom is substituted with an alkyl group of C 1 to C 4 , and a typical example of such a styrene-based monomer is , Styrene, o-chlorostyrene, p-chlorostyrene, p-methylstyrene, 2,4-dimethylstyrene or t-butylstyrene.

また、本発明においてスチレン系単量体と共重合可能な
他の単量体(以下、「他の単量体」と略す)をスチレン
系単量体と併用しても良いが、このような単量体として
例えば、アクリロニトリル、アクリル酸及びメタクリル
酸とそれらのアルキルエステル、無水マレイン酸、各種
マレイミド等がある。
In the present invention, another monomer copolymerizable with the styrene-based monomer (hereinafter abbreviated as “other monomer”) may be used in combination with the styrene-based monomer. Examples of the monomer include acrylonitrile, acrylic acid and methacrylic acid and their alkyl esters, maleic anhydride, and various maleimides.

本発明は塊状重合を採用しているが、重合液の粘性の調
整等のために適量の溶剤の使用も可能であり、その溶剤
としてはトルエン、エチルベンゼン、キシレン等であ
る。溶剤の使用量は、ゴム質重合体とスチレン系単量体
と他の単量体からなる樹脂成分100重量部に対して通常2
0重量部を越えない範囲である。
Although the present invention employs bulk polymerization, it is possible to use an appropriate amount of a solvent for adjusting the viscosity of the polymerization solution, and the solvent is toluene, ethylbenzene, xylene or the like. The amount of the solvent used is usually 2 with respect to 100 parts by weight of the resin component composed of the rubbery polymer, the styrene-based monomer and the other monomer.
The amount does not exceed 0 part by weight.

本発明で供給原料として用いる重合液には、必要ならば
重合開始剤として分解した際にフリーラジカルを放出す
る公知の有機過酸化物、例えばベンゾイルパーオキサイ
ド、ジ−t−ブチルパーオキサイド、ジクミルパーオキ
サイド等を使用するともできる。さらに必要に応じて、
可塑性、酸化防止剤、連鎖移動剤などの公知の添加剤を
併用しても良い。
In the polymerization liquid used as a feed material in the present invention, a known organic peroxide that releases a free radical when decomposed as a polymerization initiator if necessary, for example, benzoyl peroxide, di-t-butyl peroxide, dicumyl. A peroxide or the like can also be used. If necessary,
You may use together well-known additives, such as plasticity, an antioxidant, and a chain transfer agent.

本発明で用いる管状反応器としては、内部に静的混合用
構造部を有する公知の管状反応器がいずれも使用できる
が、なかでも多数のミキシングエレメント等からなる静
的混合構造部を有する管状反応器、例えばズルツァー式
スタティックミキサー、ケニックス式スタティックミキ
サー、東レ式スタティックミキサー等が好ましい。
As the tubular reactor used in the present invention, any known tubular reactor having a static mixing structure inside can be used, but among them, a tubular reaction having a static mixing structure consisting of a large number of mixing elements and the like. A vessel such as a Sulzer type static mixer, a Kenix type static mixer, a Toray type static mixer or the like is preferable.

本発明で用いる管状反応器の数として、例えば上記の如
きスタティックミキサーの場合、スタティックミキサー
の長さ、ミキシングエレメントの数等により異なり、特
に限定されないが、ミキシングエレメントを通常5個以
上、好ましくは10〜40個有するスタティックミキサーを
通常4〜15個、好ましくは6〜10個組み合せて用いる。
The number of tubular reactors used in the present invention, for example, in the case of the static mixer as described above, varies depending on the length of the static mixer, the number of mixing elements, etc. and is not particularly limited, but usually 5 or more mixing elements, preferably 10 Normally, 4 to 15, preferably 6 to 10, static mixers having -40 are used in combination.

本発明で用いる動的インラインミキサーとしては、管錠
のハウジング部と該ハウジング部内で強制するための動
的混合用構造部、例えばプロペラ式、タービン式、アン
カー式等の攪拌翼とこれを支えるためのシャフト部とか
らなる公知の動的インラインミキサーがいずれも使用で
きる。尚、ハウジング内壁と攪拌翼とのクリアランスは
通常0.1〜2mmの範囲であるが、なかでも0.2〜1mmの範囲
のものが好ましい。
As the dynamic in-line mixer used in the present invention, a housing part of a lock and a dynamic mixing structure part for forcing in the housing part, for example, a propeller type, turbine type, anchor type stirring blade and the like for supporting the stirring blade Any known dynamic in-line mixer consisting of the shaft part of The clearance between the inner wall of the housing and the stirring blade is usually in the range of 0.1 to 2 mm, but preferably in the range of 0.2 to 1 mm.

本発明で用いる動的インラインミキサーの具体的例とし
ては、佐竹化学工業社式特殊アンカー型ミキサー、ケミ
ニャー(Chemineer)社式アングル型ミキサー、グリー
コ(Greerco)社式パイプラインミキサー、栗本鉄工所
社式ニーダー型ミキサー等が好ましい。
Specific examples of the dynamic in-line mixer used in the present invention include special anchor type mixers of Satake Chemical Industry Co., Ltd., angle mixers of Chemineer type, pipeline mixers of Greerco type, and Kurimoto Iron Works type. A kneader type mixer or the like is preferable.

本発明で用いる重合装置は、原料供給部と、該原料供給
部から続き内部に静的混合用構造部を有する管錠反応器
を組み込んでなる初期重合ラインと、初期重合ラインか
ら続き内部に静的混合用構造部を有する管状反応器を組
み込んでなる主重合ラインと、初期重合ラインと主重合
ラインとの間から分岐して初期重合ライン入り口に戻る
環流ラインとを有するものであり、しかも初期重合ライ
ンと還流ラインとを組み合せてなる循環ライン内の任意
の位置、好ましくは原料溶液と合流後の初期重合ライン
内に動的インラインミキサーを組み込んでなるもの等が
挙げられる。
The polymerization apparatus used in the present invention comprises a raw material supply unit, an initial polymerization line which is continuous with the raw material supply unit and incorporates a tube-locking reactor having a static mixing structure inside, and a static polymerization system which continues from the initial polymerization line. A main polymerization line incorporating a tubular reactor having a structure for dynamic mixing, and a reflux line branched from between the initial polymerization line and the main polymerization line to return to the initial polymerization line inlet, and the initial stage Examples include a dynamic in-line mixer incorporated at an arbitrary position in a circulation line formed by combining a polymerization line and a reflux line, preferably in an initial polymerization line after joining with a raw material solution.

尚、原料供給部と初期重合ラインとの間には移送ポンプ
を有することが好ましい。
A transfer pump is preferably provided between the raw material supply section and the initial polymerization line.

ここで原料供給部から循環ライン中に供給される原料溶
液は、前記ゴム質重合体とスチレン系単量体と、更に必
要に応じて加えられる他の単量体、溶剤、重合開始剤、
その他の公知の添加剤等とを含有してなる。
Here, the raw material solution supplied from the raw material supply section into the circulation line is the rubbery polymer and the styrene-based monomer, and further other monomers added as necessary, a solvent, a polymerization initiator,
Other known additives and the like are contained.

ここで用いるゴム質重合体の使用割合としては、ゴム質
重合体とスチレン系単量体と他の単量体とからなる樹脂
成分100重量%中のゴム質重合体の含有率(a重量%)
が3〜15重量%の範囲となる割合が、循環ライン内での
重合液の粘度上昇が少なく、粒子径のコントロールが容
易で、耐衝撃性に優れるゴム変性スチレン系樹脂が得ら
れる点で好ましい。
The proportion of the rubbery polymer used here is the content of the rubbery polymer in 100% by weight of the resin component composed of the rubbery polymer, the styrene monomer and the other monomer (a% by weight). )
Is preferably in the range of 3 to 15% by weight, because the viscosity of the polymerization liquid in the circulation line does not increase so much, the particle size can be easily controlled, and a rubber-modified styrene resin having excellent impact resistance can be obtained. .

原料供給部から供給された原料溶液は、循環ライン内を
循環してくる初期重合液と連続的に合流して混合され、
動的インラインミキサーで適度な剪断を受けつつ循環し
ながら、管状反応器内で通常110〜140℃の反応温度で初
期重合されると共に、更に混合、分散される。
The raw material solution supplied from the raw material supply section is continuously merged and mixed with the initial polymerization liquid circulating in the circulation line,
While being circulated while being appropriately sheared by a dynamic in-line mixer, initial polymerization is usually carried out at a reaction temperature of 110 to 140 ° C. in a tubular reactor, and further mixed and dispersed.

この時、該循環ラインに設置した管状反応器は、適切な
剪断力を受けながら循環する重合体溶液と新たに供給さ
れる原料溶液を混合する上で極めて有効である。また動
的インラインミキサーは、巨大粒子を発生させることな
くゴム質重合体を均一分散させる上で極めて有効であ
り、その粒子径を短時間で制御することができる。
At this time, the tubular reactor installed in the circulation line is extremely effective in mixing the circulating polymer solution with a newly supplied raw material solution while receiving an appropriate shearing force. Further, the dynamic in-line mixer is extremely effective in uniformly dispersing the rubber-like polymer without generating giant particles, and the particle diameter can be controlled in a short time.

即ち、前記管状反応器内で適度な剪断下のもとで、循環
するゴム質重合体溶液と新たに供給される原料溶液を混
合せしめると共に、動的インラインミキサーにて巨大粒
子を発生させることなく瞬時的に微細なゴム粒子を形成
せしめる方法であり、管状反応器と動的インラインイキ
サーとを組合せることにより、本発明の効果が有益に達
成される。又、ゴム粒子径をコントロールする場合の該
動的インラインミキサーの回転数制御は極めて有力な効
果をもたらす。
That is, under appropriate shearing in the tubular reactor, the circulating rubbery polymer solution and the raw material solution to be newly supplied are mixed, and without causing generation of giant particles by a dynamic in-line mixer. It is a method of instantaneously forming fine rubber particles, and the effects of the present invention are beneficially achieved by combining a tubular reactor and a dynamic in-line mixer. In addition, controlling the rotational speed of the dynamic in-line mixer when controlling the rubber particle size brings about a very powerful effect.

循環ラインでの重合液の還流比(R)、循環ラインに還
流される初期重合液の流量をF1l/時間とし、循環ライ
ンに供給される原料溶液の流量をF2l/時間とした場
合、通常R=F1/F2=1〜20の範囲であり、なかでも還
流が安定に行えて、壁ポリの発生がなく、しかも均一な
粒径のゴム重合体の微粒子が得られる点でR=1.5〜10
の範囲が好ましい。
The reflux ratio (R) of the polymerization solution in the circulation line, the flow rate of the initial polymerization solution refluxed in the circulation line was F 1 l / hour, and the flow rate of the raw material solution supplied in the circulation line was F 2 l / hour. In this case, the range of R = F 1 / F 2 = 1 to 20 is usually satisfied. Above all, the reflux can be stably carried out, wall poly is not generated, and fine particles of a rubber polymer having a uniform particle size can be obtained. And R = 1.5-10
Is preferred.

また、循環ラインでの初期重合の程度としては、循環ラ
イン出口、すなわち主重合ライン入口でのスチレン系単
量体と必要により加えられる他の単量体とからなる単量
体成分の重合転化率(b重量%)が、前記ゴム室重合体
の含有率(a重量%)との関係において、通常、b=0.
9a〜5a、なかでもb=1.5a〜3aとなる範囲が好ましく、
これらの範囲ではゴム質重合相の微粒子化、均一分散化
が容易であるため、平均粒子径0.3〜6.0μm、好ましく
は0.6〜3.0μmのゴム質重合体が均一に分散したゴム変
性スチレン系樹脂が得られる。
The degree of initial polymerization in the circulation line is the polymerization conversion rate of the monomer component consisting of the styrene-based monomer at the exit of the circulation line, that is, the main polymerization line inlet and other monomer added as necessary. (B weight%) is usually b = 0. 0 in relation to the content (a weight%) of the rubber chamber polymer.
9a to 5a, and preferably b = 1.5a to 3a,
Within these ranges, it is easy to make the rubbery polymer phase into fine particles and to disperse it uniformly. Therefore, a rubber-modified styrene resin in which a rubbery polymer having an average particle diameter of 0.3 to 6.0 μm, preferably 0.6 to 3.0 μm is uniformly dispersed. Is obtained.

この様にして得られた初期重合液は、その一部乃至大部
分を還流させて再度原料溶液に合流させるが、残余は主
重合ラインに供給され、通常130〜170℃の反応温度でス
チレン系単量体と必要に応じて加えられる他の単量体と
からなる単量体成分の重合転化率が通常70〜90重量%と
なるまで重合され、次いで例えば脱揮槽にて減圧下に未
反応単量体および溶剤を除去した後、ペレット化して耐
衝撃性スチン系樹脂とする。
The initial polymerization liquid thus obtained is partially or mostly refluxed to join the raw material solution again, but the rest is supplied to the main polymerization line and is usually styrene-based at a reaction temperature of 130 to 170 ° C. It is polymerized until the polymerization conversion rate of the monomer component consisting of the monomer and other monomer added as necessary is usually 70 to 90% by weight, and then, for example, in a devolatilization tank under reduced pressure. After removing the reaction monomer and the solvent, pelletizing is performed to obtain an impact resistant stin resin.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、特定の条件下で、静的混合用構
造部を有する管錠反応器と動的インラインミキサーを組
合せてなる管状式連続塊状重合により、グラフト化され
たゴム質重合体が容易に短時間で微粒子化すると共にグ
ラフト比率も向上し、ゴム粒子径の均一な強度、光沢の
優れた耐衝撃性スチレン系樹脂を製造することが出来
る。
According to the method of the present invention, a rubbery polymer grafted by a tubular continuous bulk polymerization obtained by combining a tubular tablet reactor having a structure for static mixing and a dynamic in-line mixer under specific conditions. However, it is possible to easily produce fine particles in a short time, improve the graft ratio, and produce an impact-resistant styrene-based resin having a uniform strength of rubber particles and an excellent gloss.

本発明は、攪拌式槽型反応器を用いた連続塊状重合プロ
セスに比べて短時間で任意の平均粒子径、ゴム含量及び
/またはゴムの種類の異なる製品へ切替えることがで
き、低コスト生産の要求に答えるべく工業的利用価値を
多大に供給する連続塊状重合方法である。
INDUSTRIAL APPLICABILITY The present invention can switch to products having different average particle diameters, rubber contents and / or different kinds of rubber in a short time as compared with a continuous bulk polymerization process using a stirred tank reactor, resulting in low cost production. It is a continuous bulk polymerization method that supplies a great deal of industrial utility value to meet the demand.

〔実施例〕〔Example〕

以下に実施例および比較例を示して本発明を更に具体的
に説明する。尚、例中の部および%はすべて重量基準で
あり、例中の各種物性の測定は以下の様に行った。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. All parts and% in the examples are based on weight, and various physical properties in the examples were measured as follows.

(1)ゴム質重合体含有率 赤外分光光度計により赤外吸収を求め、その吸収の強さ
をあらかじめ作成しておいた検量線と比較して求める。
(1) Rubbery polymer content The infrared absorption is determined by an infrared spectrophotometer, and the intensity of the absorption is compared with a calibration curve prepared in advance.

(2)アイゾット衝撃値 JIS K−6871に準拠した。(2) Izod impact value Based on JIS K-6871.

(3)表面光沢 JIS Z−8741に準拠した。(3) Surface gloss Based on JIS Z-8471.

(4)グラフト比率 1gの樹脂をメチルエチルケトン/アセトン=1/1(重量
比)の混合溶媒50mlに加えて1時間激しく震盪し、溶解
させ膨潤させる。次に遠心分離機にて不溶分を沈降させ
た後、デカンテーションで上澄液を捨てる。このように
して得られたメチルエチルケトン/アセトン不溶分を減
圧下、50℃で乾燥させ、デシケーター中で冷却後、秤量
し、次式によりグラフト比率を算出する。
(4) A resin having a graft ratio of 1 g is added to 50 ml of a mixed solvent of methyl ethyl ketone / acetone = 1/1 (weight ratio) and vigorously shaken for 1 hour to dissolve and swell. Next, after insoluble matter is settled by a centrifuge, the supernatant is discarded by decantation. The methyl ethyl ketone / acetone insoluble matter thus obtained is dried under reduced pressure at 50 ° C., cooled in a desiccator, weighed, and the graft ratio is calculated by the following formula.

(5)樹脂中のゴム質重合体の平均粒子径およびその分
布 ジメチルホルムアミドとチオシアン酸アンモニウムから
なる電解液を使用し、コールターカウンター(コールタ
ー社製TA−II型)にり、重量平均と数平均の50%メジア
ン径を求め、これらをそれぞれ重量平均粒子径と数平均
粒子径とし、その比を粒子の分布とした。その比の値が
小さい程、粒子径の分布は狭いことを示す。
(5) Average particle size of rubbery polymer in resin and its distribution A weight average and number average are obtained by using a Coulter counter (TA-II type manufactured by Coulter, Inc.) using an electrolytic solution composed of dimethylformamide and ammonium thiocyanate. The 50% median diameter was calculated, and these were defined as the weight average particle diameter and the number average particle diameter, respectively, and the ratio was defined as the particle distribution. The smaller the value of the ratio, the narrower the particle size distribution.

実施例1 本実施例では、内径2インチ、長さ1mの管錠反応器(ノ
リタケ社製ケニックス式スタティックミキサー N10
型、ミキシングエレメントを12個内蔵する)を4基直列
に連結し、その間に動的インラインミキサー(米国グリ
ーコ社製、6枚タービン、クリアランス0.5mm)を設置
した初期重合ラインとこれから続く主重合ラインとから
なる重合領域、および初期重合液の一部乃至大部分を還
流させるための還流ラインを有する連続重合装置を用い
た。
Example 1 In this example, a tube lock reactor having an inner diameter of 2 inches and a length of 1 m (Kenix type static mixer N10 manufactured by Noritake Co., Ltd.)
Type, 12 built-in mixing elements) were connected in series, and an initial polymerization line with a dynamic in-line mixer (6 turbines, Gleaco, USA, clearance 0.5 mm) installed between them and the main polymerization line that follows A continuous polymerization apparatus having a polymerization region consisting of and a reflux line for refluxing a part or most of the initial polymerization liquid was used.

初期重合ラインは、ギヤポンプによって送られてきた原
料溶液を循環ラインに供給するための原料供給部と、こ
れに続く直列に4基連結した管錠反応器(I)〜(IV)
〔ただし、原料供給部に近い方から順に(I),(I
I),(III),(IV)とする〕と、管錠反応器(II)と
(III)の間に直列に組み込まれた動的インラインミキ
サーとからなる。
The initial polymerization line is a raw material supply part for supplying the raw material solution sent by the gear pump to the circulation line, and subsequent four tube lock reactors (I) to (IV) connected in series.
[However, (I), (I
I), (III), and (IV)], and a dynamic in-line mixer installed in series between the tube lock reactors (II) and (III).

還流ラインは管錠反応器(IV)の出口部と管状反応器
(I)の入口部を結ぶラインからなり、ライン中には還
流用ギヤポンプが備えてある。(尚、初期重合ラインと
還流ラインとを合わせて循環ラインと言う) 主重合ラインは、上記循環ライン中の管状反応器(IV)
の出口に続く直列に4基連結した管状反応器(V)〜
(VIII)〔ただし、管状反応器(IV)に近い方から順に
(V),(VI),(VII),(VIII)とする〕からなっ
ており、管状反応器(VIII)の出口は、更に熱交換器、
脱揮槽、押出機等からなる後処理領域に続いている。
The reflux line consists of a line connecting the outlet of the tube-lock reactor (IV) and the inlet of the tubular reactor (I), and a reflux gear pump is provided in the line. (In addition, the initial polymerization line and the reflux line are collectively called a circulation line.) The main polymerization line is a tubular reactor (IV) in the circulation line.
Of four tubular reactors (V) connected in series following the outlet of
(VIII) [however, (V), (VI), (VII), and (VIII) in order from the side closer to the tubular reactor (IV)], and the outlet of the tubular reactor (VIII) is Further heat exchanger,
It continues to the post-treatment area consisting of the devolatilization tank and extruder.

ポリブタジエン〔旭化成工業(株)製ジエンNF35A〕6
部およびスチレン94部からなるポリブタジエン含有率a
=6%の原料溶液を調整し、以下の条件で連続的に塊状
重合せしめた。
Polybutadiene [Asahi Kasei Co., Ltd. diene NF35A] 6
Content of polybutadiene consisting of 100 parts of styrene and 94 parts of styrene a
= 6% raw material solution was prepared, and bulk polymerization was continuously performed under the following conditions.

循環ラインに還流される流量(F1) :25l/時間 (還流ラインの流量) 循環ラインに供給される原料溶液の流量(F2):5l/時間
還流比(R=F1/F2) :5 循環ラインでの反応温度 :130℃ 管状反応器(IV)の出口における :24% 単量体成分の重合転化率(b) 主重合ラインでの反応温度 :155℃ 動的インラインミキサーの回転数 :700rpm 得られた重合液を熱交換器で230℃まえ加熱し、50mmHg
の感圧下で揮発性成分を除去した後、押出機により溶融
し、混練し、ペレット化して本発明の耐衝撃性スチレン
系樹脂を得、次いで各種物性の測定を行った。測定結果
を表−1に示す。
Flow rate returned to circulation line (F 1 ): 25l / hour (flow rate of reflux line) Flow rate of raw material solution supplied to circulation line (F 2 ): 5l / hour Reflux ratio (R = F 1 / F 2 ) : 5 Reaction temperature in circulation line: 130 ℃ At the outlet of tubular reactor (IV): 24% Polymerization conversion rate of monomer component (b) Reaction temperature in main polymerization line: 155 ℃ Rotation of dynamic in-line mixer Number: 700 rpm The obtained polymerization solution is heated to 230 ° C in a heat exchanger and heated to 50 mmHg.
After removing the volatile components under the pressure sensitive condition of No. 1, the resin was melted by an extruder, kneaded, and pelletized to obtain an impact-resistant styrene resin of the present invention, and then various physical properties were measured. The measurement results are shown in Table-1.

実施例2 循環ラインでの還流比(R)を7に、動的インラインミ
キサーの回転数を1500Rrpmに、それぞれ変更した以外は
実施例1と同様にして、本発明の耐衝撃性スチレン系樹
脂を得、次いで同様に各種物性の測定を行った。結果を
表−1に示す。
Example 2 The impact resistant styrene resin of the present invention was prepared in the same manner as in Example 1 except that the reflux ratio (R) in the circulation line was changed to 7 and the rotation speed of the dynamic in-line mixer was changed to 1500 Rrpm. After being obtained, various physical properties were similarly measured. The results are shown in Table-1.

実施例3 ポリブタジエン12部、スチレン88部およびエチルベンゼ
ン5部からなる原料溶液を用い、循環ラインでの還流比
(R)を8に、動的インラインミキサーの回転数を1800
rpmに、それぞえ変更した以外は実施例1と同様にし
て、本発明の耐衝撃性スチレン系樹脂を得、次いで同様
にして各種物性を測定した。結果を表−1に示す。
Example 3 Using a raw material solution consisting of 12 parts of polybutadiene, 88 parts of styrene and 5 parts of ethylbenzene, the reflux ratio (R) in the circulation line was set to 8, and the rotation speed of the dynamic in-line mixer was set to 1800.
The impact-resistant styrene-based resin of the present invention was obtained in the same manner as in Example 1 except that the rpm was changed, and various physical properties were measured in the same manner. The results are shown in Table-1.

実施例4 循環ラインでの還流比(R)を8に、単量体成分の重合
転化率(b)を18%となるように反応温度を127℃に、
それぞれ変更した以外は実施例3と同様にして本発明を
耐衝撃性スチレン系樹脂を得、次いで同様に各種物性の
測定を行った。結果を表−1に示す。
Example 4 The reflux ratio (R) in the circulation line was 8, the reaction temperature was 127 ° C. so that the polymerization conversion rate (b) of the monomer component was 18%,
An impact-resistant styrenic resin of the present invention was obtained in the same manner as in Example 3 except that the respective properties were changed, and then various physical properties were similarly measured. The results are shown in Table-1.

比較例1 ヘリカル型の攪拌翼を備えた完全混合式で20lの槽型反
応器2基、熱交換器、脱揮槽から成る連続反応装置を用
いて重合反応を行なった。第1の槽型反応器に実施例1
と同じ組成の原料溶液を攪拌下に連続的に5l/時間で供
給して130℃で初期重合させると共に、該反応器の底部
から初期重合液を連続的に5l/時間で抜き出し、第2の
槽型反応器に供給し、引き続き第2の槽型反応器にて15
5℃で重合を行った以外は実施例1と同様にして比較対
照用の耐衝撃性スチレン系樹脂を得、次いで、同様にし
て各種物性の測定を行った。結果を表−1に示す。
Comparative Example 1 The polymerization reaction was carried out using a continuous reaction apparatus comprising two 20-liter tank type reactors equipped with helical stirring blades, a heat exchanger, and a devolatilization tank. Example 1 in the first tank reactor
A raw material solution having the same composition as the above was continuously supplied at 5 l / hour with stirring to carry out initial polymerization at 130 ° C., and the initial polymerization solution was continuously withdrawn at 5 l / hour from the bottom of the reactor, It is supplied to the tank-type reactor, and then the second tank-type reactor is used for 15
An impact-resistant styrene-based resin for comparison was obtained in the same manner as in Example 1 except that the polymerization was carried out at 5 ° C., and then various physical properties were measured in the same manner. The results are shown in Table-1.

比較例2 循環ラインの代わりに比較例1で使用した第1の槽型反
応器を用いて初期重合を行った以外は実施例1と同様に
して比較対照用の耐衝撃性スチレン系樹脂を得、次いで
同様にして各種物性の測定を行った。結果を表−1に示
す。
Comparative Example 2 An impact-resistant styrene-based resin for comparison was obtained in the same manner as in Example 1 except that initial polymerization was carried out using the first tank reactor used in Comparative Example 1 instead of the circulation line. Then, various physical properties were measured in the same manner. The results are shown in Table-1.

比較例3 動的インラインミキサーを停止させた以外は実施例4と
同様にして比較対照用の耐衝撃性スチレン系樹脂を得、
次いで同様にして各種物性の測定を行った。結果を表−
1に示す。
Comparative Example 3 An impact-resistant styrenic resin for comparison was obtained in the same manner as in Example 4 except that the dynamic inline mixer was stopped.
Then, various physical properties were measured in the same manner. Table of results
Shown in 1.

比較例4 静的混合用構造部が内蔵されていない管状反応器を使用
した以外は実施例1と同様にして、比較対照用の耐衝撃
性スチレン系樹脂を得、次いで同様に各種物性の測定を
行った。結果を表−1に示す。
Comparative Example 4 An impact-resistant styrene-based resin for comparison was obtained in the same manner as in Example 1 except that a tubular reactor having no built-in static mixing structure was used, and then various physical properties were similarly measured. I went. The results are shown in Table-1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原料供給部と、該原料供給部から続き内部
に静的混合用構造部を有する管状反応器を組み込んでな
る初期重合ラインと、初期重合ラインから続き内部に静
的混合用構造部を有する管状反応器を組み込んでなる主
重合ラインと、初期重合ラインと主重合ラインとの間か
ら分技して初期重合ライン入り口に戻る還流ラインとを
有する重合装置を用い、ゴム質重合体の存在下にスチレ
ン系単量体をグラフト重合させる連続塊状重合法であっ
て、かつ初期重合時において初期重合液の一部乃至大部
分を、還流ラインを通して還流させて供給原料と連続的
に合流させ、次いで管状反応器により初期重合と同時に
混合させると共に、初期重合ラインと還流ラインとから
なる循環ライン内に動的インラインミキサーを組み込
み、これにより更に混合させることを特徴とする耐衝撃
性スチレン系樹脂の連続塊状重合法。
1. An initial polymerization line incorporating a raw material supply part, a tubular reactor having a static mixing structure part inside from the raw material supply part, and a static mixing structure inside from the initial polymerization line. Using a polymerization device having a main polymerization line incorporating a tubular reactor having a portion and a reflux line that divides between the initial polymerization line and the main polymerization line and returns to the entrance of the initial polymerization line. Is a continuous bulk polymerization method in which a styrene-based monomer is graft-polymerized in the presence of, and at the time of initial polymerization, a part or most of the initial polymerization liquid is refluxed through a reflux line to continuously join the feedstock. And then mixing at the same time as the initial polymerization by the tubular reactor, and incorporating a dynamic in-line mixer in the circulation line consisting of the initial polymerization line and the reflux line, Continuous bulk polymerization of high impact styrene resin which comprises bringing together.
JP61180763A 1986-07-25 1986-07-31 Continuous bulk polymerization of impact-resistant styrenic resin Expired - Fee Related JPH0725857B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61180763A JPH0725857B2 (en) 1986-07-31 1986-07-31 Continuous bulk polymerization of impact-resistant styrenic resin
EP87110640A EP0254304B1 (en) 1986-07-25 1987-07-22 Process for producing high impact styrene resin by continuous bulk polymerization
DE3750561T DE3750561T2 (en) 1986-07-25 1987-07-22 Process for the production of impact-resistant polystyrene resins by continuous bulk polymerization.
US07/209,958 US4952627A (en) 1986-07-25 1988-06-22 Process for producing high impact styrene resin by continuous bulk polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180763A JPH0725857B2 (en) 1986-07-31 1986-07-31 Continuous bulk polymerization of impact-resistant styrenic resin

Publications (2)

Publication Number Publication Date
JPS6337110A JPS6337110A (en) 1988-02-17
JPH0725857B2 true JPH0725857B2 (en) 1995-03-22

Family

ID=16088896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180763A Expired - Fee Related JPH0725857B2 (en) 1986-07-25 1986-07-31 Continuous bulk polymerization of impact-resistant styrenic resin

Country Status (1)

Country Link
JP (1) JPH0725857B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1314260B1 (en) * 1999-12-03 2002-12-06 Enichem Spa PROCEDURE FOR THE PRODUCTION OF VINYLAROMATIC POLYMERS EVENTUALLY CONTAINING AN ETHYLENICALLY UNSATURATED NITRILE.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658946A (en) * 1968-05-11 1972-04-25 Basf Ag Production of rubber-modified vinylaromatic polymers
US3660535A (en) * 1970-09-23 1972-05-02 Dow Chemical Co Process for the production of alkenyl aromatic polymers containing a reinforcing polymer therein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658946A (en) * 1968-05-11 1972-04-25 Basf Ag Production of rubber-modified vinylaromatic polymers
US3660535A (en) * 1970-09-23 1972-05-02 Dow Chemical Co Process for the production of alkenyl aromatic polymers containing a reinforcing polymer therein

Also Published As

Publication number Publication date
JPS6337110A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
US4952627A (en) Process for producing high impact styrene resin by continuous bulk polymerization
JP2971351B2 (en) Multi-stage bulk process for production of ABS graft copolymer with controlled grafting, phase inversion and crosslinking
EP0015752B1 (en) A continuous mass polymerization process for the production of polyblends having a dispersed rubber phase with bimodal rubber particle size
JP3447378B2 (en) Granulation equipment
US4530973A (en) Transparent impact resistant polymeric compositions and process for the preparation thereof
US5256732A (en) Method for the continuous bulk polymerization for impact resistant styrene resin
JPH037708A (en) Production of rubber-modified styrene resin
KR0177164B1 (en) Process for preparing rubber modified styrene resins
EP0202706B1 (en) Process for the preparation of a thermoplastic polymer
JPH08208940A (en) Rubber-modified styrene resin composition
JPH0725857B2 (en) Continuous bulk polymerization of impact-resistant styrenic resin
JPH0725856B2 (en) Continuous bulk polymerization of rubber-modified styrenic resin
JPS63113009A (en) Production of rubber modified styrenic resin
JP3207207B2 (en) Method for producing rubber-reinforced styrenic resin
KR930001698B1 (en) Continuous process for preparing rubber modified high impact resins
US5747593A (en) Process for producing rubber-modified styrene resin
JP3600325B2 (en) Method for producing rubber-reinforced styrenic resin
JPH04366116A (en) Preparation of rubber-modified styrene-based resin
JP3236056B2 (en) Method for producing rubber-modified styrenic resin
JP3045347B2 (en) Method for producing rubber-modified styrenic resin
EP0444704A2 (en) Process for preparing rubber-modified styrene resins
JPH1160648A (en) Continuous preparation of rubber-modified styrenic resin
JP3087361B2 (en) Continuous bulk polymerization of impact-resistant styrenic resins
US5189095A (en) High-impact polystyrene
JP3365854B2 (en) Impact resistant styrenic resin composition and continuous production method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees