JPH07256419A - Method for controlling molten steel surface level in continuous casting for duplex layer steel plate - Google Patents

Method for controlling molten steel surface level in continuous casting for duplex layer steel plate

Info

Publication number
JPH07256419A
JPH07256419A JP5013594A JP5013594A JPH07256419A JP H07256419 A JPH07256419 A JP H07256419A JP 5013594 A JP5013594 A JP 5013594A JP 5013594 A JP5013594 A JP 5013594A JP H07256419 A JPH07256419 A JP H07256419A
Authority
JP
Japan
Prior art keywords
molten steel
molten
ratio
pouring
pouring amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5013594A
Other languages
Japanese (ja)
Other versions
JP2771946B2 (en
Inventor
Keihachiro Tanaka
中 啓 八 郎 田
Masayuki Araki
木 誠 之 荒
Takashi Sato
藤 孝 佐
Eiichi Takeuchi
内 栄 一 竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5013594A priority Critical patent/JP2771946B2/en
Publication of JPH07256419A publication Critical patent/JPH07256419A/en
Application granted granted Critical
Publication of JP2771946B2 publication Critical patent/JP2771946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To stably execute the pouring of molten steel into a mold by calculating the molten steel pouring rates from the molten steel surface level in the mold and casting velocities and calculating the molten steel head of each of molten steel storing vessels and adjusting the opening degrees of opening adjust means. CONSTITUTION:The different kinds of molten steels 1, 6 are dividedly poured into one mold 4 from each of two molten steel storing vessels 2, 7 independently divided in the inner part of a tundish through each of the opening adjust means and pouring nozzles 3, 8, respectively. The molten steel pouring rates are calculated from the molten steel surface level in the mold and the casting velocity. The molten steel head is calculated from the molten steel heads in the molten steel storing vessels 2, 7 and the molten steel surface level in the mold. A first pouring rate correcting factor ratio 35 is calculated by using the pouring rates 33, heads 34 and the opening degrees of the adjust means. A second pouring rate correcting factor ratio 36 is calculated by using the reducing velocities of the molten steel heads in the storing vessels 2, 7. Sum of the opening degrees 38 in the opening adjust means for keeping the molten steel surface level in the mold to an aimed value is calculated by using each of the calculated values. Prescribed opening degrees 39 are set by using the sum of opening degrees and the aimed pouring ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異種溶鋼から直接に複
層鋼板を連続鋳造する際の湯面レベル制御方法に関し、
特に、一つのタンディッシュ内部を二つの独立した溶鋼
貯留槽に区分けした溶鋼貯留槽の異種溶鋼から直接、複
層鋼板を連続鋳造する際の湯面レベル制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a level control method for continuously casting a multi-layer steel sheet directly from different kinds of molten steel,
In particular, the present invention relates to a molten metal level control method for continuously casting a multilayer steel sheet directly from different molten steel in a molten steel storage tank in which one tundish is divided into two independent molten steel storage tanks.

【0002】[0002]

【従来の技術】複層鋼板の連続鋳造設備の操業において
は、二つのタンディッシュに貯留された異種溶鋼を各別
の注湯ノズルを用いて鋳型内部に注ぎ分け、目標湯面レ
ベルや鋳造速度の設定値変更に応じて、表層および内層
用溶鋼の注湯ノズルからの注湯量の目標注湯量に対する
変動を最小にして、ブレークアウト等の操業事故の発生
を未然に防止すると共に、表面欠陥の発生を低減させ、
表層と内層の界面が明瞭な表面性状の優れた高品質の複
層鋼板を得るための湯面レベル制御が行われている。
2. Description of the Related Art In the operation of a continuous casting facility for multi-layer steel sheets, different molten steel stored in two tundishes is poured into the mold by using different pouring nozzles, and the target molten metal level and casting speed are set. Depending on the change of the set value of, the fluctuation of the pouring amount of the molten steel for the surface layer and the inner layer from the pouring nozzle is minimized to prevent the occurrence of operational accidents such as breakout and to prevent surface defects. Reduce the occurrence of
Level control is performed to obtain high-quality multi-layer steel sheets with excellent surface properties in which the interface between the surface layer and the inner layer is clear.

【0003】この湯面レベル制御は一般的に、両者のタ
ンディッシュの注湯羽口にストッパー等の開度調節手段
と該タンディッシュ内の溶鋼重量を測定して検出するロ
ードセル、及び鋳型内部の湯面レベルを測定して検出す
るレベル計を設け、さらに、ロードセルによるタンディ
ッシュ内溶鋼重量の検出精度と注湯量制御に対する要求
制御精度より、ロードセルによる検出溶鋼重量を用いた
注湯量計算所定時間を予め決定して定めておき、該所定
時間内でのロードセルによる検出重量減少量と目標重量
減少量との偏差、及びレベル計による検出湯面レベルと
目標湯面レベルとの偏差が解消するように、前記開度調
節手段を動作させ、鋳型への溶鋼注湯量を調整する手順
にて行われている。
This level control of the molten metal level is generally performed by adjusting the opening degree such as a stopper at the pouring tuyere of both tundishes, the load cell for measuring and detecting the molten steel weight in the tundish, and the inside of the mold. A level meter that measures and detects the molten metal level is provided.Furthermore, based on the detection accuracy of the molten steel weight in the tundish by the load cell and the required control accuracy for the pouring amount control, the pouring amount calculation time using the molten steel weight detected by the load cell It is determined and determined in advance so that the deviation between the weight reduction amount detected by the load cell and the target weight reduction amount within the predetermined time, and the deviation between the molten metal level detected by the level meter and the target molten metal level are eliminated. The procedure for operating the opening adjusting means to adjust the molten steel pouring amount into the mold is performed.

【0004】[0004]

【発明が解決しようとする課題】ところが、前述した様
な複層鋼板の連続鋳造方法は、設備を建設するためのコ
ストと複層鋼板を製造するコストとが高価なものになる
という欠点を有する。この方法に対して、最近、一つの
タンディッシュ内部を二つの独立した溶鋼貯留槽に区分
けし、各溶鋼貯留槽に貯留された溶鋼を各別の注湯ノズ
ルを用いて鋳型内部に注ぎ分け、目標湯面レベルや鋳造
速度の設定値変更に応じて、表層および内層用溶鋼の注
湯ノズルからの注湯量の目標注湯量に対する変動を最小
にして、ブレークアウト等の操業事故の発生を未然に防
止すると共に、表面欠陥の発生を低減させ、表層と内層
の界面が明瞭な表面性状の優れた高品質の複層鋼板を得
るための湯面レベル制御技術の開発が望まれている。し
かし、未だ応答性よく制御の安定性が高い湯面レベル制
御技術は確立されるに至っていない。
However, the continuous casting method for a multilayer steel sheet as described above has a drawback that the cost for constructing equipment and the cost for manufacturing the multilayer steel sheet are high. . In contrast to this method, recently, the inside of one tundish was divided into two independent molten steel storage tanks, and the molten steel stored in each molten steel storage tank was poured into the mold using separate pouring nozzles, In response to changes in the target melt level and casting speed settings, fluctuations in the amount of molten metal from the surface and inner layer molten steel pouring nozzles to the target amount of molten metal are minimized to prevent operational accidents such as breakouts. It is desired to develop a molten metal level control technique for preventing the occurrence of surface defects and reducing the occurrence of surface defects, and obtaining a high-quality multi-layer steel sheet having an excellent surface property with a clear interface between the surface layer and the inner layer. However, the level control technology of the molten metal surface has not yet been established, which has high responsiveness and high control stability.

【0005】さらに、前記注湯ノズルの内部には溶鋼の
通流に伴う溶損、及び局部的な凝固金属の付着が生じて
おり、この溶損の進行度合い、及び凝固金属の付着態様
の相違により、両者の注湯ノズルの流量特性が異なり、
しかもこれらが系時的に変化するため、両者の注湯ノズ
ルからの注湯量の均等化を図ることは、非常に困難であ
った。
Further, inside the pouring nozzle, melting loss due to the flow of molten steel and local adhesion of solidified metal occur, and the degree of progress of this melting loss and the mode of adhesion of solidified metal differ. Depending on the flow rate characteristics of the two pouring nozzles,
Moreover, since these change with time, it was very difficult to equalize the amount of molten metal poured from both of the molten metal nozzles.

【0006】従って本発明は、表層用および内層用のそ
れぞれの注湯ノズルからの注湯量の、目標注湯量に対す
る変動の最小化を図りつつ注湯量比を調節し、これらの
注湯ノズルにて注湯される鋳型内部において、適正な湯
面レベルを維持することを目的とする。
Therefore, the present invention adjusts the pouring amount ratio while minimizing the fluctuation of the pouring amount from each of the surface layer pouring nozzle and the inner layer pouring nozzle with respect to the target pouring amount. The purpose is to maintain an appropriate level of molten metal inside the casting mold.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、一つのタンディッシュの内部の独立した2
つの溶鋼貯留槽のそれぞれより開度調節手段および注湯
ノズルを介して異種溶鋼を1つの鋳型の内部に注ぎ分
け、溶鋼から直接に複層鋼板を連続鋳造するにおいて、
鋳型内部の湯面レベルと鋳造速度より溶鋼注湯量を算出
し、溶鋼貯留槽それぞれの溶鋼高さと鋳型内部の湯面レ
ベルより、溶鋼貯留槽それぞれの溶鋼ヘッドを算出し、
算出した溶鋼注湯量および溶鋼ヘッド、ならびに、前記
開度調節手段の開度を用いて、表層,内層用溶鋼の第1
注湯量補正係数比を算出し、取鍋から前記溶鋼貯留槽の
どちらにも溶鋼が注湯されていない場合、溶鋼貯留槽そ
れぞれの溶鋼高さ減少速度を用いて、表層,内層用溶鋼
の第2注湯量補正係数比を算出し、第1注湯量補正係数
比の時系列平均値を、第2注湯量補正係数比に漸近させ
る補正係数を算出し、表層,内層用溶鋼の目標注湯量
比,第1注湯量補正係数比,前記補正係数、及び、溶鋼
貯留槽それぞれの溶鋼ヘッドの比を用いて、表層,内層
用溶鋼の目標注湯量比補正計算式モデルにより、目標注
湯量比を補正して更新し、鋳型内部の湯面レベルを目標
湯面レベルに維持するための開度調節手段の開度和を算
出し、該開度和および目標注湯量比を用いて、開度調節
手段それぞれの所要開度を算出して設定する、ことを特
徴とする。
In order to solve the above problems, the present invention provides two independent inside tundish.
In each of the two molten steel storage tanks, the different molten steel is poured into the inside of one mold through the opening adjusting means and the pouring nozzle, and in the continuous casting of the multilayer steel sheet directly from the molten steel,
Calculate the molten steel pouring amount from the molten metal level inside the mold and the casting speed, calculate the molten steel head of each molten steel storage tank from the molten steel height of each molten steel storage tank and the molten metal level inside the mold,
Using the calculated molten steel pouring amount, the molten steel head, and the opening degree of the opening degree adjusting means, the first of the molten steels for the surface layer and the inner layer is obtained.
When the molten metal correction coefficient ratio is calculated and molten steel is not poured from the ladle to either of the molten steel storage tanks, the molten steel height decreasing rate of each molten steel storage tank is used to determine the 2 Calculate the pouring amount correction coefficient ratio, calculate the correction coefficient that makes the time-series average of the first pouring amount correction coefficient ratio asymptotic to the second pouring amount correction coefficient ratio, and calculate the target pouring amount ratio for the surface and inner layer molten steels. , The first pouring amount correction coefficient ratio, the correction coefficient, and the ratio of the molten steel heads of the molten steel storage tanks are used to correct the target pouring amount ratio by the target pouring amount ratio correction calculation model for the surface and inner layers Then, the sum of the opening degrees of the opening degree adjusting means for maintaining the molten metal level inside the mold at the target molten metal level is calculated, and the opening degree adjusting means is calculated using the sum of the opening degrees and the target pouring amount ratio. It is characterized in that each required opening is calculated and set.

【0008】1つの具体的な実施態様で本発明は、一つ
のタンディッシュ内部を二つの独立した溶鋼貯留槽に区
分けし、該両者の溶鋼貯留槽より異種溶鋼を各別の注湯
ノズルを用いて鋳型内部に注ぎ分け、前記両者の溶鋼貯
留槽の注湯羽口にストッパー等の開度調節手段と、前記
両者の溶鋼貯留槽内部の溶鋼高さを測定して検出する各
別のレベル計、及び鋳型内部の湯面レベルを測定して検
出するレベル計を設け、さらに鋳型内部に注湯された異
種溶鋼の混合抑制のため直流磁界を作用させ、溶鋼から
直接、表層,内層の界面が明瞭で表面性状の優れた複層
鋼板を連続鋳造するにおいて、 1) 目標湯面レベルや鋳造速度の設定値変更に基づい
て決定される、表層厚を一定とする表層,内層用溶鋼の
目標注湯量比計算式モデルにより、表層,内層用溶鋼の
目標注湯量比を算出し、 2) 鋳型内部の湯面レベルと鋳造速度を測定して検出
した検出湯面レベルと検出鋳造速度より、鋳型内部へ注
湯される溶鋼注湯量推定計算式モデルにより、鋳型内部
へ注湯される溶鋼注湯量を推定し、 3) 前記両者の溶鋼貯留槽内部の溶鋼高さを測定して
検出した溶鋼貯留槽内部の検出溶鋼高さと前記鋳型内部
の検出湯面レベルより、前記両者の溶鋼貯留槽内部の溶
鋼ヘッドを推定し、 4) 前記鋳型内部へ注湯される溶鋼注湯量の推定値,
前記両者の溶鋼貯留槽内部の溶鋼ヘッドの推定値、及
び、表層,内層用ストッパーの開度を用いて、指数重み
付き最小2乗同定逐次型アルゴリズムを応用した表層,
内層用溶鋼の注湯量補正係数推定計算式モデルにより、
表層,内層用溶鋼の注湯量補正係数を推定して注湯量補
正係数比を算出し、 5) 前記溶鋼貯留槽内部の溶鋼高さを測定して検出す
るレベル計の検出精度と注湯量制御に対する要求制御精
度より、溶鋼貯留槽内部の検出溶鋼高さを用いた注湯量
計算所定時間を予め決定して定めておき、前記両者の溶
鋼貯留槽内部の検出溶鋼高さの今回値を含む過去4点の
時系列データの変動より、取鍋から前記両者の溶鋼貯留
槽への溶鋼の注湯状況を判定し、 5-1) 取鍋から前記両者の溶鋼貯留槽のどちらにも溶鋼
が注湯されていない場合、 前記表層,内層用溶鋼の注湯量補正係数比の推定
値,前記両者の溶鋼貯留槽内部の検出溶鋼高さ,表層,
内層用ストッパーの開度比、及び、前記両者の溶鋼貯留
槽内部の推定溶鋼ヘッドの比等の鋳造データの前記所定
時間内の時系列データの更新処理を行い、 前記所定時間内の前記両者の溶鋼貯留槽内部の検出
溶鋼高さの減少量を用いて、表層,内層用溶鋼の注湯量
補正係数比計算式モデルにより、前記所定時間内での実
際の表層,内層用溶鋼の注湯量補正係数比を算出し、 適応アルゴリズムを応用して、前記表層,内層用溶
鋼の注湯量補正係数比の推定値の前記所定時間内での平
均値を、前記表層,内層用溶鋼の実際の注湯量補正係数
比に漸近させるような補正係数を算出し、 5-2) 取鍋から前記両者の溶鋼貯留槽のどちらかに溶鋼
が注湯されている場合前記表層,内層用溶鋼の注湯量補
正係数比の推定値,前記両者の溶鋼貯留槽内部の検出溶
鋼高さ,表層,内層用ストッパーの開度比、及び、前記
溶鋼貯留槽内部の推定溶鋼ヘッドの比等の鋳造データの
前記所定時間内の時系列データを初期化し、 6) 前記表層,内層用溶鋼の目標注湯量比,前記表
層,内層用溶鋼の注湯量補正係数比の推定値,前記注湯
量補正係数比の推定値を補正する補正係数、及び、前記
両者の溶鋼貯留槽内部の推定溶鋼ヘッドの比を用いて、
表層,内層用溶鋼の目標注湯量比補正計算式モデルによ
り、前記表層,内層用溶鋼の目標注湯量比を補正して、
今回の注湯量制御のための目標注湯量比を決定し、 7) 前記鋳型内部の検出湯面レベルを目標湯面レベル
に維持する表層,内層用ストッパー等の開度調節手段の
設定開度和を比例および積分制御アルゴリズムを適用し
て算出して決定し、 8) 前記表層,内層用溶鋼の今回の注湯量制御のため
の目標注湯量比,前記表層,内層用ストッパー等の開度
調節手段の設定開度和を用いて、表層,内層用ストッパ
ー等の開度調節手段の設定開度計算式モデルにより、表
層,内層用ストッパー等の開度調節手段の設定開度を算
出して決定して実行する、ことを特徴とする。
In one specific embodiment, the present invention divides the inside of one tundish into two independent molten steel storage tanks, and uses different molten steel from each of the molten steel storage tanks using different pouring nozzles. And leveling means for adjusting the opening degree such as a stopper at the pouring tuyere of the molten steel storage tanks of both of the above, and each level meter for detecting by detecting the molten steel height inside the molten steel storage tanks of the both , And a level meter that measures and detects the molten metal level inside the mold, and a direct current magnetic field is applied to suppress the mixing of the different molten steel poured inside the mold, and the interface between the surface layer and the inner layer is directly applied from the molten steel. In continuous casting of multi-layered steel sheets with clear and excellent surface properties, 1) Target injection of molten steel for surface layer and inner layer with constant surface layer thickness, which is determined based on the target molten metal level and casting speed setting change. With the hot water ratio calculation formula model, Calculate the target pouring amount ratio of the layered molten steel, and 2) Estimate the pouring amount of molten steel to be poured into the mold from the detected molten metal surface level and the detected casting speed that are detected by measuring the molten metal surface level inside the mold and the casting speed. The amount of molten steel poured into the mold is estimated by a calculation model, and 3) the detected molten steel height inside the molten steel storage tank and the inside of the mold, which are detected by measuring the molten steel height inside the molten steel storage tanks of the both. The molten steel heads inside the molten steel storage tanks of the both are estimated from the detected molten metal surface level, and 4) the estimated value of the molten steel pouring amount poured into the mold,
A surface layer applying an exponentially weighted least squares identification recursive algorithm using the estimated values of the molten steel heads in the molten steel storage tanks of the both and the opening degrees of the stoppers for the surface layer and the inner layer,
Based on the calculation formula model for estimating the pouring amount correction coefficient for molten steel for the inner layer,
Estimate the pouring amount correction coefficient of the molten steel for the surface layer and the inner layer and calculate the pouring amount correction coefficient ratio. 5) For the detection accuracy of the level meter and the pouring amount control for measuring and detecting the molten steel height inside the molten steel storage tank Based on the required control accuracy, the predetermined amount of time for pouring molten metal is calculated by using the detected molten steel height inside the molten steel storage tank. The molten steel pouring condition from the ladle to the molten steel storage tanks of the both is judged from the fluctuation of the time series data of the points, and 5-1) Molten steel is poured from the ladle to both of the molten steel storage tanks. If not, the estimated value of the pouring amount correction coefficient ratio of the molten steel for the surface layer and the inner layer, the detected molten steel height in the molten steel storage tanks of the both, the surface layer,
The opening ratio of the stopper for the inner layer, and update processing of the time-series data within the predetermined time of the casting data such as the ratio of the estimated molten steel head inside the molten steel storage tank of the both, and the both within the predetermined time Using the reduction amount of the detected molten steel height in the molten steel storage tank, the molten metal pouring amount correction coefficient for the surface layer and the inner layer is calculated by the ratio calculation model, and the actual molten metal pouring amount correction coefficient for the surface layer and the inner layer within the specified time is calculated. The ratio is calculated and the adaptive algorithm is applied to calculate the average pouring amount correction coefficient of the molten steel for the surface layer and the inner layer within the predetermined time, and the actual pouring amount correction for the surface layer and the inner layer is corrected. 5-2) When a molten steel is being poured from the ladle into one of the molten steel storage tanks of the two, a correction coefficient is calculated so as to be asymptotic to the coefficient ratio. The estimated value of the 6) Initialize time series data of casting data such as height, surface layer, opening ratio of stoppers for inner layer, ratio of estimated molten steel head in the molten steel storage tank, etc. within the predetermined time, 6) Target molten metal pouring amount ratio, estimated value of pouring amount correction coefficient ratio of the surface layer and inner layer molten steel, correction coefficient for correcting estimated value of pouring amount correction coefficient ratio, and estimated molten steel inside the molten steel storage tanks of both Using the head ratio,
The target pouring amount ratio correction calculation model of the surface layer and inner layer molten steel is used to correct the target pouring amount ratio of the surface layer and inner layer molten steel.
The target pouring amount ratio for the current pouring amount control is determined, and 7) the sum of the set opening amounts of the opening adjusting means such as the surface layer and the inner layer stopper for maintaining the detected molten metal surface level inside the mold at the target molten metal level. Is calculated by applying a proportional and integral control algorithm, and 8) a target pouring amount ratio for controlling the pouring amount of the molten steel for the surface layer and the inner layer at this time, and opening degree adjusting means for the surface layer and the stopper for the inner layer. Using the sum of the set opening degrees of the above, the set opening degree of the opening adjustment means of the surface layer, the inner layer stopper, etc. is calculated and determined by the set opening degree calculation model of the opening degree adjustment means of the surface layer, the inner layer stopper, etc. It is characterized by being executed.

【0009】[0009]

【作用】図2は、本発明の一実施態様による制御処理手
順を図式化したものである。これは図1に示す連続鋳造
設備に実施する態様のものである。以下、主に図2に基
づいて本発明による制御処理を詳述する。なお、言及す
る連続鋳造設備要素には図1に示した符号を付す。
FIG. 2 is a schematic diagram of a control processing procedure according to an embodiment of the present invention. This is an embodiment to be carried out in the continuous casting equipment shown in FIG. The control process according to the present invention will be described in detail below mainly with reference to FIG. The continuous casting equipment elements to be referred to are designated by the reference numerals shown in FIG.

【0010】1) 目標湯面レベルや鋳造速度の設定値
変更に基づいて決定される表層厚を一定とする表層およ
び内層用溶鋼の目標注湯量比を算出する。
1) A target pouring amount ratio of the molten steel for the surface layer and the inner layer, which has a constant surface layer thickness determined on the basis of a change in the set value of the target molten metal level or casting speed, is calculated.

【0011】複層鋼板の連続鋳造において、表層用溶鋼
は鋳型4上部に注湯され、内層用溶鋼は鋳型下部、即ち
直流磁界の中心位置近傍に注湯される。表層用溶鋼は鋳
型内部の湯面レベル位置より凝固を開始し、内層用溶鋼
は直流磁界の中心位置近傍より凝固を開始して複層鋼板
を形成する。従って表層厚(mm)Dは、凝固時間(秒)をt
として通常用いるt1/2則より、 D=GK・((Yr−H0)/Vs)1/2 ・・・(1) で表せる。ここで、Gkは凝固速度係数(mm/秒1/2)、Yr
は目標湯面レベル(mm)、H0は直流磁界の中心位置(mm)
で、Vsは鋳造速度(mm/秒)の設定値である。複層鋼板の
板厚(mm)をW、板幅(mm)をLとすると複層鋼板の断面の
面積収支より表層厚を一定とする表層および内層用溶鋼
の目標注湯量(mm3/秒)QarおよびQbrを、 Qar=W・L・Vs−(W−2D)・(L−2D)・Vs, Qbr=(W−2D)・(L−2D)・Vs ・・・(2) で算出し、表層および内層用溶鋼の目標注湯量比βr、 βr=Qar/Qbr ・・・(3) を算出する。
In continuous casting of multi-layer steel sheets, the molten steel for the surface layer is poured onto the upper part of the mold 4, and the molten steel for the inner layer is poured onto the lower part of the mold, that is, near the center of the DC magnetic field. The molten steel for the surface layer starts solidification at the molten metal level position inside the mold, and the molten steel for the inner layer starts solidification near the center position of the DC magnetic field to form a multi-layer steel sheet. Therefore, the surface layer thickness (mm) D is t
Expressed in more normal use t 1/2 rule, D = GK · ((Yr -H0) / Vs) 1/2 ··· (1) as. Here, Gk coagulation rate coefficient (mm / sec 1/2), Yr
Is the target molten metal level (mm), H0 is the center position of the DC magnetic field (mm)
Here, Vs is a set value of the casting speed (mm / sec). Target thickness of molten steel for surface and inner layers (mm 3 / sec) where W is the thickness (mm) of the multi-layer steel sheet and L is the width (mm) of the cross-sectional area of the multi-layer steel sheet. ) Qar and Qbr are Qar = W.L.Vs- (W-2D). (L-2D) .Vs, Qbr = (W-2D). (L-2D) .Vs (2) Then, the target pouring amount ratio βr of the molten steel for the surface layer and the inner layer, βr = Qar / Qbr (3) is calculated.

【0012】2) 鋳型内部の湯面レベルと鋳造速度を
測定して、検出した検出湯面レベルと検出鋳造速度よ
り、鋳型内部へ注湯される溶鋼注湯量を推定する。図3
は、湯面レベルプロセスを表す模式図で、水平断面の内
空間面積がAMDの鋳型4を積分要素で近似し、レベル計
16を1次遅れ要素で近似する。鋳型内部へ注湯される
溶鋼注湯量Qinとピンチロール10による引き抜き鋼片
量(mm3/秒)Qout(=AMD・V)を入力、検出湯面レベ
ルYを出力とすると、湯面レベルプロセスの伝達関数G
は、 G(S)=〔Y(S)〕/〔Qin(S)−Qout(S)〕 =1/AMD・〔S(1+TS)〕 ・・・(4) で表される。ここで、Vは鋳造速度、AMDは鋳型の断面
積(mm2)、Tはレベル計16の時定数(秒)、Sはラプラ
ス変換演算子である。鋳型4へ注湯される溶鋼注湯量Q
inをステップ入力(dQin/dt=0)と仮定すると湯面
レベルプロセスの離散型状態方程式は、
2) The molten metal level inside the mold and the casting speed are measured, and the amount of molten steel poured into the mold is estimated from the detected molten metal level and the detected casting speed. Figure 3
Is a schematic diagram showing a molten metal level process, in which the mold 4 having an internal space area of horizontal cross section of AMD is approximated by an integral element, and the level meter 16 is approximated by a first-order lag element. When the molten steel pouring amount Qin poured into the mold and the amount of steel pieces drawn out by the pinch roll 10 (mm 3 / sec) Qout (= AMD ・ V) are input and the detected molten metal level Y is output, the molten metal level process Transfer function G of
Is expressed by G (S) = [Y (S)] / [Qin (S) −Qout (S)] = 1 / AMD. [S (1 + TS)] (4). Here, V is the casting speed, AMD is the cross-sectional area of the mold (mm 2 ), T is the time constant (seconds) of the level meter 16, and S is the Laplace transform operator. Molten steel pouring amount Q poured into mold 4
Assuming that in is a step input (dQin / dt = 0), the discrete equation of state of the surface level process is

【0013】[0013]

【数5】 [Equation 5]

【0014】とすると、 X(J+1)=A・X(J)+B・Qout(J), Y(J)=C・X(J) ・・・(6) で表される。ここで、Xは3次元の状態変数ベクトル
で、X1はレベル計16による鋳型内部の検出湯面レベ
ル、X2は鋳型内部の湯面レベル、X3は鋳型へ注湯され
る溶鋼注湯量Qinである。鋳型4へ注湯される溶鋼注湯
量Qinは、鋳型内部の湯面レベルと鋳造速度を測定して
検出した検出湯面レベルと検出鋳造速度より、 Qout(J)=AMD・V(J) ・・・(7) として、観測器を用いて状態変数X1,X2,X3を次の
状態変数ベクトル推定アルゴリズム 暫定値:X0(J+1)=A・X(J)+B・Qout(J), ただし、X(0)=0 最終値:X(J+1)=X0(J+1)+f(Y(J+1)ーC・X0(J+1)) ・・・(8) を用いて推定し、 Qin(J+1)=X3(J+1) ・・・
(9) より、鋳型4へ注湯される溶鋼注湯量Qinを推定す
る。ここで、fは観測器のゲインベクトルで、有限時間
制定観測器を用いる場合、
Then, X (J + 1) = A * X (J) + B * Qout (J), Y (J) = C * X (J) (6) Here, X is a three-dimensional state variable vector, X 1 is the molten metal level detected inside the mold by the level meter 16, X 2 is the molten metal level inside the mold, and X 3 is the molten steel pouring amount poured into the mold. It is Qin. The molten steel pouring amount Qin to be poured into the mold 4 is Qout (J) = AMD ・ V (J), based on the detected molten metal surface level detected by measuring the molten metal surface level inside the mold and the casting speed.・ As (7), the state variables X 1 , X 2 , and X 3 are calculated using the observer as the following state variable vector estimation algorithm Provisional value: X 0 (J + 1) = A × X (J) + B × Qout (J), where X (0) = 0 final value: X (J + 1) = X 0 (J + 1) + f (Y (J + 1) -C · X 0 (J + 1)) ・ ・・ Estimated using (8), Qin (J + 1) = X 3 (J + 1)
From (9), the molten steel pouring amount Qin to be poured into the mold 4 is estimated. Here, f is the gain vector of the observer, and when using the finite-time enactment observer,

【0015】[0015]

【数10】 [Equation 10]

【0016】で与えられる。またJは、湯面レベル制御
回数である。ここで、鋳型内部の湯面レベルを測定して
検出するレベル計16としては、放射線又は熱線を利用
するレベル計、渦流式,電磁式又は磁界式のレベル計、
マイクロ波を利用するレベル計、更には湯面の撮像によ
りレベル認識を行うレベル計等、種々の形式のものが実
用されているが、これらの内から検出精度および応答性
等を考慮して選定する。 3) 表層および内層用溶鋼の溶鋼貯留槽2,7の内部
の溶鋼高さを測定して、検出した溶鋼高さ(mm)laおよ
びlbと鋳型内部の検出湯面レベルYより、各溶鋼貯留
槽2,7の内部の溶鋼ヘッド(mm)haおよびhbを、 ha(J)=la(J)ーY(J), hb(J)=lb(J)ーY(J) ・・・(11) で推定する。ここで、溶鋼貯留槽2,7それぞれの内部
の溶鋼高さを検出するレベル計14,15としては、レ
ーザ光線を利用するレベル計、マイクロ波を利用するレ
ベル計、電極を用いたレベル計、渦流式のレベル計、更
には湯面の撮像によりレベル認識を行うレベル計等、種
々の形式のものが実用されているが、これらの内から検
出精度および応答性等を考慮して選定する。
Is given by J is the number of molten metal level control. Here, as the level meter 16 for measuring and detecting the level of the molten metal inside the mold, a level meter utilizing radiation or heat rays, a vortex type, an electromagnetic type or a magnetic field type level meter,
Various types of level meters, such as level meters that use microwaves and level recognition that is performed by imaging the surface of the molten metal, are in practical use, but of these, selection is made in consideration of detection accuracy and responsiveness. To do. 3) by measuring the inside of the molten steel height of molten steel reservoir 2,7 superficial and inner layer molten steel, from the detected molten steel height (mm) l a and l b and the mold internal detection molten metal surface level Y, each the inside of the molten steel head (mm) h a and h b of the molten steel reservoir 2,7, h a (J) = l a (J) over Y (J), h b ( J) = l b (J) over Estimate using Y (J) (11). Here, as the level meters 14 and 15 for detecting the molten steel height inside the molten steel storage tanks 2 and 7, respectively, a level meter using a laser beam, a level meter using microwaves, a level meter using electrodes, Various types of eddy current type level meters, and level meters for recognizing the level by imaging the surface of the molten metal are in practical use. Among them, selection is made in consideration of detection accuracy and responsiveness.

【0017】4) 鋳型内部へ注湯される溶鋼注湯量の
前記推定値,各溶鋼貯留槽内部の溶鋼ヘッドの前記推定
値、及び、表層および内層用ストッパーそれぞれの開度
を用いて、指数重み付き最小2乗同定逐次型アルゴリズ
ムを応用して、表層および内層用溶鋼の注湯量補正係数
を推定して、そして注湯量補正係数比を算出する。
4) Using the estimated value of the molten steel pouring amount poured into the mold, the estimated value of the molten steel head in each molten steel storage tank, and the opening degree of each of the surface layer and inner layer stoppers, an exponential weighting is performed. The least squares identification sequential algorithm is applied to estimate the pouring amount correction coefficient of the molten steel for the surface layer and the inner layer, and the pouring amount correction coefficient ratio is calculated.

【0018】各溶鋼貯留槽から各別の注湯ノズルを介し
て鋳型内部に注湯される表層および内層用溶鋼の単位時
間当たりの溶鋼注湯量QaおよびQbは、 Qa(J)=ka(J)・fa(J)・(2・g・ha(J))1/2 , Qb(J)=kb(J)・fb(J)・(2・g・hb(J))1/2 ・・・(12) で表される。ここで、kaは表層用溶鋼の注湯量補正係
数(−:無次元)、kbは内層用溶鋼の注湯量補正係数
(-)、faは表層用ストッパーの開度(mm)、fbは内層用
ストッパーの開度(mm)、gは重力加速度(mm/秒2)であ
る。表層および内層用溶鋼の注湯量補正係数kaおよび
bを推定するのに指数重み付き最小2乗同定逐次型ア
ルゴリズムを用いる。鋳型内部へ注湯される溶鋼注湯量
は、 Qin(J)=Qa(J)+Qb(J) =Ft(J)・X(J) ・・・(13) ただし、
The molten steel pouring amounts Q a and Q b per unit time of the molten steel for the surface layer and the inner layer which are poured into the mold from the molten steel storage tanks via the respective pouring nozzles are Q a (J) = k a (J) · f a (J) · (2 · g · h a (J)) 1/2, Q b (J) = k b (J) · f b (J) · (2 · g · h b (J)) is expressed by 1/2 (12). Here, k a is pouring amount correction coefficient of the surface layer for the molten steel (-: dimensionless), k b is pouring amount correction coefficient of the inner layer for the molten steel
(-), the f a of the surface layer for the stopper opening (mm), the f b of the inner stopper for opening (mm), g is the gravitational acceleration (mm / sec 2). An exponentially weighted least squares identification recursive algorithm is used to estimate the pouring amount correction coefficients k a and k b of the molten steel for the surface layer and the inner layer. The amount of molten steel poured into the mold is Q in (J) = Q a (J) + Q b (J) = Ft (J) · X (J) (13)

【0019】[0019]

【数14】 [Equation 14]

【0020】で、F及びXは2次元のベクトルである。
Fの推定値をθとすると鋳型内部へ注湯される溶鋼注湯
量に次の誤差を生じる。
Where F and X are two-dimensional vectors.
When the estimated value of F is θ, the following error occurs in the molten steel pouring amount poured into the mold.

【0021】[0021]

【数15】 [Equation 15]

【0022】この誤差について次の評価関数を定義す
る。
The following evaluation function is defined for this error.

【0023】[0023]

【数16】 [Equation 16]

【0024】ここで、ρは1より大きくはない正の重み
とする。ρが1より小さいときは古いデータへの重みを
へらす(過去を忘れる)ことになる。指数重み付き最小2
乗同定逐次型アルゴリズムを用いた係数ベクトルの推定
は、 θ0=任意(通常0と選ぶ), P0=γ・I(γは十分大きな正数、Iは(2×2)次元の単位行列) ・・・(17) として、
Here, ρ is a positive weight not larger than 1. When ρ is less than 1, the weight of old data is reduced (forgetting the past). Exponentially weighted minimum 2
For coefficient vector estimation using the multiplicative identification recursive algorithm, θ 0 = arbitrary (normally choose 0), P 0 = γ · I (γ is a sufficiently large positive number, I is a (2 × 2) -dimensional unit matrix ) ・ ・ ・ (17)

【0025】[0025]

【数18】 [Equation 18]

【0026】により、係数ベクトルθN、即ち表層およ
び内層用溶鋼の注湯量補正係数ka(N)およびkb(N)を推
定し、注湯量補正係数比(−)kM(N)を kM(N)=ka(N)/kb(N) ・・・(19) より算出する。
From the above, the coefficient vector θ N , that is, the pouring amount correction coefficients k a (N) and k b (N) of the molten steel for the surface layer and the inner layer is estimated, and the pouring amount correction coefficient ratio (−) k M (N) is calculated. It is calculated from k M (N) = k a (N) / k b (N) (19).

【0027】5) 各溶鋼貯留槽内部の溶鋼高さを測定
して検出するレベル計14,15の検出精度と注湯量制
御に対する要求制御精度より、溶鋼貯留槽内部の検出溶
鋼高さを用いた注湯量計算所定時間を予め決定して定め
ておき、各溶鋼貯留槽内部の検出溶鋼高さの今回値を含
む過去4点の時系列データの変動より、取鍋から溶鋼貯
留槽2,7への溶鋼の注湯状況を判定する。
5) Based on the detection accuracy of the level gauges 14 and 15 that measure and detect the molten steel height inside each molten steel storage tank and the required control accuracy for the pouring amount control, the detected molten steel height inside the molten steel storage tank was used. From the ladle to the molten steel storage tanks 2 and 7 based on the changes in the past four points including the current value of the detected molten steel height inside each molten steel storage tank Determine the molten steel pouring status.

【0028】溶鋼貯留槽2,7の検出溶鋼高さの今回
(J)、前回(J-1)、前前回(J-2)および前前前回(J-3)のデ
ータの差分データ Δla1=la(J)ーla(J-1), Δlb1=lb(J)ーlb(J-1), Δla2=la(J-1)ーla(J-2), Δlb2=lb(J-1)ーlb(J-2), Δla3=la(J-2)ーla(J-3), Δlb3=lb(J-2)ーlb(J-3), ・・・(20) を求め、 (20)式に示す全ての差分データが正の値を持つ場
合、取鍋から溶鋼貯留槽2,7のどちらにも溶鋼が注湯
されていないと判定し、 全ての差分データの内、一つでも負の値を持つ差分
データがある場合、取鍋から溶鋼貯留槽2,7のどちら
かに溶鋼が注湯されていると判定する。
This time of molten steel height detected in molten steel storage tanks 2 and 7
(J), the last (J-1), prior to the previous (J-2) and prefrontal previous difference data .DELTA.l data (J-3) a1 = l a (J) over l a (J-1), Δl b1 = l b (J) over l b (J-1), Δl a2 = l a (J-1) over l a (J-2), Δl b2 = l b (J-1) over l b (J -2), Δl a3 = l a (J-2) over l a (J-3), Δl b3 = l b (J-2) over l b (J-3), obtains a ... (20) , If all the difference data shown in Eq. (20) have a positive value, it is determined that molten steel has not been poured from the ladle to the molten steel storage tanks 2 and 7, and If there is even one difference data having a negative value, it is determined that molten steel is being poured from the ladle into one of the molten steel storage tanks 2 and 7.

【0029】5-1) 取鍋から溶鋼貯留槽2,7のどちら
にも溶鋼が注湯されていない場合は、 表層および内層用溶鋼の注湯量補正係数比の前記推
定値kM,溶鋼貯留槽2,7の検出溶鋼高さ,表層およ
び内層用各ストッパー12,13の開度比、及び、溶鋼
貯留槽2,7の推定溶鋼ヘッドの比等の鋳造データの、
前記所定時間内の時系列データの更新処理を行い、 取鍋から前記溶鋼貯留槽に溶鋼が注湯されていない
間は、溶鋼貯留槽2,7の溶鋼高さは、溶鋼貯留槽から
鋳型4へ注湯される溶鋼注湯量によつて減少する。従っ
て、表層および内層用溶鋼の実際の注湯量は、溶鋼貯留
槽2,7の溶鋼高さの減少量の関数として表せる。そこ
で、前記所定時間内での表層および内層用溶鋼貯留槽
2,7の検出溶鋼高さの減少量(mm)ΔlaおよびΔl
b(すなわち減少速度),表層および内層用各ストッパ
ー12,13の前記所定時間内での平均開度(mm)Fa
よびFb、及び、表層および内層用溶鋼貯留槽2,7の
内部の前記所定時間内での平均溶鋼ヘッド(mm)Haおよ
びHbを用いて、前記所定時間内での表層および内層用
溶鋼の実際の注湯量補正係数比KHを、
5-1) When molten steel is not poured into the molten steel storage tanks 2 and 7 from the ladle, the estimated value k M of the pouring amount correction coefficient ratio of the molten steel for the surface layer and the inner layer, the molten steel storage Casting data such as the detected molten steel height of the tanks 2 and 7, the opening ratios of the stoppers 12 and 13 for the surface and inner layers, and the estimated molten steel head ratio of the molten steel storage tanks 2 and 7,
While the molten steel is not being poured from the ladle into the molten steel storage tank, the molten steel height of the molten steel storage tanks 2 and 7 is determined from the molten steel storage tank to the mold 4 while the time series data is updated within the predetermined time. It decreases depending on the amount of molten steel poured into. Therefore, the actual pouring amount of the molten steel for the surface layer and the inner layer can be expressed as a function of the reduction amount of the molten steel height of the molten steel storage tanks 2, 7. Therefore, the decrease amount (mm) Δl a and Δl of the detected molten steel height in the molten steel storage tanks 2 and 7 for the surface layer and the inner layer within the predetermined time
b (i.e., decreasing speed), the average opening (mm) F a and F b within the predetermined time of the surface layer and the inner layer each stopper 12, 13, and the surface layer and the interior of the inner-layer molten steel reservoir 2,7 using the average molten steel head (mm) H a and H b within the predetermined time, the actual pouring amount correction coefficient ratio K H of the surface layer and the inner layer for the molten steel within the predetermined time,

【0030】[0030]

【数21】 [Equation 21]

【0031】で算出する。It is calculated by

【0032】 表層および内層用溶鋼の注湯量補正係
数比の前記推定値kMの、前記所定時間内の平均値K
Mと、表層および内層用溶鋼の前記実際の注湯量補正係
数比KHとは、計算式モデル誤差等により、一般的には
一致しない。そこで、前記表層・内層用溶鋼の注湯量補
正係数比の推定値kMを補正して、実際の注湯量補正係
数比KHに漸近させるような補正係数を適応アルゴリズ
ムを適用して算出する。前記補正係数をαとして、αに
よって補正された注湯量補正係数比の推定値kMHとして KMH(K+1)=α(K+1)・KM(K+1) ・・・(22) を考え、次の適応逐次型アルゴリズム 暫定値:KMH 0(K+1)=α(K)・KM(K+1), e0(K+1)=KH(K+1)ーKMH 0(K+1), ただし、α(0)=1.0 最終値:α(K+1)=α(K)+Rj ×{〔KH(K+1)ーKMH 0(K+1)〕/〔1+Rj・KM 2(K+1)〕 } ×KM(K+1) ・・・(23) より補正係数αを算出する。ここで、Rjは補正係数α
を同定するための適応ゲインで、正の大きな値を持つ。
またKは、補正係数αの同定回数である。
An average value K of the estimated value k M of the pouring amount correction coefficient ratio of the molten steel for the surface layer and the inner layer within the predetermined time
M and the actual pouring amount correction coefficient ratio K H of the molten steel for the surface layer and the inner layer do not generally match due to a calculation formula model error or the like. Therefore, by correcting the estimated value k M of pouring amount correction coefficient ratio of the surface layer, inner layer of molten steel, is calculated by applying the adaptive algorithm correction coefficient so as to gradually approaches the actual pouring amount correction coefficient ratio K H. Examples The correction coefficient alpha, the estimated value of the pouring amount correction coefficient ratio corrected by alpha k MH as K MH (K + 1) = α (K + 1) · K M (K + 1) ··· (22 ), The following adaptive iterative algorithm provisional value: K MH 0 (K + 1) = α (K) · K M (K + 1), e 0 (K + 1) = K H (K + 1) -K MH 0 (K + 1), where α (0) = 1.0 Final value: α (K + 1) = α (K) + Rj x {[K H (K + 1) -K MH 0 (K + 1)] / [1 + Rj · K M 2 (K + 1)]} × KM (K + 1) (23) to calculate the correction coefficient α. Where Rj is the correction coefficient α
Is an adaptive gain for identifying, and has a large positive value.
K is the number of times the correction coefficient α is identified.

【0033】5-2) 取鍋から溶鋼貯留槽2,7のどちら
かに溶鋼が注湯されている場合、表層および内層用溶鋼
の注湯量補正係数比の推定値kM,溶鋼貯留槽2,7の
検出溶鋼高さ,表層および内層用各ストッパーの開度
比、及び、溶鋼貯留槽2,7の推定溶鋼ヘッドの比等の
鋳造データ、の前記所定時間内の時系列データを初期化
する。
5-2) When molten steel is being poured from the ladle into one of the molten steel storage tanks 2 and 7, the estimated value k M of the molten metal pouring amount correction coefficient ratio for the surface and inner layers, molten steel storage tank 2 , 7 detected molten steel height, the opening ratio of each stopper for the surface and inner layers, and the casting data such as the estimated molten steel head ratio of the molten steel storage tanks 2 and 7 are initialized to the time series data within the predetermined time. To do.

【0034】6) 表層および内層用溶鋼の目標注湯量
比βr,表層および内層用溶鋼の注湯量補正係数比の推
定値kM,前記注湯量補正係数比の推定値を補正する補
正係数α、及び、溶鋼貯留槽2,7の推定溶鋼ヘッドh
aおよびhbを用いて、 β={βr/〔(K+1)・kM(J)〕}・{(hb)1/2/(ha)1/2} ・・・(24) で表層および内層用溶鋼の目標注湯量比βrを補正し
て、今回の注湯量制御のための目標注湯量比βを決定す
る。
6) Target pouring amount ratio βr of surface and inner layer molten steel, estimated pouring amount correction coefficient ratio k M of surface and inner layer molten steel, correction coefficient α for correcting the estimated pouring amount correction coefficient ratio, And the estimated molten steel head h of the molten steel storage tanks 2 and 7.
with a and h b, β = {βr / [(K + 1) · k M (J) ]} · {(h b) 1 /2 / (h a) 1/2} ··· (24 ) Is used to correct the target pouring amount ratio βr of the molten steel for the surface layer and the inner layer to determine the target pouring amount ratio β for the current pouring amount control.

【0035】7) 鋳型内部の検出湯面レベルを目標湯
面レベルに維持する表層および内層用各ストッパー等の
開度調節手段の設定開度和(mm)Uを、 U(J)=Ri・(YrーY(J))ーRp・(Y(J)ーY(J-1))+U(J-1) ・・・(25) に示す速度型のPI(比例,積分)制御アルゴリズムを適
用して算出して決定する。ここで、Riは積分ゲイン、
pは比例ゲインである。
7) The set sum of opening degrees (mm) U of the opening degree adjusting means such as the stoppers for the surface layer and the inner layer for maintaining the detected molten metal level inside the mold at the target molten metal level, U (J) = R i · (Yr over Y (J)) over R p · (Y (J) over Y (J-1)) + U (J-1) ··· speed type shown in (25) PI (proportional integral) control Apply the algorithm to calculate and determine. Where R i is the integral gain,
R p is a proportional gain.

【0036】8) 表層および内層用溶鋼の今回の注湯
量制御のための目標注湯量比β,表層および内層用スト
ッパー等の開度調節手段の設定開度和Uを用いて、表層
および内層用ストッパー等の開度調節手段の設定開度を Ua(J)=β・U(J)/(1+β), Ub(J)=1・U(J)/(1+β) ・・・(26) で算出して決定して実行する。ここで、Uaは表層用ス
トッパー12等の開度調節手段の設定開度(mm)、Ubは
内層用ストッパー13等の開度調節手段の設定開度(mm)
である。
8) Using the target pouring amount ratio β for controlling the pouring amount of the molten steel for the surface layer and the inner layer and the set opening sum U of the opening degree adjusting means such as the stoppers for the surface layer and the inner layer, for the surface layer and the inner layer Set the opening of the opening adjusting means such as a stopper as U a (J) = β · U (J) / (1 + β), U b (J) = 1 · U (J) / (1 + β) (26 ), Calculate, determine and execute. Here, U a is a set opening degree (mm) of the opening degree adjusting means such as the surface layer stopper 12, and U b is a set opening degree (mm) of the opening degree adjusting means such as the inner layer stopper 13.
Is.

【0037】以上述べた制御アルゴリズムを制御周期毎
に繰り返して実行する事により、ノズル詰まりや剥離等
の外乱による注湯ノズルの流量特性の経時的な変化に適
応して、表層および内層用溶鋼の目標注湯量比を補正し
て、表層および内層用溶鋼の注湯量和で鋳型内部の湯面
レベルを制御する事により、応答性よく制御を安定させ
ることができる。つまり、補正係数αによって補正され
た表層および内層用溶鋼の注湯量補正係数比の推定値k
M、及び鋳型内部のレベル計による検出湯面レベルと目
標湯面レベルとの偏差より、各注湯ノズル3,8からの
注湯量の目標注湯量に対する偏差が認識され、この偏差
を最小にするストッパー12,13等の開度調節手段の
開度調整が行われることによって、鋳型内部の流動パタ
ーンが適正化され、表層と内層の界面が明瞭で、表面性
状の優れた高品質の複層鋼板を得ることができる。
By repeatedly executing the control algorithm described above for each control cycle, it is possible to adapt to changes over time in the flow rate characteristics of the pouring nozzle due to disturbances such as nozzle clogging and separation, and to adjust the surface and inner layer molten steel. It is possible to stabilize the control with good responsiveness by correcting the target pouring amount ratio and controlling the level of the molten metal inside the mold by the sum of the pouring amounts of the molten steel for the surface layer and the inner layer. That is, the estimated value k of the pouring amount correction coefficient ratio of the molten steel for the surface layer and the inner layer corrected by the correction coefficient α
From the deviation between the molten metal level detected by the level meter inside M and the mold and the target molten metal level, the deviation of the pouring amount from each of the pouring nozzles 3 and 8 with respect to the target pouring amount is recognized, and this deviation is minimized. By adjusting the opening degree of the opening degree adjusting means such as the stoppers 12 and 13, the flow pattern inside the mold is optimized, the interface between the surface layer and the inner layer is clear, and the high-quality multi-layer steel sheet having excellent surface properties is obtained. Can be obtained.

【0038】[0038]

【実施例】図1は、本発明の実施例としての構成を示す
ブロック図である。以下本発明をその実施例を示す図1
に基づいて詳述する。表層用溶鋼1は、図示しない取鍋
からタンディッシュ内部の表層用溶鋼貯留槽2に注湯さ
れた後、該溶鋼貯留槽2より注湯ノズル3を経て通り、
鋳型4の上部に注湯され、鋳型4内での溶鋼の凝固に伴
い表層凝固殻を形成し、該鋳型下方解放端より表層鋼板
5として、ピンチロール10により内層鋼板9と共に引
き抜かれる。内層用溶鋼6は、図示しない取鍋からタン
ディッシュ内部の内層用溶鋼貯留槽7に注湯された後、
該溶鋼貯留槽7より注湯ノズル8を経て通り、鋳型4の
下部、即ち直流磁界11の中心位置近傍に注湯され、鋳
型4内での溶鋼の凝固に伴い内層凝固殻を形成し、該鋳
型下方解放端より内層鋼板9として、ピンチロール10
により表層鋼板5と共に引き抜かれる。この時、前記溶
鋼貯留槽2,7から鋳型4に注湯される溶鋼1,6の注
湯量は、注湯ノズル3,8の湯流入口を上下方向に開閉
するストッパー12,13によって調整される。
1 is a block diagram showing the configuration of an embodiment of the present invention. FIG. 1 showing an embodiment of the present invention.
Based on. The molten steel 1 for the surface layer is poured from a ladle (not shown) into a molten steel storage tank 2 for the surface layer inside the tundish, and then passes through the molten steel storage tank 2 through a pouring nozzle 3.
The molten metal is poured into the upper part of the mold 4, and a solidified shell of the surface layer is formed as the molten steel solidifies in the mold 4, and the surface layer steel plate 5 is pulled out from the mold lower open end together with the inner layer steel plate 9 by the pinch roll 10. The molten steel 6 for the inner layer is poured into a molten steel storage tank 7 for the inner layer in the tundish from a ladle (not shown),
The molten steel is passed from the molten steel storage tank 7 through the pouring nozzle 8 and poured into the lower part of the mold 4, that is, near the center of the direct-current magnetic field 11, to form an inner layer solidified shell as the molten steel solidifies in the mold 4, As the inner layer steel plate 9 from the lower open end of the mold, pinch roll 10
Is pulled out together with the surface steel plate 5. At this time, the amount of molten steel 1 and 6 poured from the molten steel storage tanks 2 and 7 into the mold 4 is adjusted by stoppers 12 and 13 for vertically opening and closing the molten metal inlets of the pouring nozzles 3 and 8. It

【0039】14,15は、溶鋼貯留槽2,7内部の溶
鋼高さを測定して検出する湯面レベル計で、レーザ光線
を利用するレベル計,マイクロ波を利用するレベル計,
電極を用いたレベル計,渦流式のレベル計、更には湯面
の撮像によりレベル認識を行うレベル計等、種々の形式
のものが実用されているが、これらの内から検出精度お
よび応答性等を考慮して選定する。16は、鋳型4内部
の湯面レベルを測定して検出する湯面レベル計で、放射
線又は熱線を利用するレベル計,渦流式,電磁式又は磁
界式のレベル計,マイクロ波を利用するレベル計、更に
は湯面の撮像によりレベル認識を行うレベル計等、種々
の形式のものが実用されているが、これらの内から検出
精度および応答性等を考慮して選定する。
Reference numerals 14 and 15 are molten metal level gauges for measuring and detecting the molten steel height inside the molten steel storage tanks 2 and 7, and are a level meter using a laser beam, a level meter using a microwave,
Various types of level meters such as level meters using electrodes, eddy current level meters, and level meters that recognize the level by imaging the surface of the molten metal are in practical use. Among these, detection accuracy and responsiveness are available. Select in consideration of. Reference numeral 16 is a level gauge that measures and detects the level of the molten metal inside the mold 4, and is a level meter that uses radiation or heat rays, a vortex type, an electromagnetic or magnetic field type level meter, and a level meter that uses microwaves. Further, various types such as a level meter for recognizing the level by picking up an image of the molten metal surface have been put into practical use, and the selection is made in consideration of the detection accuracy and the responsiveness.

【0040】表層および内層用溶鋼の注湯量比を一定に
して、鋳型4内部の湯面レベルを目標湯面レベルに維持
する湯面レベル制御器31は、鋳型4内部に配置された
湯面レベル計16によって測定して検出した検出湯面レ
ベル21,溶鋼貯留槽2,7内部に配置された湯面レベ
ル計14,15によって測定し検出した溶鋼貯留槽2,
7内部の検出溶鋼高さ22,23,表層および内層用各
ストッパーの開度24,25、及び、鋳造速度の設定値
30と検出値26を入力し、表層および内層用溶鋼の注
湯量比を一定にして、鋳型4内部の湯面レベルを目標湯
面レベルに維持するための、表層および内層用各ストッ
パー等の開度調節手段の設定開度27,28を算出して
決定し、表層用の設定開度27をサーボアンプ18に、
内層用の設定開度28をサーボアンプ20に出力する。
A molten metal level controller 31 for maintaining a molten metal level inside the mold 4 at a target molten metal level by keeping the molten metal ratio for the surface layer and the inner layer constant is a molten metal level inside the mold 4. Molten steel level 21 detected and detected by a total of 16 molten steel storage tanks 2 and 7
7 Detected molten steel heights 22 and 23 inside, the opening 24 and 25 of each stopper for surface and inner layers, and the set value 30 and the detected value 26 of the casting speed are input, and the pouring ratio of the molten steel for surface and inner layers is entered. To maintain the level of the molten metal inside the mold 4 at the target level, the preset opening degree 27, 28 of the opening degree adjusting means such as each stopper for the surface layer and the inner layer is calculated and determined to determine the level for the surface layer. Set the opening 27 to the servo amplifier 18,
The set opening 28 for the inner layer is output to the servo amplifier 20.

【0041】サーボアンプ18には、ストッパー12の
開度24が与えられており、サーボアンプ18はストッ
パーの開度24と設定開度27とを比較し、両者の偏差
を解消するように油圧シリンダ17にその駆動指令を発
する。そしてこの駆動指令に従った油圧シリンダ17の
動作により、ストッパー12の開度が変更される結果、
注湯ノズル3において設定開度27に実質上等しい開度
が実現される。
The opening degree 24 of the stopper 12 is given to the servo amplifier 18, and the servo amplifier 18 compares the opening degree 24 of the stopper with the set opening degree 27 to eliminate the deviation between them. The drive command is issued to 17. The opening of the stopper 12 is changed by the operation of the hydraulic cylinder 17 according to this drive command,
An opening substantially equal to the set opening 27 is realized in the pouring nozzle 3.

【0042】サーボアンプ20は、サーボアンプ18と
同様、ストッパー13の開度25と設定開度28との偏
差を解消するように油圧シリンダ19にその駆動指令を
発し、この駆動指令に従った油圧シリンダ19の動作に
より、ストッパー13の開度が変更される結果、注湯ノ
ズル8において設定開度28に実質上等しい開度が実現
される。
Like the servo amplifier 18, the servo amplifier 20 issues a drive command to the hydraulic cylinder 19 so as to eliminate the deviation between the opening 25 of the stopper 13 and the set opening 28, and the hydraulic pressure according to this drive command is issued. As a result of the opening of the stopper 13 being changed by the operation of the cylinder 19, an opening substantially equal to the set opening 28 is realized in the pouring nozzle 8.

【0043】湯面レベル制御器31は、図1のブロック
31内に示す制御処理を行う;すなわち、 1) 表層および内層用溶鋼の目標注湯量比の算出32で
は、目標湯面レベルや鋳造速度の設定値30の変更に基
づいて決定される表層厚を一定とする表層および内層用
溶鋼の目標注湯量比を、前記(1)〜(3)式で算出し
て決定する。
The molten metal level controller 31 performs the control process shown in the block 31 of FIG. 1; that is, 1) In the calculation 32 of the target molten metal amount ratio of the molten steel for the surface layer and the inner layer, the target molten metal level and the casting speed are set. The target pouring amount ratio of the molten steel for the surface layer and the inner layer, which is determined based on the change of the set value 30 of (3), is calculated and determined by the formulas (1) to (3).

【0044】2) 鋳型4内部へ注湯される溶鋼注湯量の
推定33では、鋳型4内部の湯面レベルと鋳造速度を測
定して、検出した検出湯面レベル21と検出鋳造速度2
6より、前記(6)〜(10)式で鋳型4内部へ注湯さ
れる溶鋼注湯量を推定する。 3) 溶鋼貯留槽2,7内部の溶鋼ヘッドの推定34で
は、溶鋼貯留槽2,7内部の溶鋼高さを測定して、検出
した前記溶鋼貯留槽2,7内部の検出溶鋼高さ22,2
3と鋳型内部の検出湯面レベル21より、前記(11)
式で溶鋼貯留槽2,7内部の溶鋼ヘッドを推定する。
2) In the estimation 33 of the amount of molten steel poured into the mold 4, the level of molten metal inside the mold 4 and the casting speed are measured, and the detected level 21 of molten metal detected and the detected casting speed 2
6, the amount of molten steel poured into the mold 4 is estimated by the equations (6) to (10). 3) In the estimation 34 of the molten steel head inside the molten steel storage tanks 2 and 7, the molten steel height inside the molten steel storage tanks 2 and 7 is measured, and the detected molten steel height 22 inside the molten steel storage tanks 2 and 7 is detected. Two
3 and the level 21 of the detected molten metal inside the mold, the above (11)
The molten steel head inside the molten steel storage tanks 2 and 7 is estimated by the formula.

【0045】4) 表層および内層用溶鋼の注湯量補正係
数比の推定および算出35では、鋳型4内部へ注湯され
る溶鋼注湯量の推定値と貯留槽2,7内部の溶鋼ヘッド
の推定値及びストッパー12,13の開度より、前記
(12)〜(18)式で表層および内層用溶鋼の注湯量
補正係数を推定し、前記(19)式で注湯量補正係数比
を算出する。
4) In the estimation and calculation 35 of the molten metal pouring amount correction coefficient ratio of the molten steel for the surface layer and the inner layer, the estimated value of the molten steel pouring amount poured into the mold 4 and the estimated value of the molten steel head inside the storage tanks 2 and 7 are used. Further, from the opening degree of the stoppers 12 and 13, the pouring amount correction coefficient of the molten steel for the surface layer and the inner layer is estimated by the equations (12) to (18), and the pouring amount correction coefficient ratio is calculated by the equation (19).

【0046】5) 表層および内層用溶鋼の注湯量補正係
数比の推定値を、溶鋼貯留槽2,7内部の検出溶鋼高さ
22,23の所定時間内の減少量より算出した実際の注
湯量補正係数比に漸近させるような補正係数の算出36
は、溶鋼貯留槽2,7内部の溶鋼高さを測定して検出す
るレベル計14,15の検出精度と注湯量制御に対する
要求制御精度より、溶鋼貯留槽内部の検出溶鋼高さを用
いた注湯量計算所定時間を予め決定して定めておき、 溶鋼貯留槽2,7内部の検出溶鋼高さ22,23の
今回値を含む過去4点の時系列データより、前記(2
0)式で差分データを求め、全ての差分データが正の値
を持つ場合、取鍋から溶鋼貯留槽2,7のどちらにも溶
鋼が注湯されていないと判定し、全ての差分データの
内、一つでも負の値を持つ差分データがある場合、取鍋
から溶鋼貯留槽2,7のどちらかに溶鋼が注湯されてい
ると判定する。
5) The actual pouring amount calculated by the estimated value of the pouring amount correction coefficient ratio of the molten steel for the surface layer and the inner layer calculated from the decrease amount of the detected molten steel heights 22 and 23 in the molten steel storage tanks 2 and 7 within a predetermined time. Calculation of the correction coefficient that makes the correction coefficient ratio asymptotic 36
Based on the detection accuracy of the level gauges 14 and 15 that measure and detect the molten steel height inside the molten steel storage tanks 2 and 7 and the required control accuracy for the pouring amount control, the injection using the detected molten steel height inside the molten steel storage tank is performed. A predetermined time for calculating the amount of hot water is determined and set in advance. From the time-series data of the past four points including the current values of the detected molten steel heights 22 and 23 in the molten steel storage tanks 2 and 7, the above (2
If all the difference data have a positive value, it is determined that molten steel has not been poured from the ladle to the molten steel storage tanks 2 and 7, and all the difference data If there is any difference data having a negative value, it is determined that the molten steel is being poured from the ladle into one of the molten steel storage tanks 2 and 7.

【0047】 取鍋から前記溶鋼貯留槽2,7のどち
らにも溶鋼が注湯されていない場合、表層および内層用
溶鋼の注湯量補正係数比の推定値,各溶鋼貯留槽内部の
検出溶鋼高さ22,23,各ストッパーの開度比、及
び、溶鋼貯留槽2,7内部の推定溶鋼ヘッドの比等の鋳
造データの、前記所定時間内の時系列データの更新処理
を行う。前記所定時間内での溶鋼貯留槽2,7内部の検
出溶鋼高さ22,23の減少量と各ストッパー12,1
3の開度比の前記所定時間内での平均値と各貯留槽2,
7内部の推定溶鋼ヘッドの比の前記所定時間内での平均
値より、前記(21)式で前記所定時間内での表層およ
び内層用溶鋼の実際の注湯量補正係数比を算出し、注湯
量補正係数比の推定値の前記所定時間内での平均値を前
記所定時間内での実際の注湯量補正係数比に漸近させる
ような補正係数を、前記(23)式で算出する。
When the molten steel is not poured from the ladle into either of the molten steel storage tanks 2 and 7, the estimated value of the molten metal correction coefficient ratio of the molten steel for the surface layer and the inner layer, the detected molten steel height inside each molten steel storage tank Update processing of time series data of the casting data such as the lengths 22 and 23, the opening ratio of each stopper, and the ratio of the estimated molten steel head in the molten steel storage tanks 2 and 7 within the predetermined time is performed. The amount of decrease in the detected molten steel heights 22, 23 inside the molten steel storage tanks 2, 7 and the stoppers 12, 1 within the predetermined time
The average value of the opening ratios of 3 and the respective storage tanks 2,
7. From the average value of the ratio of the estimated molten steel head inside the predetermined time, the actual pouring amount correction coefficient ratio of the molten steel for the surface layer and the inner layer within the predetermined time is calculated by the equation (21), and the pouring amount is calculated. A correction coefficient that makes the average value of the estimated value of the correction coefficient ratio within the predetermined time asymptotically approximate to the actual pouring amount correction coefficient ratio within the predetermined time is calculated by the equation (23).

【0048】 取鍋から溶鋼貯留槽2,7のどちらか
に溶鋼が注湯されている場合、表層および内層用溶鋼の
注湯量補正係数比の推定値と、各貯留槽2,7内部の検
出溶鋼高さ22,23と、各ストッパー12,13の開
度24,25の開度比と、各貯留槽2,7内部の推定溶
鋼ヘッドの比等の、前記所定時間内の時系列データを
を、初期化する。
When the molten steel is poured from the ladle into one of the molten steel storage tanks 2 and 7, the estimated value of the molten metal pouring amount correction coefficient ratio of the surface layer and the inner layer molten steel and the detection inside each of the storage tanks 2 and 7 are performed. The time-series data within the predetermined time, such as the molten steel heights 22 and 23, the opening ratios 24 and 25 of the stoppers 12 and 13, and the ratios of the estimated molten steel heads in the storage tanks 2 and 7, are shown. Is initialized.

【0049】6) 表層および内層用溶鋼の目標注湯量比
の補正37では、ノズル詰まりや剥離等の外乱による注
湯ノズル3,8の流量特性の経時的な変化に適応するた
め、注湯量補正係数比の推定値と、これを実際の注湯量
補正係数比に漸近させるような補正係数と、溶鋼貯留槽
2,7内部の溶鋼ヘッドの推定値とを用いて、表層およ
び内層用溶鋼の目標注湯量比を前記(24)式で補正し
て、今回の注湯量制御のための目標注湯量比を算出して
決定する。
6) In the correction 37 of the target pouring amount ratio of the molten steel for the surface layer and the inner layer, the pouring amount correction is performed in order to adapt to the change over time in the flow rate characteristics of the pouring nozzles 3 and 8 due to disturbances such as nozzle clogging and separation. Using the estimated value of the coefficient ratio, the correction coefficient that makes the actual molten metal correction coefficient ratio asymptotic to this, and the estimated value of the molten steel head inside the molten steel storage tanks 2 and 7, the target of the molten steel for the surface layer and the inner layer The target pouring amount ratio for the current pouring amount control is calculated and determined by correcting the pouring amount ratio by the formula (24).

【0050】7) 表層および内層用ストッパー等の開度
調節手段の設定開度和の算出38では、前記(25)式
に示す速度型のPI(比例,積分)制御アルゴリズムを
適用して、鋳型4内部に配置したレベル計16によって
測定して検出した検出湯面レベル21を、目標湯面レベ
ルに維持するための、表層および内層用ストッパー等の
開度調節手段の設定開度和を算出して決定する。
7) In the calculation 38 of the set opening degree of the opening degree adjusting means such as the stoppers for the surface layer and the inner layer, the speed type PI (proportional, integral) control algorithm shown in the equation (25) is applied to the mold. 4 The sum of set opening degrees of opening degree adjusting means such as stoppers for the surface layer and the inner layer for maintaining the detected molten metal level 21 measured and detected by the level meter 16 arranged inside the target molten metal level To decide.

【0051】8) 表層および内層用ストッパー等の開度
調節手段の設定開度を算出して決定する設定開度算出3
9では、今回の注湯量制御のための目標注湯量比と、鋳
型4内部の検出湯面レベル21を目標湯面レベルに維持
するためのストッパー等の開度調節手段の設定開度和を
用いて、前記(26)式でストッパー等の開度調節手段
それぞれの設定開度を算出して決定する。
8) Set opening calculation 3 for calculating and setting the set opening of the opening adjusting means such as the stoppers for the surface layer and the inner layer
In 9, the target pouring amount ratio for the present pouring amount control and the set opening sum of the opening adjusting means such as a stopper for maintaining the detected molten metal level 21 inside the mold 4 at the target molten metal level are used. Then, the set opening degree of each opening adjusting means such as a stopper is calculated and determined by the equation (26).

【0052】湯面レベル制御器31は、以上の処理を制
御周期毎に繰り返して実行し、目標湯面レベルや鋳造速
度の設定値変更に応じて、表層および内層用溶鋼の目標
注湯量に対する変動を最小にしつつ、鋳型4内部の検出
湯面レベル21を目標湯面レベルに維持する。
The molten metal level controller 31 repeatedly executes the above-mentioned processing for each control cycle, and changes with respect to the target pouring amount of the molten steel for the surface layer and the inner layer in response to changes in the target molten metal level and the set value of the casting speed. While maintaining the minimum, the detected molten metal level 21 inside the mold 4 is maintained at the target molten metal level.

【0053】図4は、本発明による湯面レベル制御方法
のソフト的な評価実験結果を示す図である。図の横軸は
時間(秒)であり、図の最上段は表層および内層用各スト
ッパー等の開度調節手段の設定開度と鋳造速度の設定値
を、2段目は表層および内層用溶鋼の注湯量比の目標値
と制御値(点線)を、3段目は鋳型内部の湯面レベルの目
標値と制御値(点線)を示し、最下段は鋳型内部の表層お
よび内層用溶鋼の境界位置の目標値と制御値(点線)との
比較を示す。これらはシミュレーシヨン結果である。図
4に示すように、表層および内層用溶鋼の注湯量比,鋳
型内部の湯面レベル、及び、表層および内層用溶鋼の境
界位置は、それぞれの目標値をほぼ維持して推移してお
り、本発明による湯面レベル制御方法の制御性能は高
く、応答性よく制御の安定性が高い湯面レベル制御が実
現される。
FIG. 4 is a diagram showing the results of a software evaluation experiment of the molten metal level control method according to the present invention. The horizontal axis of the figure is time (seconds), the uppermost stage of the figure shows the set values of the opening degree adjusting means such as each stopper for the surface layer and the inner layer and the set value of the casting speed, and the second stage shows the molten steel for the surface layer and the inner layer The target value and control value (dotted line) of the pouring amount ratio of 3 are shown, the third step shows the target value and control value (dotted line) of the molten metal level inside the mold, and the bottom step is the boundary between the molten steel for the surface layer and the inner layer inside the mold. The comparison between the target value of the position and the control value (dotted line) is shown. These are simulation results. As shown in FIG. 4, the molten metal pouring ratio of the surface layer and the inner layer, the level of the molten metal inside the mold, and the boundary position of the surface layer and the inner layer of the molten steel have maintained their respective target values. The molten metal level control method according to the present invention has high control performance, and realizes the molten metal level control with high responsiveness and high control stability.

【0054】[0054]

【発明の効果】本発明による湯面レベル制御方法によ
り、表層および内層用溶鋼の各注湯ノズルにおいて生じ
る注湯量の目標注湯量に対する変動を最小にすることが
でき、安定した注湯が実現される結果、鋳型への注湯が
安定して行え、表層および内層の界面が明瞭な表面性状
の優れた高品質の複層鋼板を得ることができる等、本発
明は製品鋼板の品質向上に優れた効果を奉する。
According to the molten metal level control method of the present invention, it is possible to minimize fluctuations in the amount of molten metal produced in each molten metal pouring nozzle for the surface layer and the inner layer with respect to the target amount of molten metal, and to realize stable molten metal pouring. As a result, it is possible to stably pour into the mold, obtain a high-quality multi-layered steel sheet with excellent surface properties with clear interface between the surface layer and the inner layer, etc. Provide the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を一態様で実施する鋳造設備の構成概
要を示す縦断面図であり、本発明を実施する電気要素は
ブロックで示す。
FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a casting facility for carrying out the present invention in one aspect, and electric elements for carrying out the present invention are indicated by blocks.

【図2】 図1に示す湯面レベル制御器31の、情報処
理過程および内容を示すフロ−形式のブロック図であ
る。
FIG. 2 is a flow-type block diagram showing an information processing process and contents of the molten metal level controller 31 shown in FIG.

【図3】 図1に示す鋳型4の、溶鋼注入と湯面レベル
の関係を示すブロック図である。
FIG. 3 is a block diagram showing a relationship between molten steel injection and molten metal level of the mold 4 shown in FIG.

【図4】 本発明による湯面レベル制御方法の、シミュ
レ−ションによる制御応答性を示すタイムチャ−トであ
る。
FIG. 4 is a time chart showing the control response by simulation of the molten metal level control method according to the present invention.

【符号の説明】[Explanation of symbols]

1,6:表層,内層用溶鋼 2,7:表
層,内層用溶鋼貯留槽 3,8:表層,内層 用注湯ノズル 4:鋳
型 5,9:表層,内層鋼板 10:ピ
ンチロール 11:直流磁界 12,13:表
層,内層用ストッパー 14,15:表層,内層用溶鋼貯留槽内部の湯面レベル
計 16:鋳型内部の湯面レベル計 17,19:表
層,内層用油圧シリンダ 18,20:表層,内層用サーボアンプ 21:鋳型内部の 検出湯面レベル 22,23:表層,内層用溶鋼貯留槽内部の検出溶鋼高
さ 24,25:表層,内層用ストッパー開度 26:検
出鋳造速度 27,28:表層,内層用ストッパーの設定開度 29:ピンチロール駆動系 30:鋳
造速度の設定値 31:湯面レベル制御器 32:表層および内層用溶鋼の目標注湯量比の算出 33:鋳型内部へ注湯される溶鋼注湯量の推定 34:溶鋼貯留槽内部の溶鋼ヘッドの推定 35:表層および内層用溶鋼の注湯量補正係数比の推定
および算出 36:注湯量補正係数比の推定値を補正する補正係数の
算出 37:表層・内層用溶鋼の目標注湯量比の補正 38:表層・内層用ストッパーの設定開度和の算出 39:表層・内層用ストッパーの設定開度の算出
1,6: Surface layer, inner layer molten steel 2,7: Surface layer, inner layer molten steel storage tank 3,8: Surface layer, inner layer pouring nozzle 4: Mold 5,9: Surface layer, inner layer steel plate 10: Pinch roll 11: DC magnetic field 12, 13: Stopper for surface layer, inner layer 14, 15: Surface level meter inside molten steel storage tank for surface layer, inner layer 16: Level surface meter inside mold 17, 19: Hydraulic cylinder for surface layer, inner layer 18, 20: Surface layer , Inner layer servo amplifier 21: Detected molten metal level inside the mold 22, 23: Surface layer, detected molten steel height inside inner layer molten steel storage tank 24, 25: Surface layer, inner layer stopper opening 26: Detected casting speed 27, 28 : Opening degree of stoppers for surface layer and inner layer 29: Pinch roll drive system 30: Set value of casting speed 31: Level controller of molten metal surface 32: Calculation of target pouring amount ratio of molten steel for surface layer and inner layer 33: Pouring into mold Hot water Of molten steel pouring amount 34: Estimation of molten steel head inside molten steel storage tank 35: Estimation and calculation of pouring amount correction coefficient ratio of molten steel for surface and inner layers 36: Correction factor for correcting pouring amount correction coefficient ratio estimated value Calculation 37: Correction of target pouring amount ratio of molten steel for surface / inner layer 38: Calculation of set opening sum of stopper for surface / inner layer 39: Calculation of set opening of stopper for surface / inner layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹 内 栄 一 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiichi Takeuchi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Corporate Technology Development Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一つのタンディッシュの内部の独立した2
つの溶鋼貯留槽のそれぞれより開度調節手段および注湯
ノズルを介して異種溶鋼を1つの鋳型の内部に注ぎ分
け、溶鋼から直接に複層鋼板を連続鋳造するにおいて、 鋳型内部の湯面レベルと鋳造速度より溶鋼注湯量を算出
し、 溶鋼貯留槽それぞれの溶鋼高さと鋳型内部の湯面レベル
より、溶鋼貯留槽それぞれの溶鋼ヘッドを算出し、 算出した溶鋼注湯量および溶鋼ヘッド、ならびに、前記
開度調節手段の開度を用いて、表層,内層用溶鋼の第1
注湯量補正係数比を算出し、 取鍋から前記溶鋼貯留槽のどちらにも溶鋼が注湯されて
いない場合、溶鋼貯留槽それぞれの溶鋼高さ減少速度を
用いて、表層,内層用溶鋼の第2注湯量補正係数比を算
出し、 第1注湯量補正係数比の時系列平均値を、第2注湯量補
正係数比に漸近させる補正係数を算出し、 表層,内層用溶鋼の目標注湯量比,第1注湯量補正係数
比,前記補正係数、及び、溶鋼貯留槽それぞれの溶鋼ヘ
ッドの比を用いて、表層,内層用溶鋼の目標注湯量比補
正計算式モデルにより、目標注湯量比を補正して更新
し、 鋳型内部の湯面レベルを目標湯面レベルに維持するため
の開度調節手段の開度和を算出し、 該開度和および目標注湯量比を用いて、開度調節手段そ
れぞれの所要開度を算出して設定する、ことを特徴とす
る、複層鋼板の連続鋳造における湯面レベル制御方法。
1. Two independent inside of one tundish.
When the different molten steels are separately poured into one mold from each of the two molten steel storage tanks through the opening adjusting means and the pouring nozzle, and the multi-layer steel plate is continuously cast directly from the molten steel, the level of the molten metal inside the mold is The molten steel pouring amount was calculated from the casting speed, and the molten steel pouring amount of each molten steel storage tank and the molten steel head of each molten steel storage tank were calculated from the molten metal level inside the mold. Of the molten steel for the surface layer and the inner layer by using the opening degree of the degree adjusting means.
When the molten metal correction coefficient ratio is calculated and molten steel is not poured from the ladle to either of the molten steel storage tanks, the molten steel height decreasing rate of each molten steel storage tank is used to determine the 2 Calculate the pouring amount correction coefficient ratio, and calculate the correction factor that makes the time-series average of the first pouring amount correction coefficient ratio asymptotic to the second pouring amount correction coefficient ratio. , The first pouring amount correction coefficient ratio, the correction coefficient, and the ratio of the molten steel heads of the molten steel storage tanks are used to correct the target pouring amount ratio by the target pouring amount ratio correction calculation model for the surface and inner layers The sum of the opening degrees of the opening degree adjusting means for maintaining the molten metal level inside the mold at the target molten metal level is calculated, and the opening degree adjusting means is calculated using the sum of the opening degrees and the target pouring amount ratio. Multi-layer, characterized in that each required opening is calculated and set Molten metal surface level control method in the continuous casting of the plate.
【請求項2】一つのタンディッシュ内部を二つの独立し
た溶鋼貯留槽に区分けし、該両者の溶鋼貯留槽より異種
溶鋼を各別の注湯ノズルを用いて鋳型内部に注ぎ分け、
前記両者の溶鋼貯留槽の注湯羽口にストッパー等の開度
調節手段と、前記両者の溶鋼貯留槽内部の溶鋼高さを測
定して検出する各別のレベル計、及び鋳型内部の湯面レ
ベルを測定して検出するレベル計を設け、さらに鋳型内
部に注湯された異種溶鋼の混合抑制のため直流磁界を作
用させ、溶鋼から直接、表層,内層の界面が明瞭で表面
性状の優れた複層鋼板を連続鋳造するにおいて、 1) 目標湯面レベルや鋳造速度の設定値変更に基づい
て決定される、表層厚を一定とする表層,内層用溶鋼の
目標注湯量比計算式モデルにより、表層,内層用溶鋼の
目標注湯量比を算出し、 2) 鋳型内部の湯面レベルと鋳造速度を測定して検出
した検出湯面レベルと検出鋳造速度より、鋳型内部へ注
湯される溶鋼注湯量推定計算式モデルにより、鋳型内部
へ注湯される溶鋼注湯量を推定し、 3) 前記両者の溶鋼貯留槽内部の溶鋼高さを測定して
検出した溶鋼貯留槽内部の検出溶鋼高さと前記鋳型内部
の検出湯面レベルより、前記両者の溶鋼貯留槽内部の溶
鋼ヘッドを推定し、 4) 前記鋳型内部へ注湯される溶鋼注湯量の推定値,
前記両者の溶鋼貯留槽内部の溶鋼ヘッドの推定値、及
び、表層,内層用ストッパーの開度を用いて、指数重み
付き最小2乗同定逐次型アルゴリズムを応用した表層,
内層用溶鋼の注湯量補正係数推定計算式モデルにより、
表層,内層用溶鋼の注湯量補正係数を推定して注湯量補
正係数比KMを算出し、 5) 前記溶鋼貯留槽内部の溶鋼高さを測定して検出す
るレベル計の検出精度と注湯量制御に対する要求制御精
度より、溶鋼貯留槽内部の検出溶鋼高さを用いた注湯量
計算所定時間を予め決定して定めておき、前記両者の溶
鋼貯留槽内部の検出溶鋼高さの今回値を含む過去4点の
時系列データの変動より、取鍋から前記両者の溶鋼貯留
槽への溶鋼の注湯状況を判定し、 5-1) 取鍋から前記両者の溶鋼貯留槽のどちらにも溶鋼
が注湯されていない場合、 前記表層,内層用溶鋼の注湯量補正係数比の推定
値,前記両者の溶鋼貯留槽内部の検出溶鋼高さ,表層,
内層用ストッパーの開度比、及び、前記両者の溶鋼貯留
槽内部の推定溶鋼ヘッドの比等の鋳造データの前記所定
時間内の時系列データの更新処理を行い、 前記所定時間内の前記両者の溶鋼貯留槽内部の検出
溶鋼高さの減少量を用いて、表層,内層用溶鋼の注湯量
補正係数比計算式モデルにより、前記所定時間内での実
際の表層,内層用溶鋼の注湯量補正係数比を算出し、 適応アルゴリズムを応用して、前記表層,内層用溶
鋼の注湯量補正係数比の推定値の前記所定時間内での平
均値を、前記表層,内層用溶鋼の実際の注湯量補正係数
比に漸近させるような補正係数を算出し、 5-2) 取鍋から前記両者の溶鋼貯留槽のどちらかに溶鋼
が注湯されている場合前記表層,内層用溶鋼の注湯量補
正係数比の推定値,前記両者の溶鋼貯留槽内部の検出溶
鋼高さ,表層,内層用ストッパーの開度比、及び、前記
溶鋼貯留槽内部の推定溶鋼ヘッドの比等の鋳造データの
前記所定時間内の時系列データを初期化し、 6) 前記表層,内層用溶鋼の目標注湯量比,前記表
層,内層用溶鋼の注湯量補正係数比の推定値,前記注湯
量補正係数比の推定値を補正する補正係数、及び、前記
両者の溶鋼貯留槽内部の推定溶鋼ヘッドの比を用いて、
表層,内層用溶鋼の目標注湯量比補正計算式モデルによ
り、前記表層,内層用溶鋼の目標注湯量比を補正して、
今回の注湯量制御のための目標注湯量比を決定し、 7) 前記鋳型内部の検出湯面レベルを目標湯面レベル
に維持する表層,内層用ストッパー等の開度調節手段の
設定開度和を比例および積分制御アルゴリズムを適用し
て算出して決定し、 8) 前記表層,内層用溶鋼の今回の注湯量制御のため
の目標注湯量比,前記表層,内層用ストッパー等の開度
調節手段の設定開度和を用いて、表層,内層用ストッパ
ー等の開度調節手段の設定開度計算式モデルにより、表
層,内層用ストッパー等の開度調節手段の設定開度を算
出して決定して実行する、ことを特徴とする、複層鋼板
の連続鋳造における湯面レベル制御方法。
2. The inside of one tundish is divided into two independent molten steel storage tanks, and different molten steels are poured from the both molten steel storage tanks into the mold using separate pouring nozzles.
An opening adjusting means such as a stopper at the pouring tuyere of the molten steel storage tanks of the both, each level gauge for measuring and detecting the molten steel height inside the molten steel storage tanks of the both, and the molten metal inside the mold A level meter that measures and detects the level is provided, and a direct current magnetic field is applied to suppress the mixing of different molten steel poured inside the mold, and the interface between the surface layer and the inner layer is clear from the molten steel and the surface properties are excellent. In continuous casting of multi-layer steel sheet, 1) By the target pouring amount ratio calculation formula model of the surface layer and the inner layer molten steel, which is determined based on the change of the target melt level and the set value of the casting speed, The target pouring amount ratio of the molten steel for the surface layer and the inner layer is calculated, and 2) the molten steel pouring into the mold from the detected molten metal level and the detected casting speed detected by measuring the molten metal level inside the mold and the casting speed. Into the mold by the calculation model 3) Estimating the molten steel pouring amount to be poured, 3) From the detected molten steel height inside the molten steel storage tank detected by measuring the molten steel height inside both molten steel storage tanks and the detected molten metal surface level inside the mold, Estimating the molten steel head inside both molten steel storage tanks, 4) Estimated value of the molten steel pouring amount poured into the mold,
A surface layer applying an exponentially weighted least squares identification recursive algorithm using the estimated values of the molten steel heads in the molten steel storage tanks of the both and the opening degrees of the stoppers for the surface layer and the inner layer,
Based on the calculation formula model for estimating the pouring amount correction coefficient for molten steel for the inner layer,
The molten metal correction coefficient for the surface and inner layers is estimated to calculate the molten metal amount correction coefficient ratio K M , and 5) the detection accuracy of the level gauge and the molten metal amount measured by measuring the molten steel height inside the molten steel storage tank. Based on the required control accuracy for control, a predetermined time for pouring the molten metal using the detected molten steel height inside the molten steel storage tank is determined and set in advance, and the current value of the detected molten steel height inside both molten steel storage tanks is included. Based on the changes in the time-series data of the past four points, the pouring status of molten steel from the ladle to the molten steel storage tanks of both of the above was judged, and 5-1) molten steel was stored in both of the molten steel storage tanks of the ladle and of the above. When the molten steel is not poured, the estimated value of the pouring amount correction coefficient ratio of the molten steel for the surface layer and the inner layer, the detected molten steel height inside the molten steel storage tanks of the both, the surface layer,
The opening ratio of the stopper for the inner layer, and update processing of the time-series data within the predetermined time of the casting data such as the ratio of the estimated molten steel head inside the molten steel storage tank of the both, and the both within the predetermined time Using the reduction amount of the detected molten steel height in the molten steel storage tank, the molten metal pouring amount correction coefficient for the surface layer and the inner layer is calculated by the ratio calculation model, and the actual molten metal pouring amount correction coefficient for the surface layer and the inner layer within the specified time is calculated. The ratio is calculated and the adaptive algorithm is applied to calculate the average pouring amount correction coefficient of the molten steel for the surface layer and the inner layer within the predetermined time, and the actual pouring amount correction for the surface layer and the inner layer is corrected. 5-2) When a molten steel is being poured from the ladle into one of the molten steel storage tanks of the two, a correction coefficient is calculated so as to be asymptotic to the coefficient ratio. The estimated value of the 6) Initialize time series data of casting data such as height, surface layer, opening ratio of stoppers for inner layer, and ratio of estimated molten steel head in the molten steel storage tank within the predetermined time, 6) Target molten metal pouring amount ratio, estimated value of pouring amount correction coefficient ratio of the surface layer and inner layer molten steel, correction coefficient for correcting estimated value of pouring amount correction coefficient ratio, and estimated molten steel inside the molten steel storage tanks of both Using the head ratio,
The target pouring amount ratio correction calculation model of the surface layer and inner layer molten steel is used to correct the target pouring amount ratio of the surface layer and inner layer molten steel.
The target pouring amount ratio for the current pouring amount control is determined, and 7) the sum of the set opening amounts of the opening adjustment means such as the surface layer and the inner layer stopper that maintains the detected molten metal surface level inside the mold at the target molten metal level. Is calculated by applying a proportional and integral control algorithm, and 8) a target pouring amount ratio for controlling the pouring amount of the molten steel for the surface layer and the inner layer at this time, and opening degree adjusting means such as the surface layer and the stopper for the inner layer. Using the sum of the set opening degrees of the above, the set opening degree of the opening adjustment means for the surface layer, the inner layer stopper, etc. is calculated and determined by the set opening degree calculation model of the opening degree adjustment means for the surface layer, the inner layer stopper, etc. A molten metal level control method in continuous casting of multi-layer steel sheet, which is characterized by being performed.
JP5013594A 1994-03-22 1994-03-22 Metal surface level control method in continuous casting of multi-layer steel sheet Expired - Lifetime JP2771946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5013594A JP2771946B2 (en) 1994-03-22 1994-03-22 Metal surface level control method in continuous casting of multi-layer steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5013594A JP2771946B2 (en) 1994-03-22 1994-03-22 Metal surface level control method in continuous casting of multi-layer steel sheet

Publications (2)

Publication Number Publication Date
JPH07256419A true JPH07256419A (en) 1995-10-09
JP2771946B2 JP2771946B2 (en) 1998-07-02

Family

ID=12850709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5013594A Expired - Lifetime JP2771946B2 (en) 1994-03-22 1994-03-22 Metal surface level control method in continuous casting of multi-layer steel sheet

Country Status (1)

Country Link
JP (1) JP2771946B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030012A (en) * 2015-07-31 2017-02-09 新日鐵住金株式会社 Continuous casting method of double-layered cast slab and continuous casting apparatus
WO2017073784A1 (en) * 2015-10-30 2017-05-04 新日鐵住金株式会社 Continuous manufacturing device and continuous manufacturing method for multilayer slab
CN107092239A (en) * 2016-02-17 2017-08-25 宝山钢铁股份有限公司 Blast furnace casting amount estimating device and method
JP2020075286A (en) * 2018-11-06 2020-05-21 日本製鉄株式会社 Apparatus, method, and program for estimating flow characteristics in bilayer-bullet continuous-casting process, and method for controlling bilayer-billet continuous-casting process
CN112188940A (en) * 2018-06-08 2021-01-05 日本制铁株式会社 Method, device and program for controlling continuous casting process of multilayer cast slab

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017030012A (en) * 2015-07-31 2017-02-09 新日鐵住金株式会社 Continuous casting method of double-layered cast slab and continuous casting apparatus
WO2017073784A1 (en) * 2015-10-30 2017-05-04 新日鐵住金株式会社 Continuous manufacturing device and continuous manufacturing method for multilayer slab
US10987730B2 (en) 2015-10-30 2021-04-27 Nippon Steel Corporation Continuous casting apparatus and continuous casting method for multilayered slab
CN107092239A (en) * 2016-02-17 2017-08-25 宝山钢铁股份有限公司 Blast furnace casting amount estimating device and method
CN107092239B (en) * 2016-02-17 2020-03-06 宝山钢铁股份有限公司 Blast furnace iron output estimation device and method
CN112188940A (en) * 2018-06-08 2021-01-05 日本制铁株式会社 Method, device and program for controlling continuous casting process of multilayer cast slab
CN112188940B (en) * 2018-06-08 2022-04-29 日本制铁株式会社 Method and apparatus for controlling continuous casting process of multilayer cast plate, and recording medium
JP2020075286A (en) * 2018-11-06 2020-05-21 日本製鉄株式会社 Apparatus, method, and program for estimating flow characteristics in bilayer-bullet continuous-casting process, and method for controlling bilayer-billet continuous-casting process

Also Published As

Publication number Publication date
JP2771946B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US6102101A (en) Continuous casting method and apparatus thereof
JP2008525200A (en) Robust control method of molten metal level in twin roll type thin plate casting process.
JP2771946B2 (en) Metal surface level control method in continuous casting of multi-layer steel sheet
JPH07178525A (en) Method for controlling pouring quantity of molten steel for surface layer in continuous casting of double layered steel plate
JPH06264B2 (en) Level control method in continuous casting
JPH0985407A (en) Method for controlling molten steel level in mold in continuous caster
JP5206569B2 (en) Mold level control apparatus and control method for continuous casting machine
US3817311A (en) Method and apparatus for controlling a continuous casting machine
JPH06285604A (en) Method for controlling molten metal surface level in continuous casting for multi-layered steel plate
JP2915242B2 (en) Pouring amount measurement method in continuous casting of multi-layer steel sheet
JPH07108441B2 (en) Injection amount control method in continuous casting of multi-layer slab
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JP3160805B2 (en) Mold level controller for continuous casting equipment
JPS6045026B2 (en) Mold content steel level control method
JPS62192246A (en) Device for controlling molten metal level of mold for continuous casting installation
JP7077797B2 (en) Control methods, equipment and programs for the continuous casting process of multi-layer slabs
WO2019235601A1 (en) Multilayered slab continuous casting process control method, apparatus, and program
US20210387250A1 (en) Control method for continuous casting machine, control device for continuous casting machine, and manufacturing method for casting
JP2874552B2 (en) Method and apparatus for controlling metal level in continuous casting machine mold
JPH03243262A (en) Controlling method in multi-ply steel continuous casting
JPS62197257A (en) Pouring method for molten steel in continuous casting
JPH03243263A (en) Method for controlling molten metal surface level in mold for continuous casting
JPH0341884Y2 (en)
JPH06587A (en) Method for measuring and controlling boundary layer level of molten metal in continuous casting for double-layer cast slab
JPH08238547A (en) Method for controlling blowing of argon gas in slab casting

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980407