JPH07254434A - Nonaqueous electrolyte for lithium battery - Google Patents

Nonaqueous electrolyte for lithium battery

Info

Publication number
JPH07254434A
JPH07254434A JP6042343A JP4234394A JPH07254434A JP H07254434 A JPH07254434 A JP H07254434A JP 6042343 A JP6042343 A JP 6042343A JP 4234394 A JP4234394 A JP 4234394A JP H07254434 A JPH07254434 A JP H07254434A
Authority
JP
Japan
Prior art keywords
electrolyte
solvent
lithium
carbonate
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6042343A
Other languages
Japanese (ja)
Inventor
Yuko Kanazawa
祐子 金澤
Nobuko Sano
伸子 佐野
Toshiyuki Miwa
俊之 美和
Nozomi Narita
望 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP6042343A priority Critical patent/JPH07254434A/en
Publication of JPH07254434A publication Critical patent/JPH07254434A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide electrolyte of high electric conductivity, and achieve excellent cycle characteristics, and properties such as large capacity as it is assembled in a battery by using Li(CF3SO2)2N as the electrolyte. CONSTITUTION:An Li battery comprises a positive electrode comprising active material of metal oxide or sulfate, carbon material which is capable of storing/ discharging metal Li, Li alloy or Li ion, and nonaqueous electrolyte, where 1-2 sort(s) of ethylene carbonate, propylene carbonate, and theta-lactone selected as high dielectric constant solvent is mixed with l-2 sort(s) of dimethyl carbonate. ethylmethyl carbonate, and fatty acid ester selected as low viscosity solvent to dissolve Li(CF3SO2)2N as electrolyte. A mixing ratio of Li(CF3SO2)2N to the nonaqueous solvent is 0.5-2.5mol/l.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム一次または二
次電池に用いられる非水電解液に関するもので、より具
体的には活物質に金属酸化物或いは硫化物等を用いた正
極と、金属リチウム或いはリチウム合金またはリチウム
イオンを吸蔵放出可能な炭素質材料からなる負極と、非
水電解液とを備えたリチウム電池に用いられる非水電解
液に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte used in a lithium primary or secondary battery, and more specifically, a positive electrode using a metal oxide or a sulfide as an active material and a metal. The present invention relates to a non-aqueous electrolytic solution used in a lithium battery including a negative electrode made of a carbonaceous material capable of inserting and extracting lithium or a lithium alloy or lithium ions, and a non-aqueous electrolytic solution.

【0002】[0002]

【従来の技術】非水電解液を用いたリチウム一次または
二次電池は、高い電池電圧特性を有し、高エネルギー密
度電池として、近年めざましい発達を呈している各種電
子機器のための電源として好適である。
2. Description of the Related Art Lithium primary or secondary batteries using a non-aqueous electrolyte have high battery voltage characteristics and are suitable as a power source for various electronic devices which have undergone remarkable development in recent years as high energy density batteries. Is.

【0003】この種の電池の非水電解液に用いられる溶
媒としては、プロピレンカーボネート(PC)、γーブ
チロラクトン(γーBL)、ジエチルカーボネート(D
EC)、1,2ージメトキシエタン(DME)および2
ーメチルテトラヒドロフラン(2−MeTHF)等が単
独または2種以上混合して用いられている。また、電解
質としては、LiClO4 ,LiPF6 ,LiBF4
使用されているが、電気伝導度が高く各種優れた特性を
有することから、一般的にはLiClO4 が用いられて
いる。
Solvents used in the non-aqueous electrolyte of this type of battery include propylene carbonate (PC), γ-butyrolactone (γ-BL) and diethyl carbonate (D
EC), 1,2-dimethoxyethane (DME) and 2
-Methyltetrahydrofuran (2-MeTHF) and the like are used alone or in combination of two or more. LiClO 4 , LiPF 6 , and LiBF 4 are used as the electrolyte, but LiClO 4 is generally used because it has high electric conductivity and various excellent characteristics.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このL
iClO4 を電解質として用いた二次電池では、高温放
電,過充電,短絡などの厳しい環境下で使用された場
合、性能劣化が生じ易く内圧が上昇し、さらには爆発な
どの危険性も生ずる欠点があった。
However, this L
Secondary batteries using iClO 4 as an electrolyte have the drawback that when used in severe environments such as high-temperature discharge, overcharge, and short circuit, the performance tends to deteriorate and the internal pressure rises, and there is a risk of explosion. was there.

【0005】また、この電解液を用いた電池を高い電位
まで充電すると電解液が酸化分解を起こすことも知られ
ており、この酸化は電池の容量やサイクル特性及び安全
性などに悪影響を及ぼすことになる。
It is also known that when a battery using this electrolytic solution is charged to a high potential, the electrolytic solution undergoes oxidative decomposition, and this oxidation adversely affects the capacity, cycle characteristics and safety of the battery. become.

【0006】そこで、本発明者らは前記LiClO4
同等ないしそれ以上の電気伝導度を有し、かつ安定的条
件で使用できる電解質を種々検索し、Li(CF3 SO
2 2 Nに着目した。
Therefore, the inventors of the present invention searched various electrolytes having an electric conductivity equal to or higher than that of LiClO 4 and which can be used under stable conditions, and found that Li (CF 3 SO 4
2 ) Focused on 2 N.

【0007】この電解質Li(CF3 SO2 2 Nは、
非水溶媒中に溶解するとともに、非水溶媒中でLiCl
4 と同様に高い電気伝導度を有し、極めて安定な性質
を有する物質であることが本発明者らによって確認され
た。
This electrolyte Li (CF 3 SO 2 ) 2 N is
Dissolves in non-aqueous solvent and LiCl in non-aqueous solvent
It was confirmed by the present inventors that the substance has a high electric conductivity like O 4 and has an extremely stable property.

【0008】本発明は以上の知見に基づきなされたもの
であって、その目的とするところは、電解質としてLi
(CF3 SO2 2 Nをもちいることにより、高い電気
伝導度を持ち、かつ高電位での耐酸化分解性等の安定性
に優れ、電池に組み込んだ状態で優れたサイクル特性や
高容量などの特性を引き出すことが出来るリチウム電地
用非水電解液を提供するものである。
The present invention was made on the basis of the above findings, and its purpose is to use Li as an electrolyte.
By using (CF 3 SO 2 ) 2 N, it has high electrical conductivity and excellent stability such as resistance to oxidative decomposition at high potential, and has excellent cycle characteristics and high capacity in a state of being incorporated in a battery. It is intended to provide a non-aqueous electrolytic solution for a lithium battery which can bring out such characteristics.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、活物質に金属酸化物或いは硫化物等を用
いた正極と、金属リチウム或いはリチウム合金またはリ
チウムイオンを吸蔵放出可能な炭素質材料からなる負極
と、非水電解液とを備えたリチウム電池において、前記
非水電解液が高誘電率溶媒としてエチレンカーボネート
(EC),プロピレンカーボネート(PC),γーブチ
ロラクトン(γーBL)の中から1〜2種、低粘度溶媒
としてジメチルカーボネート(DMC),エチルメチル
カーボネート(EMC),脂肪酸エステルの中から1〜
2種をそれぞれ選択して混合した溶媒に、電解質として
Li(CF3 SO2 2 Nを溶解したものであることを
特徴とする。
In order to achieve the above object, the present invention provides a positive electrode using a metal oxide or a sulfide as an active material, and a metal lithium or a lithium alloy or a carbon capable of inserting and extracting lithium ions. In a lithium battery including a negative electrode made of a high-quality material and a non-aqueous electrolyte, the non-aqueous electrolyte is ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (γ-BL) as a high dielectric constant solvent. 1 to 2 types, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and fatty acid ester as low viscosity solvent
It is characterized in that Li (CF 3 SO 2 ) 2 N is dissolved as an electrolyte in a solvent in which two kinds are selected and mixed.

【0010】なお、脂肪酸エステルとしてはR1 −CO
O−R2 で示され、R1 及びR2 はそれぞれCn 2n+1
であらわされるn =1〜5のアルキル基であり、好まし
くはn =1〜3である。例えば酢酸エチル、酢酸プロピ
ル、酢酸イソプロピル、プロピオン酸メチル、酪酸メチ
ルなどが例示される。
As the fatty acid ester, R 1 --CO
Indicated by O-R 2, R 1 and R 2 are C n H 2n + 1
Is an alkyl group of n = 1-5, preferably n = 1-3. Examples thereof include ethyl acetate, propyl acetate, isopropyl acetate, methyl propionate and methyl butyrate.

【0011】また、溶媒として上記の高誘電率溶媒と低
粘度溶媒とを混合して用いる理由は、一般に、高誘電率
溶媒の成分比率が大きいと低温時における粘度増加によ
り電池特性が十分でなくなり、その逆に低粘度溶媒の成
分比率が多い場合には、電解質の溶解度が落ちたり、そ
の結果として電気伝導度の低下を招いたりする等不都合
が生ずるからである。
Further, the reason why the above-mentioned high dielectric constant solvent and low viscosity solvent are mixed and used as the solvent is generally that when the component ratio of the high dielectric constant solvent is large, the battery characteristics become insufficient due to an increase in viscosity at low temperature. On the contrary, if the component ratio of the low-viscosity solvent is high, the solubility of the electrolyte is lowered, and as a result, the electrical conductivity is lowered, which causes inconvenience.

【0012】また、好ましくは、前記Li(CF3 SO
2 2 Nは、前記非水溶媒に対して0.5〜2.5mo
l/l混合することである。この限定理由としては、
0.5mol/lを下回る場合には電池に十分な電気伝
導度が得られないし、その逆に2.5mol/lを上回
る場合には非水溶媒に溶解しなかったり、低温時におい
て結晶の析出などの問題を生ずるからであり、より好ま
しい範囲としては1〜1.5mol/lが望ましい。
Preferably, the Li (CF 3 SO
2 ) 2 N is 0.5 to 2.5 mo with respect to the non-aqueous solvent.
l / l mixing. The reason for this limitation is
When it is less than 0.5 mol / l, the battery does not have sufficient electric conductivity, and when it is more than 2.5 mol / l, it does not dissolve in a non-aqueous solvent, or when it is at a low temperature, crystal precipitation occurs. This is because such problems occur, and a more preferable range is 1 to 1.5 mol / l.

【0013】なお、高誘電率溶媒としてPCを用いる場
合には、PCはECの量を超えない量添加することが望
ましい。このことは負極にグラファイトを用いたリチウ
ム電池の場合、過剰なPCは電池性能の低下原因となる
ことが従来から判明しており、したがって以上の制約を
受けることになる。
When PC is used as the high dielectric constant solvent, it is desirable to add PC in an amount not exceeding the amount of EC. In the case of a lithium battery using graphite for the negative electrode, it has been conventionally known that excessive PC causes a decrease in battery performance, and therefore, the above restrictions are imposed.

【0014】[0014]

【作用及び効果】Li(CF3 SO2 2 Nを用いた本
発明の非水電解液は、LiClO4 を用いた従来の非水
電解液に比べて高電位で耐酸化分解特性を有し、これを
組み込んだリチウム二次電池は充電時における容量劣化
が少なく、高い電位まで充電できる。
ACTION AND EFFECT The non-aqueous electrolyte solution of the present invention using Li (CF 3 SO 2 ) 2 N has a higher potential than the conventional non-aqueous electrolyte solution using LiClO 4 and has oxidation decomposition resistance characteristics. , A lithium secondary battery incorporating this has little capacity deterioration during charging and can be charged to a high potential.

【0015】すなわち、従来のLiClO4 を電解質と
する非水電解液を用いたリチウム二次電池では、充電時
において比較的低電位で不可逆な電流の増加が生じ、こ
の増加に応じて電解液が酸化することが判明している
が、本発明の非水電解液を用いたリチウム二次電池では
高電位まで不可逆の電流の増加がなく、安定な電解液と
して用いることができる。
That is, in a conventional lithium secondary battery using a non-aqueous electrolytic solution containing LiClO 4 as an electrolyte, an irreversible increase in current occurs at a relatively low potential during charging, and the electrolytic solution is increased in response to this increase. Although it is known to oxidize, the lithium secondary battery using the non-aqueous electrolytic solution of the present invention does not have an irreversible increase in current up to a high potential and can be used as a stable electrolytic solution.

【0016】またそれゆえ、充電時のカットオフ電圧を
高く設定することができ、一回の充電で大きな電流を取
り出すことができる利点がある。
Therefore, there is an advantage that the cutoff voltage at the time of charging can be set high and a large current can be taken out by one charging.

【0017】また耐酸化分解特性により繰返し充放電し
ても劣化を生じないため、充放電サイクル特性を著しく
改善することができるほか、安全性も大巾に改善でき
る。
Further, the oxidation-decomposition resistance does not cause deterioration even after repeated charging and discharging, so that the charging and discharging cycle characteristics can be remarkably improved and the safety can be greatly improved.

【0018】なお、以上の電解質を含む非水電解液は、
リチウム二次電池のほか、当然のことながらリチウム一
次電池にも適用できることは勿論である。
The non-aqueous electrolyte containing the above electrolyte is
As a matter of course, it can be applied to a lithium primary battery as well as a lithium secondary battery.

【0019】[0019]

【実施例】次に、本発明の実施例を説明する。但し本発
明は実施例のみに限定されるものではない。
EXAMPLES Next, examples of the present invention will be described. However, the present invention is not limited to the examples.

【0020】実施例1 高誘電率溶媒としてEC,PC,γ−BLの1〜2種
と、低粘度溶媒としてDMC,EMC,酢酸プロピルの
中からそれぞれ1〜2種それぞれ表1に示す混合割合で
混合した混合溶媒にそれぞれ1mol/lのLi(CF
3 SO2 2 Nを混合した電解液A〜Tを用いてサイク
リックボルタンメトリーを行った。なお、作用極にはL
iCoO2 に導電剤としてカーボン粉末及びバインダと
してテフロン粉末を重量比で100:10:6の割合で
混合したもの、対極と参照極はそれぞれ金属リチウムと
し、走査速度は40mv/hで行った。なお、比較例に
は従来の電解液の標準的配合であるPC/LiClO4
(1mol)(表1中Uで表示される)を用いた。
Example 1 1 to 2 kinds of EC, PC and γ-BL as a high dielectric constant solvent and 1 to 2 kinds of DMC, EMC and propyl acetate as a low viscosity solvent, respectively. 1 mol / l of Li (CF
Cyclic voltammetry was performed using electrolyte solutions A to T mixed with 3 SO 2 ) 2 N. In addition, the working electrode is L
A mixture of iCoO 2 with carbon powder as a conductive agent and Teflon powder as a binder at a weight ratio of 100: 10: 6, metal lithium was used as the counter electrode and the reference electrode, and the scanning speed was 40 mv / h. In the comparative example, PC / LiClO 4 which is a standard composition of the conventional electrolytic solution is used.
(1 mol) (indicated by U in Table 1) was used.

【0021】[0021]

【表1】 この結果は図1(a)〜(d)に示すように、比較例U
では約4.5Vから不可逆な電流の増加が起こり、電解
液が酸化し始めているのが判る。これと比較して実施例
のA〜Tの酸化が始まるのは約5Vからである。
[Table 1] This result shows that Comparative Example U
It can be seen that in about 4.5 V, an irreversible increase in current occurs, and the electrolytic solution begins to oxidize. In comparison with this, the oxidation of Examples A to T starts at about 5V.

【0022】したがって電解液A〜Tが高い電位まで安
定であることで、充電時のカットオフ電圧を高く設定で
き、電池として大きな電流を取り出すことが出来るこ
と、及び充電時における安全性を大巾に改善出来ること
が判明した。
Therefore, since the electrolytes A to T are stable up to a high potential, the cutoff voltage at the time of charging can be set high, a large current can be taken out as a battery, and the safety at the time of charging is greatly improved. It turned out that it can be improved.

【0023】実施例2 次に実際の電池性能を調べるために、前記表1に示す組
成の本発明の電解液A〜Tを用いて図2に示すテストセ
ルを組立てた。
Example 2 Next, in order to examine the actual battery performance, the test cells shown in FIG. 2 were assembled using the electrolytic solutions A to T of the present invention having the compositions shown in Table 1 above.

【0024】図において、LiCoO2 と導電剤として
のカーボン粉末とバインダとしてのテフロン粉末とを重
量比で100:10:6の割合で混合し圧延してシート
状に形成した正極合剤1を、集電体2としてのTiネッ
トに圧着して正極とした。また、ピッチ系炭素繊維を焼
成することによって得られる炭素質粉末、バインダとし
てのEPDM(エチレンプロピレンジエンモノマー)と
を、100:7になるように混合し圧延してシート状に
形成した負極合剤3を集電体4としてのNiネットに圧
着して負極とした。
In the figure, LiCoO 2 , carbon powder as a conductive agent, and Teflon powder as a binder are mixed at a weight ratio of 100: 10: 6 and rolled to form a positive electrode mixture 1 formed into a sheet, A Ti net serving as the current collector 2 was pressure-bonded to obtain a positive electrode. Also, a carbonaceous powder obtained by firing pitch-based carbon fiber and EPDM (ethylene propylene diene monomer) as a binder were mixed in a ratio of 100: 7 and rolled to form a negative electrode mixture. 3 was pressure-bonded to a Ni net as a current collector 4 to obtain a negative electrode.

【0025】正極合剤1、負極合剤3ともにその平面形
状は10×10mmの正方形で、正極合剤1の厚みは0.
25mm、負極合剤3の厚みは0.40mmである。また、
両合剤1,3間の間隔は2mmとし、ビーカ5の中に図示
のごとく配置した。電解液としては、前記A〜Tの組成
の電解液のほかに、比較例として従来の電解液U1種類
についても同一条件で評価を行った。
Both the positive electrode mixture 1 and the negative electrode mixture 3 have a square shape of 10 × 10 mm in plan view, and the thickness of the positive electrode mixture 1 is 0.
The thickness of the negative electrode mixture 3 is 25 mm, and the thickness of the negative electrode mixture 3 is 0.40 mm. Also,
The gap between the two mixtures 1 and 3 was set to 2 mm, and they were arranged in the beaker 5 as shown. As the electrolytic solution, in addition to the electrolytic solutions having the compositions A to T, one kind of conventional electrolytic solution U as a comparative example was evaluated under the same conditions.

【0026】なお、正極の理論充電容量は8.2mA
h、負極の理論充電容量は7mAhであり、正極の理論
充電容量を負極より大きくしてあるのは、最初の充電後
次の放電に関与できるリチウム量が充電容量よりも減少
してしまうからである。これは最初の充放電サイクルに
限って、充電されたリチウムが炭素質負極中に一定量取
り込まれ、次回からは放電できなくなることによる。
The theoretical charge capacity of the positive electrode is 8.2 mA.
h, the theoretical charge capacity of the negative electrode is 7 mAh, and the reason why the theoretical charge capacity of the positive electrode is larger than that of the negative electrode is that the amount of lithium that can be involved in the subsequent discharge after the first charge is smaller than the charge capacity. is there. This is because the charged lithium is taken into the carbonaceous negative electrode in a fixed amount only in the first charge / discharge cycle and cannot be discharged from the next time.

【0027】次に前記電解液A〜Tおよび比較例として
電解液Uを使用した前記仕様の各テストセルについて充
電電流1mA,放電電流2mAの定電流充放電を行う充
放電サイクル特性試験を300サイクルまで実施した。
また放電終止電圧は2.8v、充電電圧は従来の電解質
の特性を考慮して4.15Vを上限とした。
Next, 300 cycles of charge / discharge cycle characteristic test in which constant current charging / discharging with a charging current of 1 mA and a discharging current of 2 mA was performed on each of the test cells having the above specifications using the electrolytic solutions A to T and the electrolytic solution U as a comparative example. Carried out.
The discharge end voltage was set to 2.8 V, and the charge voltage was set to 4.15 V as an upper limit in consideration of the characteristics of the conventional electrolyte.

【0028】この結果を図3(a)〜(d)及び表2に
示す。この図は放電容量の初度を100とし、50,1
00,150,200,250,300サイクルにおけ
る放電容量の割合(%)を示すもので、図3及び表2か
ら明らかなように、本発明の電解液A〜Tを用いた場合
には300サイクルで初度に対し約90%を上回ってい
る。これに対し、比較例では300サイクルで初度に対
し69.7%であり、本発明では従来に比べて大巾にサ
イクル特性が向上することを確認した。
The results are shown in FIGS. 3 (a) to 3 (d) and Table 2. In this figure, the initial discharge capacity is 100, and 50,1
The discharge capacity ratio (%) in the cycles of 00, 150, 200, 250, and 300 is shown. As is clear from FIG. 3 and Table 2, when the electrolytic solutions A to T of the present invention are used, the cycle is 300 cycles. It is about 90% higher than the first time. On the other hand, in the comparative example, the cycle characteristic was 69.7% with respect to the initial value after 300 cycles, and it was confirmed that the cycle characteristics were significantly improved in the present invention compared with the conventional case.

【0029】[0029]

【表2】 参考例1 前記実施例1,2の実施前に、Li(CF3 SO2 2
Nを溶解するための混合溶媒の最適組み合わせ及び混合
比を検索すべく、各組み合わせ及び混合比の溶媒に1M
Li(CF3 SO2 2 Nを溶解した場合における2
5℃の電気伝導度の測定を行った。この結果を図4
(a),(b)〜図6(a),(b)に示す。また、こ
の図から導き出される溶媒の最適組み合わせ及び混合範
囲を表3に示す。
[Table 2] Reference Example 1 Before carrying out Examples 1 and 2 above, Li (CF 3 SO 2 ) 2
In order to find the optimum combination and mixing ratio of the mixed solvent for dissolving N, 1M was added to the solvent of each combination and mixing ratio.
2 when Li (CF 3 SO 2 ) 2 N is dissolved
The electrical conductivity was measured at 5 ° C. This result is shown in Figure 4.
6A and 6B are shown in FIGS. Table 3 shows the optimum combination of solvents and the mixing range derived from this figure.

【0030】[0030]

【表3】 表3に示す混合比の範囲を逸脱した場合には、まず高誘
電率溶媒の比率が多い場合、低温時の電池特性が十分で
なく、その逆に低粘度溶媒の比率が多い場合には電解質
の溶解度が落ちて電気伝導度の低下を招いたりして、結
果的には良好な電池特性を得られなくなるので、前記混
合溶媒の組合わせの範囲では前記表3に示す混合範囲に
限定される。
[Table 3] If the ratio of the mixing ratio shown in Table 3 is exceeded, first, if the ratio of the high dielectric constant solvent is large, the battery characteristics at low temperature are not sufficient, and conversely, if the ratio of the low viscosity solvent is large, the electrolyte is Since the solubility of the solvent decreases and the electric conductivity decreases, and as a result, good battery characteristics cannot be obtained, the combination range of the mixed solvent is limited to the mixing range shown in Table 3 above. .

【0031】参考例2 前記実施例1,2の実施前に、本発明の非水電解液のL
i(CF3 SO2 2Nの最適濃度を検索すべく、代表
例としてEC+DMC(1:1)、BL+EC(1:
1)、EC+DMC+PrAc(酢酸プロピル)(3:
5:2)混合比の混合溶媒に濃度を変えたLi(CF3
SO2 2 Nを溶解した場合における25℃の電気伝導
度の測定を行った。この結果を図7(a)〜(c)に示
す。
Reference Example 2 Prior to carrying out Examples 1 and 2 above, L of the non-aqueous electrolytic solution of the present invention was used.
In order to search for the optimum concentration of i (CF 3 SO 2 ) 2 N, as a typical example, EC + DMC (1: 1), BL + EC (1:
1), EC + DMC + PrAc (propyl acetate) (3:
5: 2) Li (CF 3 ) in which the concentration was changed to the mixed solvent of the mixing ratio
The electrical conductivity at 25 ° C. when SO 2 ) 2 N was dissolved was measured. The results are shown in FIGS. 7 (a) to 7 (c).

【0032】図5の結果からも明らかなようにLi(C
3 SO2 2 Nの濃度は0.5〜2.5mol/l程
度の範囲が望ましく、この範囲より少ない場合には電解
質の絶対量不足により電気伝導度が低下し、逆に大きい
と電解質が溶解できず、かえって電気伝導度を低下させ
るほか、低温時における電解質の析出等の問題を生ずる
ので、以上の範囲が望ましく、さらには1.0〜1.5
mol/l程度が最適な範囲となることが理解される。
As is clear from the results shown in FIG. 5, Li (C
The concentration of F 3 SO 2 ) 2 N is preferably in the range of about 0.5 to 2.5 mol / l. When the concentration is less than this range, the electrical conductivity is reduced due to the absolute amount of electrolyte being insufficient, and conversely, when it is large, the electrolyte is Can not be dissolved, rather lowering the electrical conductivity and causing problems such as electrolyte precipitation at low temperatures. Therefore, the above range is preferable, and 1.0 to 1.5 is more preferable.
It is understood that the optimum range is about mol / l.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(d)は実施例1におけるサイクリッ
クボルタンメトリーを比較したグラフである。
1A to 1D are graphs comparing cyclic voltammetry in Example 1. FIG.

【図2】実施例2におけるテストセルの模式図である。FIG. 2 is a schematic diagram of a test cell in Example 2.

【図3】(a)〜(d)は実施例2における充放電サイ
クルを比較したグラフである。
3 (a) to (d) are graphs comparing charge / discharge cycles in Example 2. FIG.

【図4】(a)〜(b)は参考例1における混合溶媒の
混合比率と電気伝導度との関係を示すグラフである。
4 (a) and (b) are graphs showing the relationship between the mixing ratio of mixed solvents and electric conductivity in Reference Example 1. FIG.

【図5】(a)〜(b)は参考例1における混合溶媒の
混合比率と電気伝導度との関係を示すグラフである。
5 (a) and (b) are graphs showing the relationship between the mixing ratio of mixed solvents and electric conductivity in Reference Example 1. FIG.

【図6】(a)〜(b)は参考例1における混合溶媒の
混合比率と電気伝導度との関係を示すグラフである。
6 (a) and 6 (b) are graphs showing the relationship between the mixing ratio of mixed solvents and electric conductivity in Reference Example 1. FIG.

【図7】(a)〜(c)は参考例2における電解質濃度
と電気伝導度との関係を示すグラフである。
7 (a) to 7 (c) are graphs showing the relationship between electrolyte concentration and electric conductivity in Reference Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 成田 望 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nozomu Narita 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活物質に金属酸化物或いは硫化物等を用
いた正極と、金属リチウム或いはリチウム合金またはリ
チウムイオンを吸蔵放出可能な炭素質材料からなる負極
と、非水電解液とを備えたリチウム電池において、前記
非水電解液が高誘電率溶媒としてエチレンカーボネート
(EC),プロピレンカーボネート(PC),γーブチ
ロラクトン(γーBL)の中から1〜2種、低粘度溶媒
としてジメチルカーボネート(DMC),エチルメチル
カーボネート(EMC),脂肪酸エステルの中から1〜
2種をそれぞれ選択して混合した溶媒に、電解質として
Li(CF3 SO2 2 Nを溶解したものであることを
特徴とするリチウム電池用非水電解液。
1. A positive electrode using a metal oxide, a sulfide, or the like as an active material, a negative electrode made of metallic lithium, a lithium alloy, or a carbonaceous material capable of inserting and extracting lithium ions, and a nonaqueous electrolytic solution. In the lithium battery, the non-aqueous electrolytic solution contains 1-2 kinds of ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (γ-BL) as a high-dielectric constant solvent, and dimethyl carbonate ( 1 to 1 out of DMC), ethyl methyl carbonate (EMC), and fatty acid ester
A non-aqueous electrolyte solution for a lithium battery, wherein Li (CF 3 SO 2 ) 2 N is dissolved as an electrolyte in a solvent in which two kinds are selected and mixed.
【請求項2】 前記Li(CF3 SO2 2 Nは、前記
非水溶媒に対して0.5〜2.5mol/l混合されて
いることを特徴とする請求項1記載のリチウム電池用非
水電解液。
2. The lithium battery according to claim 1, wherein the Li (CF 3 SO 2 ) 2 N is mixed in an amount of 0.5 to 2.5 mol / l with respect to the non-aqueous solvent. Non-aqueous electrolyte.
【請求項3】 前記高誘電率溶媒のECにPCをECを
超えない量添加してなることを特徴とする請求項1また
は2記載のリチウム電池用非水電解液。
3. The non-aqueous electrolyte for a lithium battery according to claim 1, wherein PC is added to EC of the high dielectric constant solvent in an amount not exceeding EC.
JP6042343A 1994-03-14 1994-03-14 Nonaqueous electrolyte for lithium battery Pending JPH07254434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6042343A JPH07254434A (en) 1994-03-14 1994-03-14 Nonaqueous electrolyte for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6042343A JPH07254434A (en) 1994-03-14 1994-03-14 Nonaqueous electrolyte for lithium battery

Publications (1)

Publication Number Publication Date
JPH07254434A true JPH07254434A (en) 1995-10-03

Family

ID=12633383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6042343A Pending JPH07254434A (en) 1994-03-14 1994-03-14 Nonaqueous electrolyte for lithium battery

Country Status (1)

Country Link
JP (1) JPH07254434A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261395A (en) * 1997-03-19 1998-09-29 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
WO2003105267A1 (en) * 2002-06-06 2003-12-18 日本電気株式会社 Secondary cell
JP2004079321A (en) * 2002-08-16 2004-03-11 Asahi Kasei Electronics Co Ltd Non-aqueous lithium storage element
KR100499114B1 (en) * 1997-08-21 2005-09-26 삼성전자주식회사 Electrolyte for lithium secondary battery and lithium secondary battery using same
JP2009099536A (en) * 2007-09-26 2009-05-07 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2009170428A (en) * 2009-03-23 2009-07-30 Ube Ind Ltd Nonaqueous secondary battery
JP2011508956A (en) * 2008-01-02 2011-03-17 エルジー・ケム・リミテッド Pouch-type lithium secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261395A (en) * 1997-03-19 1998-09-29 Mitsubishi Cable Ind Ltd Lithium ion secondary battery
KR100499114B1 (en) * 1997-08-21 2005-09-26 삼성전자주식회사 Electrolyte for lithium secondary battery and lithium secondary battery using same
WO2003105267A1 (en) * 2002-06-06 2003-12-18 日本電気株式会社 Secondary cell
CN100347902C (en) * 2002-06-06 2007-11-07 日本电气株式会社 Secondary cell
JP2004079321A (en) * 2002-08-16 2004-03-11 Asahi Kasei Electronics Co Ltd Non-aqueous lithium storage element
JP4527931B2 (en) * 2002-08-16 2010-08-18 旭化成株式会社 Non-aqueous lithium storage element
JP2009099536A (en) * 2007-09-26 2009-05-07 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2011508956A (en) * 2008-01-02 2011-03-17 エルジー・ケム・リミテッド Pouch-type lithium secondary battery
JP2009170428A (en) * 2009-03-23 2009-07-30 Ube Ind Ltd Nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
US5744262A (en) Stable high-voltage electrolyte for lithium secondary battery
JP2004134261A (en) Non-aqueous electrolyte secondary battery
JPH11260401A (en) Nonaqueous electrolyte and nonaqueous electrolyte secodary battery
EP0806804B1 (en) Fluorinated carbonate electrolytes for use in a lithium secondary battery
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
KR20180086601A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JPH09147910A (en) Lithium secondary battery
JP2002110230A (en) Non-acqueous electrolyte lithium secondary battery
JPH07254434A (en) Nonaqueous electrolyte for lithium battery
JP2000195548A (en) Nonaqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2005190978A (en) Nonaqueous electrolyte secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JPH0997626A (en) Nonaqueous electrolytic battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH1021960A (en) Secondary battery
US7442471B1 (en) Solvent systems comprising a mixture of lactams and esters for non-aqueous electrolytes and non-aqueous electrolyte cells comprising the same
KR20020055572A (en) Non-aqueous electrolyte secondary battery
KR100408515B1 (en) Organic electrolyte and lithium secondary battery using the same
JP2000077099A (en) Battery
KR100370386B1 (en) Non-aqueous electrolyte solution for lithium battery
JP3086878B1 (en) Lithium metal secondary battery
JPH09167635A (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery