JPH07254425A - Heat retaining device for piping and equipment in fuel gas system in fuel cell power generation system - Google Patents

Heat retaining device for piping and equipment in fuel gas system in fuel cell power generation system

Info

Publication number
JPH07254425A
JPH07254425A JP6068970A JP6897094A JPH07254425A JP H07254425 A JPH07254425 A JP H07254425A JP 6068970 A JP6068970 A JP 6068970A JP 6897094 A JP6897094 A JP 6897094A JP H07254425 A JPH07254425 A JP H07254425A
Authority
JP
Japan
Prior art keywords
fuel gas
raw fuel
fuel cell
power generation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6068970A
Other languages
Japanese (ja)
Other versions
JP2794081B2 (en
Inventor
Yoshikazu Sato
嘉一 佐藤
Koichi Kaneko
浩一 金子
Isao Nakagawa
功夫 中川
Takashi Watanabe
孝志 渡辺
Isamu Osawa
勇 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6068970A priority Critical patent/JP2794081B2/en
Publication of JPH07254425A publication Critical patent/JPH07254425A/en
Application granted granted Critical
Publication of JP2794081B2 publication Critical patent/JP2794081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a heat retaining device in a fuel cell power generation system for preventing reliquefaction of fuel gas flowing through pipings and devices in a fuel gas system through which vaporized fuel gas of liquid fuel flows. CONSTITUTION:An electric heater 2 is wound around the surface of pipings 1 in a fuel gas system, a signal of a detected temperature at a temperature detector 6 provided on the surface is inputted to a control device 7, and a switch 4 is on/off controlled by the control device 7, so the fuel gas is controlled at a specified temperature at which it can be prevented from reliquefaction. Similar heat retaining devices are provided on valves, flow control valves, and heat exchangers provided in the middle of the pipings to control them at the specified temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、燃料電池と燃料改質装
置とを主要構成部とする燃料電池発電システムにおい
て、液体状の原燃料を気化した原燃料ガスが流れ、又は
滞留する原燃料ガス系統の配管,機器の保温装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system mainly composed of a fuel cell and a fuel reformer, in which a raw fuel gas obtained by vaporizing a liquid raw fuel flows or stays. This relates to gas system piping and equipment heat insulation devices.

【従来の技術】燃料電池は水素と酸素との電池反応によ
り発電するものであるが、通常水素は燃料改質装置にて
炭化水素系やアルコール系の原燃料ガスを水素に富むガ
スに改質した改質ガスを使用し、酸素は空気を使用す
る。したがって、燃料電池発電システムは上記燃料改質
装置と燃料電池とを主要構成部として構成され、燃料改
質装置で生成した改質ガスを燃料電池に供給している。
ところで、燃料改質装置は改質触媒が充填された反応管
と、この反応管を燃焼熱により加熱するため、燃料を燃
焼するバーナとを備える改質器と、原燃料ガスが炭化水
素系の場合、改質器の前段に設けられ、この原燃料ガス
に含まれる硫黄分を脱硫する脱硫器と、改質器の後段に
設けられ、改質器からの改質ガス中の一酸化炭素の濃度
を低減させる一酸化炭素変成器とを備えている。ここ
で、改質器に供給される原燃料ガスは、体積が小さくな
り運送等が楽になる液体状の原燃料、例えばプロパン,
ブタン,メタノールやナフサ等の液体状の原燃料が産出
される場所から消費地まで運ばれるので、これらの原燃
料を蒸発器等で気化して得られている。上記のような原
燃料ガスは、配管及びこの途中に配設される弁,流量制
御弁,熱交換器等の機器からなる原燃料ガス系統を経て
改質器に、原燃料が炭化水素系の場合には脱硫器を経て
改質器の反応管に供給されて水蒸気改質される。なお、
燃料電池発電システムを起動する際、例えば冷機状態の
改質器の反応管を改質反応を行なわせるに適する所定温
度まで暖機する必要があり、この場合にも原燃料ガスが
燃料として使用され、改質器のバーナでの前記原燃料ガ
スの燃焼による燃焼熱により改質器は暖機されるが、こ
の際にも原燃料ガスは前述のような配管,機器で形成さ
れる助燃用の原燃料ガス系統を経て前記バーナに供給さ
れる。
2. Description of the Related Art A fuel cell produces electric power by a cell reaction of hydrogen and oxygen. Normally, hydrogen is reformed from a hydrocarbon-based or alcohol-based raw fuel gas into a hydrogen-rich gas in a fuel reformer. The reformed gas is used and oxygen is air. Therefore, the fuel cell power generation system is configured with the fuel reformer and the fuel cell as main components, and supplies the reformed gas generated by the fuel reformer to the fuel cell.
By the way, the fuel reformer includes a reformer equipped with a reaction tube filled with a reforming catalyst, a burner for burning the fuel to heat the reaction tube with combustion heat, and a raw fuel gas of a hydrocarbon type. In this case, a desulfurizer provided before the reformer to desulfurize the sulfur content contained in the raw fuel gas, and a desulfurizer provided after the reformer to remove carbon monoxide in the reformed gas from the reformer. And a carbon monoxide transformer for reducing the concentration. Here, the raw fuel gas supplied to the reformer is a liquid raw fuel such as propane, which has a small volume and is easy to transport.
Since liquid raw fuels such as butane, methanol, and naphtha are transported from the place where they are produced to the place of consumption, these raw fuels are obtained by vaporization with an evaporator or the like. The raw fuel gas as described above passes through a raw fuel gas system including pipes, valves arranged in the middle of the pipe, a flow control valve, a heat exchanger, and the like to a reformer, and the raw fuel is hydrocarbon-based. In some cases, the steam is reformed by being supplied to the reaction tube of the reformer through the desulfurizer. In addition,
When starting the fuel cell power generation system, for example, it is necessary to warm up the reaction tube of the reformer in a cold state to a predetermined temperature suitable for carrying out the reforming reaction, and in this case also, the raw fuel gas is used as fuel. The reformer is warmed up by the combustion heat of the combustion of the raw fuel gas in the burner of the reformer. At this time, the raw fuel gas is also used for supporting combustion formed by the pipes and equipment as described above. It is supplied to the burner through a raw fuel gas system.

【発明が解決しようとする課題】上記のように改質用の
原燃料ガス系統や助熱用の原燃料ガス系統の配管,機器
に流れたり、滞留する改質用,助燃用の原燃料ガスは液
体状の原燃料を気化したものであるので、改質用の原燃
料ガス系統や燃焼用の原燃料ガス系統の配管,機器の雰
囲気が低温であったり、また配管,機器を支持する支持
台への熱移動で冷却されたりすると、冷却された配管,
機器の部分で原燃料ガスが再液化し、原燃料ガスの供給
量を一定に保つことができないという問題がある。ま
た、配管に流量調節をする機器、例えば流量制御弁があ
る場合、流量制御により原燃料ガスが絞られた狭い流路
面積から広い流路面積に流れるときには断熱膨脹し、こ
のため原燃料ガスは冷却されて再液化し、上述と同様に
原燃料ガスの供給量を一定に保持できないという問題が
ある。本発明の目的は、燃料電池発電システムにおい
て、液体状の原燃料を気化した原燃料ガスが流れる原燃
料ガス系統の配管,機器に前記原燃料ガスが流れたり、
滞留する際、冷却されることにより生じる再液化を防止
できる燃料電池発電システムの原燃料ガス系統の配管,
機器の保温装置を提供することである。
As described above, the raw fuel gas for reforming and auxiliary combustion that flows or stays in the pipes and equipment of the raw fuel gas system for reforming and the raw fuel gas system for supporting heat. Is a liquid raw fuel that has been vaporized, so the atmosphere of the piping and equipment of the raw fuel gas system for reforming and the raw fuel gas system for combustion is low, and the support that supports the piping and equipment is If it is cooled by heat transfer to the stand, the cooled pipes,
There is a problem that the raw fuel gas is reliquefied in the equipment part and the supply amount of the raw fuel gas cannot be kept constant. Further, when the pipe has a device for adjusting the flow rate, for example, a flow control valve, the raw fuel gas is adiabatically expanded when flowing from a narrow flow passage area narrowed by the flow control to a wide flow passage area. There is a problem in that the supply amount of the raw fuel gas cannot be kept constant as in the above case by being cooled and reliquefied. An object of the present invention is, in a fuel cell power generation system, the raw fuel gas flowing through piping and equipment of a raw fuel gas system in which a raw fuel gas obtained by vaporizing a liquid raw fuel flows,
Piping of raw fuel gas system of fuel cell power generation system that can prevent reliquefaction caused by cooling when staying,
An object of the present invention is to provide a device heat retention device.

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば燃料電池と燃料改質装置とからなる
燃料電池発電システムにおいて液体状の原燃料を気化し
た原燃料ガスが流れ、又は滞留する原燃料ガス系統の配
管,機器を保温する燃料電池発電システムの原燃料ガス
系統の配管,機器の保温装置において、前記配管,機器
の表面に配設され、これらを加熱する加熱手段と、加熱
した箇所の温度を検出する温度検出器と、この検出器で
の検出温度と原燃料ガスが再液化するのを防止できる所
定温度の目標値との偏差から加熱手段による加熱を制御
する制御手段とを備えるものとする。上記において加熱
手段は、電気ヒータであるものとする。また、加熱手段
は、燃料電池発電システムで発生する温水、又は水蒸気
が通流する伝熱管であるものとする。
To solve the above problems, according to the present invention, a raw fuel gas obtained by vaporizing a liquid raw fuel in a fuel cell power generation system comprising a fuel cell and a fuel reformer flows. , Or a pipe of a raw fuel gas system that stays, a pipe of a raw fuel gas system of a fuel cell power generation system that keeps the equipment warm, or a heat insulating device of the equipment, a heating means that is arranged on the surface of the pipe or the equipment and heats these And a temperature detector that detects the temperature of the heated portion, and the heating by the heating means is controlled from the deviation between the temperature detected by this detector and the target value of the predetermined temperature that can prevent re-liquefaction of the raw fuel gas. And control means. In the above description, the heating means is an electric heater. The heating means is a heat transfer tube through which hot water or steam generated in the fuel cell power generation system flows.

【作用】燃料電池発電システムにおいて、液体状の原燃
料を気化した原燃料ガスは配管及びこの配管の途中に設
けられる弁,流量制御弁,熱交換器等の機器等からなる
原燃料ガス系統に流れたり、また滞留したりする。しか
しながら、原燃料ガス系統の雰囲気が低温であったり、
流量制御のため流量制御弁等で絞られて狭い流路面積か
ら広い流路面積へ流れるときの断熱膨脹により冷却され
たりして原燃料ガスは再液化するので、原燃料ガスが流
れる原燃料ガス系統の配管,機器に加熱手段、この手段
として配管類の表面を覆って配設される電気ヒータ、又
は燃料電池発電システムの発電時発生する温水又は水蒸
気が流れる伝熱管と、この加熱手段により加熱された部
分の温度を検出する温度検出器とを設け、制御手段によ
り温度検出器での検出温度と原燃料ガスが再液化するの
を防止できる所定温度の目標値との偏差から、電気ヒー
タの出力又は伝熱管を流れる温水や水蒸気の流量を制御
して原燃料ガス系統の配管,機器に流れたり、滞留する
原燃料ガスを加熱することにより、前記所定温度に制御
して原燃料ガスの再液化を防止する。
In the fuel cell power generation system, the raw fuel gas obtained by vaporizing the liquid raw fuel is connected to the raw fuel gas system including the pipe and the valve, flow control valve, heat exchanger, and other devices provided in the middle of the pipe. It flows or stays again. However, the atmosphere of the raw fuel gas system is low temperature,
Because the raw fuel gas is reliquefied by being cooled by adiabatic expansion when flowing from a narrow flow passage area to a wide flow passage area by being throttled by a flow control valve etc. for flow control, the raw fuel gas flowing through the raw fuel gas System pipes, heating means for equipment, electric heaters that cover the surface of pipes as this means, or heat transfer tubes through which hot water or steam generated during power generation of a fuel cell power generation system flows, and heating by this heating means And a temperature detector for detecting the temperature of the portion where the temperature of the electric heater is provided, and from the deviation between the temperature detected by the temperature detector by the control means and the target value of the predetermined temperature that can prevent re-liquefaction of the raw fuel gas, By controlling the flow rate of hot water or steam flowing through the output or heat transfer pipe to heat the raw fuel gas flowing to the pipes and equipment of the raw fuel gas system or staying, the temperature is controlled to the predetermined temperature to control the raw fuel gas. To prevent liquefaction.

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例による燃料電池発電シ
ステムにおいて保温装置を備えた原燃料ガス系統の配管
の部分斜視図である。図1において、配管1は気化した
原燃料ガスが流れる配管であり、配管1の表面を覆って
電気ヒータ2が巻かれている。なお、3は電気ヒータ2
の電源、4は電気ヒータ2とこれに接続するリード線5
とからなる回路をon−offするスイッチである。温
度検出器6は電気ヒータ2により加熱される配管1の温
度を検出する。制御装置7は温度検出器6での検出温度
の信号が入力され、この検出温度と原燃料ガスが再液化
するのを防止できる所定温度の目標値との偏差からリレ
イ8を介してスイッチ4をon−off制御する。保温
材9は配管1の表面を電気ヒータ2,温度検出器6を覆
って設けられている。このような構成により、配管1を
電気ヒータ2により加熱し、制御装置7により温度検出
器6での検出温度と配管1を流れる原燃料ガスが再液化
するのを防止する所定温度の目標値との偏差からリレイ
8を介してスイッチ4をon−off制御することによ
り、配管1の温度は前記所定温度になるように制御され
るので、原燃料ガスは再液化しない。図2は本発明の異
なる実施例による燃料電池発電システムにおいて、保温
装置を備えた原燃料ガス系統の配管の部分斜視図であ
る。図2において、配管1の表面を覆って燃料電池発電
システムで発生する温水又は水蒸気が流れる、例えば銅
管からなる伝熱管10を巻き付け、さらに伝熱管10に
接続する管路13に流量制御弁11を設け、温度検出器
6での検出温度と配管1を流れる原燃料ガスの再液化を
防止できる所定温度の目標値との偏差から流量制御弁1
1を制御する制御装置12を設けた他は図1と同じであ
る。このような構成により、伝熱管10に燃料電池発電
システムの発電時発生する温水又は水蒸気を流して配管
1を加熱し、制御装置12により温度検出器6での検出
温度と前記原燃料ガスが再液化するのを防止できる所定
温度の目標値との偏差から、流量制御弁11を制御する
ことにより、配管1の温度は前記所定温度に制御される
ので、原燃料ガスは再液化しない。上記の電気ヒータ2
又は伝熱管10を流れる温水,水蒸気により加熱し、配
管1の温度を原燃料ガスが再液化を防止できる所定温度
に制御して配管1を保温する保温装置は、配管1のみな
らず配管途中に設けられる弁,流量制御弁,熱交換器に
も設けることにより、原燃料ガスの再液化を防止でき
る。上記のような保温装置を燃料電池発電システムにお
ける原燃料ガス系統の配管,機器に採用した例を下記に
示す。図3は炭化水素系の凝縮点の高いブタンガスを原
燃料ガスとして、水素に富むガスに水蒸気改質する改質
器を備えた燃料電池発電システムの系統図である。図3
において、15は反応管16,バーナ17を備える改質
器、18は原燃料に含まれる硫黄分を脱硫する脱硫器、
19は一酸化炭素変成器、20は電解質21とこれを挟
持する燃料極22と空気極23を備える燃料電池、24
は熱交換器、25はスチームエゼクタである。原燃料ガ
ス供給系27は流量制御弁28を備え、熱交換器24を
経由して脱硫器18の入口に接続している。脱硫原燃料
ガス供給系30は脱硫器18の出口と反応管16の入口
とにスチームエゼクタ25,熱交換器24を経由して接
続している。助燃用原燃料ガス供給系31は流量制御弁
32を備えて改質器15のバーナ17に接続している。
水蒸気改質ガス供給系34は改質器15の反応管16の
出口と一酸化炭素変成器19の入口とに熱交換器24を
経由して接続している。改質ガス供給系35は一酸化炭
素変成器19の出口と燃料電池20の燃料極22とに止
め弁36を備えて接続している。オフガス排出系37は
燃料電池20の燃料極22と改質器15のバーナ17と
に止め弁38を備えて接続している。バイパス系39は
燃料電池20をバイパスして、止め弁40を備えて改質
ガス供給系35とオフガス排出系37とに接続してい
る。空気供給系41はブロワ42,流量制御弁43を備
えて空気極23に、またオフ空気排出系44は燃料電池
20の空気極23に接続している。リサイクル系45は
水蒸気改質ガス供給系34から分岐して、止め弁46を
備えて原燃料ガス供給系27の熱交換器24の上流側に
合流している。燃焼空気供給系47はブロワ48,流量
制御弁49を備えて改質器15のバーナ17に接続して
いる。排ガス排出系50は改質器15の燃焼排ガス出口
からオフ空気排出系44に合流している。なお、51は
スチームエゼクタ25に駆動用として水蒸気を供給する
水蒸気供給系である。ここで、気化した原燃料ガスが流
れる図で破線付き実線で示す原燃料ガス供給系27の熱
交換器24を経由して脱硫器18に至るまでの配管、脱
硫原燃料ガス供給系30の脱硫器18からスーチムエゼ
クタ25に至るまでの配管、助燃用原燃料ガス供給系3
1の改質器15のバーナ17に至るまでの配管、及び起
動時止め弁46の閉により原燃料ガスが滞留するリサイ
クル系45の止め弁46から原燃料ガス供給系27との
合流点までの配管には、前述の電気ヒータ,温度検出器
及び制御装置からなる保温装置が設けられている。な
お、これらの配管の途中に設けられる流量制御弁28,
32,止め弁46、及び熱交換器24にも前記保温装置
が設けられている。ここで、前記配管に設ける保温装置
は、雰囲気温度や熱容量等を考慮して適宜分割して独立
して設け、原燃料ガス供給系27の配管は8分割し、脱
硫原燃料ガス供給系30の配管は2分割し、助燃用原燃
料ガス供給系31の配管は2分割して設けられている。
なお、流量制御弁28,32においては弁開度により原
燃料ガスの流れが絞られた後、断熱膨脹して冷却するの
で、流量制御弁28,32の出口部の配管部に温度検出
器を取付けるとともに、保温する設定温度は通常の配管
において原燃料ガスの再液化を防止できる所定温度より
約10℃高い温度を設定温度としている。このような構
成により、燃料電池発電システムを起動するとき、冷機
状態の改質器15を暖機するために助燃用原燃料ガス供
給系31を経て、ブタンからなる原燃料ガスを助燃用原
燃料ガスとして流量制御弁32で流量制御してバーナ1
7に供給し、燃焼空気供給系47を経てブロワ48によ
り昇圧され、流量制御弁49により流量制御されてバー
ナ17に供給される燃焼空気により燃焼する。そして、
この燃焼熱により改質器15の反応管16を改質反応に
適する所定温度まで昇温する。反応管16の昇温後、原
燃料ガスを原燃料ガス供給系27に流し、熱交換器2
4,脱硫器18を経由してスチームエゼクタ25に供給
する。そして、原燃料ガスはスチームエゼクタ25で水
蒸気供給系51を経る駆動用の水蒸気により吸込まれて
反応管16に水蒸気とともに供給されて水蒸気改質され
る。この際、燃料電池20に水蒸気改質されたガスを供
給するまで、改質ガス供給系35の止め弁36及びオフ
ガス排出系37の止め弁38を閉、バイパス系39の止
め弁40を開にして反応管16からの水蒸気改質された
ガスをバイパス系39,オフガス排出系37を経てバー
ナ17に供給し、燃料として使用する。なお、原燃料ガ
スが原燃料ガス供給系27を流れるとき、原燃料ガス供
給系27とリサイクル系45との合流点とリサイクル系
45の止め弁46との間のリサイクル系45には原燃料
ガスが滞留する。燃料電池発電システムの運転は、バイ
パス系39の止め弁40を閉、リサイクル系45の止め
弁46,改質ガス供給系35の止め弁36及びオフガス
排出系37の止め弁38を開にして、下記のようにして
行なわれる。なお、この際、助燃用原燃料ガス供給系3
1を経る助燃用の原燃料ガスはバーナ17に供給されて
ない。ブタンからなる原燃料ガスを原燃料ガス供給系2
7に流し、熱交換器24を経て熱交換により昇温させた
後、脱硫器18に供給する。この際、後述する一酸化炭
素変成器19からの水素に富む改質ガスの一部がリサイ
クル系45を経て脱硫器18に供給される原燃料ガスに
付加される。したがって、改質ガス中の水素を付加され
た原燃料ガスは脱硫器18にて原燃料ガスに含まれる硫
黄分を脱硫する。脱硫された原燃料ガスは脱硫原燃料ガ
ス供給系30を経て水蒸気供給系51を経る水蒸気によ
り駆動されるスチームエゼクタ25に吸込まれ、水蒸気
と混合して熱交換器24にて熱交換により昇温した後、
改質器15の反応管16に供給される。一方、改質器1
5のバーナ17には後述する燃料電池20の燃料極22
からのオフガスがオフガス排出系37を経て供給され
る。そして、このオフガスはバーナ17に燃焼空気供給
系47を経てブロワ48により昇圧され、流量制御弁4
9により流量制御される燃焼空気により燃焼され、この
燃焼熱により反応管16を加熱する。なお、燃焼排ガス
は排ガス排出系50を経てオフ空気排出系44を流れる
燃料電池20からのオフ空気と混合して排出される。こ
こで、加熱された反応管16を通流する水蒸気を混合し
た原燃料ガスは水素に富むガスに水蒸気改質される。こ
の水蒸気改質されたガスは熱交換器24にて冷却された
後、一酸化炭素変成器19に供給され、この水蒸気改質
ガスに含まれ、燃料電池の触媒を被毒させる一酸化炭素
の濃度を低減する。燃料電池20では、上記一酸化炭素
変成器19からの一酸化炭素濃度の低い改質ガスと空気
供給系41を経てブロワ42により昇圧され、流量制御
弁43により流量制御された空気とが供給されて電池反
応を起こして発電する。なお、燃料電池20の発電時生
じる熱は、電池本体に設けられた図示しない冷却板を通
流する冷却水により除熱され、燃料電池20の運転温度
が保持される。なお、燃料電池20からのオフ空気は、
オフ空気排出系44を経て外部に排出される。このよう
に原燃料ガスが系統を流れる際、前述のように破線付き
実線で示した部分の原燃料ガス供給系27,脱硫原燃料
ガス供給系30,起動時原燃料ガスが滞留するリサイク
ル系45,助熱用原燃料ガス供給系31,流量制御弁2
8,32,止め弁46,熱交換器24は前述のように保
温装置が設けられているので、雰囲気が低温であった
り、機器の支持台への熱移動や断熱膨脹による冷却があ
っても、原燃料ガスは保温装置から熱が与えられて所定
温度に保持されるので、原燃料ガスの再液化を防止でき
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a partial perspective view of a pipe of a raw fuel gas system including a heat retaining device in a fuel cell power generation system according to an embodiment of the present invention. In FIG. 1, a pipe 1 is a pipe through which vaporized raw fuel gas flows, and an electric heater 2 is wound to cover the surface of the pipe 1. In addition, 3 is an electric heater 2
Power source 4, electric heater 2 and lead wire 5 connected to the electric heater 2.
It is a switch that turns on-off the circuit consisting of. The temperature detector 6 detects the temperature of the pipe 1 heated by the electric heater 2. The controller 7 receives the signal of the temperature detected by the temperature detector 6, and controls the switch 4 via the relay 8 from the deviation between this detected temperature and the target value of the predetermined temperature at which the raw fuel gas can be prevented from being reliquefied. Control on-off. The heat insulating material 9 is provided so as to cover the surface of the pipe 1 with the electric heater 2 and the temperature detector 6. With such a configuration, the pipe 1 is heated by the electric heater 2, and the control device 7 detects a temperature detected by the temperature detector 6 and a target value of a predetermined temperature for preventing the raw fuel gas flowing in the pipe 1 from being reliquefied. By controlling the switch 4 on-off via the relay 8 from the deviation of 1, the temperature of the pipe 1 is controlled to the predetermined temperature, so that the raw fuel gas is not reliquefied. FIG. 2 is a partial perspective view of piping of a raw fuel gas system including a heat retaining device in a fuel cell power generation system according to another embodiment of the present invention. In FIG. 2, a heat transfer tube 10 made of, for example, a copper tube, in which hot water or steam generated in the fuel cell power generation system flows so as to cover the surface of the tube 1, is wound, and a flow path control valve 11 is provided in a conduit 13 connected to the heat transfer tube 10. The flow control valve 1 is provided based on a deviation between a temperature detected by the temperature detector 6 and a target value of a predetermined temperature capable of preventing reliquefaction of the raw fuel gas flowing through the pipe 1.
1 is the same as that of FIG. 1 except that a control device 12 for controlling 1 is provided. With such a configuration, hot water or steam generated during power generation of the fuel cell power generation system is caused to flow through the heat transfer pipe 10 to heat the pipe 1, and the temperature detected by the temperature detector 6 and the raw fuel gas are regenerated by the control device 12. Since the temperature of the pipe 1 is controlled to the predetermined temperature by controlling the flow rate control valve 11 from the deviation from the target value of the predetermined temperature that can prevent liquefaction, the raw fuel gas is not reliquefied. Electric heater 2 above
Alternatively, the heat insulating device that heats the pipe 1 by hot water or steam flowing through the heat transfer pipe 10 to control the temperature of the pipe 1 to a predetermined temperature that can prevent re-liquefaction of the raw fuel gas is used not only in the pipe 1 but also in the middle of the pipe. Re-liquefaction of the raw fuel gas can be prevented by providing the valve, the flow rate control valve, and the heat exchanger. The following is an example of applying the above heat retaining device to the piping and equipment of the raw fuel gas system in a fuel cell power generation system. FIG. 3 is a system diagram of a fuel cell power generation system including a reformer for steam reforming a gas rich in hydrogen using butane gas having a high condensation point of hydrocarbon as a raw fuel gas. Figure 3
In the above, 15 is a reformer equipped with a reaction tube 16 and a burner 17, 18 is a desulfurizer for desulfurizing sulfur contained in raw fuel,
Reference numeral 19 is a carbon monoxide transformer, 20 is a fuel cell including an electrolyte 21, and a fuel electrode 22 and an air electrode 23 that sandwich the electrolyte 21, 24
Is a heat exchanger, and 25 is a steam ejector. The raw fuel gas supply system 27 includes a flow rate control valve 28 and is connected to the inlet of the desulfurizer 18 via the heat exchanger 24. The desulfurization raw fuel gas supply system 30 is connected to the outlet of the desulfurizer 18 and the inlet of the reaction tube 16 via a steam ejector 25 and a heat exchanger 24. The auxiliary combustion raw fuel gas supply system 31 includes a flow rate control valve 32 and is connected to the burner 17 of the reformer 15.
The steam reformed gas supply system 34 is connected to the outlet of the reaction tube 16 of the reformer 15 and the inlet of the carbon monoxide shift converter 19 via the heat exchanger 24. The reformed gas supply system 35 is connected to the outlet of the carbon monoxide shift converter 19 and the fuel electrode 22 of the fuel cell 20 with a stop valve 36. The off-gas exhaust system 37 is connected to the fuel electrode 22 of the fuel cell 20 and the burner 17 of the reformer 15 with a stop valve 38. The bypass system 39 bypasses the fuel cell 20 and includes a stop valve 40, which is connected to the reformed gas supply system 35 and the off-gas discharge system 37. The air supply system 41 includes a blower 42 and a flow rate control valve 43, and is connected to the air electrode 23, and the off-air discharge system 44 is connected to the air electrode 23 of the fuel cell 20. The recycle system 45 is branched from the steam reformed gas supply system 34 and is provided with a stop valve 46 to join the raw fuel gas supply system 27 upstream of the heat exchanger 24. The combustion air supply system 47 includes a blower 48 and a flow rate control valve 49, and is connected to the burner 17 of the reformer 15. The exhaust gas exhaust system 50 joins the off-air exhaust system 44 from the combustion exhaust gas outlet of the reformer 15. Reference numeral 51 is a steam supply system for supplying steam to the steam ejector 25 for driving. Here, the pipe leading to the desulfurizer 18 via the heat exchanger 24 of the raw fuel gas supply system 27 shown by the solid line with a broken line in the figure in which the vaporized raw fuel gas flows, the desulfurization of the desulfurization raw fuel gas supply system 30 Piping from the container 18 to the Sutim ejector 25, raw fuel gas supply system 3 for auxiliary combustion
1 to the burner 17 of the reformer 15 and from the stop valve 46 of the recycle system 45 where the raw fuel gas stays due to the closing of the start stop valve 46 to the confluence with the raw fuel gas supply system 27. The pipe is provided with a heat retention device including the electric heater, the temperature detector, and the control device described above. In addition, the flow control valve 28 provided in the middle of these pipes,
32, the stop valve 46, and the heat exchanger 24 are also provided with the heat retaining device. Here, the heat retaining device provided in the pipe is appropriately divided and provided independently in consideration of the ambient temperature, the heat capacity, etc., and the pipe of the raw fuel gas supply system 27 is divided into eight parts to obtain the desulfurization raw fuel gas supply system 30. The pipe is divided into two parts, and the pipe of the auxiliary combustion raw fuel gas supply system 31 is divided into two parts.
In the flow rate control valves 28 and 32, the flow of the raw fuel gas is throttled by the valve opening degree and then adiabatically expanded to cool the flow rate. Therefore, a temperature detector is installed in the pipe section at the outlet of the flow rate control valves 28 and 32. The set temperature for mounting and keeping the temperature higher is about 10 ° C. higher than a predetermined temperature that can prevent reliquefaction of the raw fuel gas in a normal pipe. With such a configuration, when starting the fuel cell power generation system, the raw fuel gas composed of butane is fed to the raw fuel gas for auxiliary combustion via the raw fuel gas for auxiliary combustion 31 in order to warm up the reformer 15 in the cold state. The burner 1 is controlled by the flow rate control valve 32 as gas.
7, the pressure is increased by the blower 48 via the combustion air supply system 47, the flow rate is controlled by the flow rate control valve 49, and combustion is performed by the combustion air supplied to the burner 17. And
The combustion heat heats the reaction tube 16 of the reformer 15 to a predetermined temperature suitable for the reforming reaction. After the temperature of the reaction tube 16 is raised, the raw fuel gas is caused to flow into the raw fuel gas supply system 27, and the heat exchanger 2
4, It supplies to the steam ejector 25 via the desulfurizer 18. Then, the raw fuel gas is sucked by the driving steam passing through the steam supply system 51 by the steam ejector 25 and supplied to the reaction tube 16 together with the steam for steam reforming. At this time, the stop valve 36 of the reformed gas supply system 35 and the stop valve 38 of the off gas discharge system 37 are closed, and the stop valve 40 of the bypass system 39 is opened until the steam-reformed gas is supplied to the fuel cell 20. The steam-reformed gas from the reaction tube 16 is supplied to the burner 17 through the bypass system 39 and the off-gas discharge system 37 and used as fuel. When the raw fuel gas flows through the raw fuel gas supply system 27, the recycle system 45 between the confluence of the raw fuel gas supply system 27 and the recycle system 45 and the stop valve 46 of the recycle system 45 has the raw fuel gas. Stays. In the operation of the fuel cell power generation system, the stop valve 40 of the bypass system 39 is closed, the stop valve 46 of the recycle system 45, the stop valve 36 of the reformed gas supply system 35, and the stop valve 38 of the off gas discharge system 37 are opened, It is performed as follows. At this time, the auxiliary combustion raw fuel gas supply system 3
The raw fuel gas for assisting combustion passing through 1 is not supplied to the burner 17. Raw fuel gas supply system 2 consisting of butane
7 and the temperature is raised by heat exchange through the heat exchanger 24, and then supplied to the desulfurizer 18. At this time, a part of the hydrogen-rich reformed gas from the carbon monoxide shift converter 19, which will be described later, is added to the raw fuel gas supplied to the desulfurizer 18 through the recycle system 45. Therefore, the hydrogen-added raw fuel gas in the reformed gas is desulfurized by the desulfurizer 18 to remove the sulfur content contained in the raw fuel gas. The desulfurized raw fuel gas is sucked into the steam ejector 25 driven by the steam passing through the desulfurization raw fuel gas supply system 30 and the steam supply system 51, mixed with the steam, and heated by heat exchange in the heat exchanger 24. After doing
It is supplied to the reaction tube 16 of the reformer 15. On the other hand, reformer 1
The burner 17 of No. 5 has a fuel electrode 22 of a fuel cell 20 described later.
Off gas is supplied through the off gas exhaust system 37. Then, this off gas is boosted by the blower 48 through the combustion air supply system 47 to the burner 17, and the flow control valve 4
It is burned by the combustion air whose flow rate is controlled by 9, and the reaction tube 16 is heated by this combustion heat. It should be noted that the combustion exhaust gas is mixed with the off air from the fuel cell 20 flowing through the off air exhaust system 44 via the exhaust gas exhaust system 50 and is exhausted. Here, the raw fuel gas mixed with steam flowing through the heated reaction tube 16 is steam-reformed into a gas rich in hydrogen. The steam-reformed gas is cooled by the heat exchanger 24 and then supplied to the carbon monoxide shift converter 19, which contains carbon monoxide contained in the steam-reformed gas and poisoning the catalyst of the fuel cell. Reduce the concentration. In the fuel cell 20, the reformed gas having a low carbon monoxide concentration from the carbon monoxide shift converter 19 and the air whose pressure is increased by the blower 42 through the air supply system 41 and whose flow rate is controlled by the flow rate control valve 43 are supplied. Generate a battery reaction to generate electricity. The heat generated during power generation of the fuel cell 20 is removed by cooling water flowing through a cooling plate (not shown) provided in the cell body, and the operating temperature of the fuel cell 20 is maintained. The off air from the fuel cell 20 is
It is discharged to the outside through the off-air discharge system 44. As described above, when the raw fuel gas flows through the system as described above, the raw fuel gas supply system 27, the desulfurization raw fuel gas supply system 30, and the recycle system 45 in which the raw fuel gas at start-up stays are shown in the solid line with the broken line as described above. , Auxiliary fuel raw fuel gas supply system 31, flow control valve 2
Since the heat retaining device is provided for the 8, 32, the stop valve 46, and the heat exchanger 24 as described above, even if the atmosphere has a low temperature, heat is transferred to the support base of the equipment, or cooling is performed by adiabatic expansion. Since the raw fuel gas is heated at a predetermined temperature by being given heat from the heat retaining device, reliquefaction of the raw fuel gas can be prevented.

【発明の効果】以上の説明から明らかなように、本発明
によれば燃料電池発電システムにおいて液体状の原燃料
を気化した原燃料ガスが流れる原燃料ガス系統の配管,
機器の表面に加熱手段、この手段として電気ヒータ,燃
料電池発電システムで発生する温水、又は水蒸気が流れ
る伝熱管を取付け、さらに温度検出器で温度検出し、制
御手段により原燃料ガスの再液化を防止できる所定温度
に制御するようにしたので、雰囲気が低温であったり、
機器支持台への熱移動により冷却されたり、流量制御に
よる流量の絞りにより生じる断熱膨脹により冷却されて
も、原燃料ガスの再液化を防止できる。
As is apparent from the above description, according to the present invention, in the fuel cell power generation system, the raw fuel gas system piping in which the raw fuel gas obtained by vaporizing the liquid raw fuel flows,
A heating means, an electric heater as this means, a heat transfer tube through which hot water or steam generated in the fuel cell power generation system flows, is attached to the surface of the equipment, the temperature is detected by a temperature detector, and the raw fuel gas is reliquefied by the control means. Since the temperature is controlled to a predetermined temperature that can be prevented, the atmosphere is low,
It is possible to prevent re-liquefaction of the raw fuel gas even if the raw fuel gas is cooled by heat transfer to the equipment support table or by adiabatic expansion caused by restriction of the flow rate by flow rate control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による保温装置を設けた原燃料
ガス系統の配管の部分斜視図
FIG. 1 is a partial perspective view of a pipe of a raw fuel gas system provided with a heat insulating device according to an embodiment of the present invention.

【図2】本発明の異なる実施例による保温装置を設けた
原燃料ガス系統の配管の部分斜視図
FIG. 2 is a partial perspective view of a pipe of a raw fuel gas system provided with a heat insulating device according to another embodiment of the present invention.

【図3】本発明の実施例による原燃料ガス供給系の配
管,機器に保温装置を設けた原燃料ガス系統を備える燃
料電池発電システムの系統図
FIG. 3 is a system diagram of a fuel cell power generation system including a raw fuel gas system in which a heat insulating device is installed in a pipe and equipment of a raw fuel gas supply system according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 配管 2 電気ヒータ 6 温度検出器 7 制御装置 10 伝熱管 11 流量制御弁 12 制御装置 DESCRIPTION OF SYMBOLS 1 Piping 2 Electric heater 6 Temperature detector 7 Control device 10 Heat transfer pipe 11 Flow control valve 12 Control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 孝志 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 大澤 勇 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Watanabe 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. No. 1 inside Fuji Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】燃料電池と燃料改質装置とからなる燃料電
池発電システムにおいて液体状の原燃料を気化した原燃
料ガスが流れ、又は滞留する原燃料ガス系統の配管,機
器を保温する燃料電池発電システムの原燃料ガス系統の
配管,機器の保温装置において、前記配管,機器の表面
に配設され、これらを加熱する加熱手段と、加熱した箇
所の温度を検出する温度検出器と、この検出器での検出
温度と原燃料ガスが再液化するのを防止できる所定温度
の目標値との偏差から加熱手段による加熱を制御する制
御手段とを備えたことを特徴とする燃料電池発電システ
ムの原燃料ガス系統の配管,機器の保温装置。
1. A fuel cell for maintaining the temperature of piping and equipment of a raw fuel gas system in which a raw fuel gas obtained by vaporizing a liquid raw fuel flows or stays in a fuel cell power generation system including a fuel cell and a fuel reformer. In a pipe of a raw fuel gas system of a power generation system and a heat insulating device of a device, a heating means disposed on the surface of the pipe and the device for heating them, a temperature detector for detecting the temperature of a heated portion, and this detection Of the fuel cell power generation system, comprising: a control means for controlling heating by the heating means based on a deviation between a temperature detected by the reactor and a target value of a predetermined temperature capable of preventing re-liquefaction of the raw fuel gas. Fuel gas system piping, equipment heat insulation device.
【請求項2】請求項1記載のものにおいて、加熱手段は
電気ヒータであることを特徴とする燃料電池発電システ
ムの原燃料ガス系統の配管,機器の保温装置。
2. The heat insulation device for piping and equipment of a raw fuel gas system of a fuel cell power generation system according to claim 1, wherein the heating means is an electric heater.
【請求項3】請求項1記載のものにおいて、加熱手段は
燃料電池発電システムで発生する温水、又は水蒸気が通
流する伝熱管であることを特徴とする燃料電池発電シス
テムの原燃料ガス系統の配管,機器の保温装置。
3. The raw fuel gas system of a fuel cell power generation system according to claim 1, wherein the heating means is a heat transfer tube through which hot water or steam generated in the fuel cell power generation system flows. A heat insulation device for piping and equipment.
JP6068970A 1994-03-15 1994-03-15 Fuel cell power generation system Expired - Lifetime JP2794081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6068970A JP2794081B2 (en) 1994-03-15 1994-03-15 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6068970A JP2794081B2 (en) 1994-03-15 1994-03-15 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH07254425A true JPH07254425A (en) 1995-10-03
JP2794081B2 JP2794081B2 (en) 1998-09-03

Family

ID=13389045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6068970A Expired - Lifetime JP2794081B2 (en) 1994-03-15 1994-03-15 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2794081B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014616A1 (en) * 1998-09-09 2000-03-16 Millipore Corporation Component heater for use in semiconductor manufacturing equipment
JP2008192425A (en) * 2007-02-02 2008-08-21 Nippon Oil Corp Fuel cell system and its operation method
JP2013538319A (en) * 2010-07-12 2013-10-10 ダイムラー・アクチェンゲゼルシャフト Equipment for connecting pipe elements to components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216965A (en) * 1990-01-23 1991-09-24 Toshiba Corp Fuel cell plant
JPH03252062A (en) * 1990-03-01 1991-11-11 Fuji Electric Co Ltd Fuel cell power generating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216965A (en) * 1990-01-23 1991-09-24 Toshiba Corp Fuel cell plant
JPH03252062A (en) * 1990-03-01 1991-11-11 Fuji Electric Co Ltd Fuel cell power generating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014616A1 (en) * 1998-09-09 2000-03-16 Millipore Corporation Component heater for use in semiconductor manufacturing equipment
JP2008192425A (en) * 2007-02-02 2008-08-21 Nippon Oil Corp Fuel cell system and its operation method
JP2013538319A (en) * 2010-07-12 2013-10-10 ダイムラー・アクチェンゲゼルシャフト Equipment for connecting pipe elements to components

Also Published As

Publication number Publication date
JP2794081B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
US7052787B2 (en) Solid high polymer type fuel cell power generating device
CA2678397C (en) Reformer system, fuel cell system, and their operation method
CN101743190B (en) Hydrogen system and method for starting up a hydrogen system
US20110189567A1 (en) High Temperature Fuel Cell System and Method of Operating the Same
JP5138324B2 (en) Reformer and fuel cell system
JP2003197243A (en) Unified fuel processing equipment for rapid starting and operation control
US4965143A (en) Shutdown method for fuel cell system
US6833209B2 (en) Fuel-cell co-generation system, of electrical energy and hot water
US6797418B1 (en) Fuel processor for fuel cell
JP2017068913A (en) Fuel battery system
JP4452016B2 (en) Desulfurization apparatus, fuel cell system and operation method thereof
JPH07254425A (en) Heat retaining device for piping and equipment in fuel gas system in fuel cell power generation system
JPH0888015A (en) Fuel switching type fuel cell power generating system
JP2004127841A (en) Fuel battery cogeneration system
JP5102938B2 (en) Fuel cell power generation system and starting method thereof
JPH0676847A (en) Starting method for fuel cell and device thereof
JP3062219B2 (en) Heat medium heating device of fuel reformer for fuel cell
JPH08100184A (en) Carbon monoxide removing system
JP2003077517A (en) Fuel cell system
JP2002080204A (en) Shutting-down and maintaining method for hydrogen- containing gas generator
JPH0773897A (en) Fuel cell power generator
JP2015022863A (en) Fuel cell system
JPH0773896A (en) Fuel cell power generator
JPH07249422A (en) Fuel cell power generating device
JP2006236779A (en) Humidifying system and fuel cell power generation system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term