JPH07253455A - Squid fluxmeter - Google Patents

Squid fluxmeter

Info

Publication number
JPH07253455A
JPH07253455A JP6068952A JP6895294A JPH07253455A JP H07253455 A JPH07253455 A JP H07253455A JP 6068952 A JP6068952 A JP 6068952A JP 6895294 A JP6895294 A JP 6895294A JP H07253455 A JPH07253455 A JP H07253455A
Authority
JP
Japan
Prior art keywords
flux
voltage
squid
characteristic
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6068952A
Other languages
Japanese (ja)
Inventor
Gen Uehara
弦 上原
Naoki Matsuda
直樹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHODENDO SENSOR KENKYUSHO KK
Original Assignee
CHODENDO SENSOR KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHODENDO SENSOR KENKYUSHO KK filed Critical CHODENDO SENSOR KENKYUSHO KK
Priority to JP6068952A priority Critical patent/JPH07253455A/en
Publication of JPH07253455A publication Critical patent/JPH07253455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To tilt the flux-current characteristic of a SQUID fluxmeter and increase the flux-voltage conversion factor of the fluxmeter so as to reduce flux noise by making the injecting position of a bias current asymmetric with respect to inductances. CONSTITUTION:Although the graph showing the flux-voltage characteristic of a SQUID fluxmeter usually becomes a symmetric sine wave, the graph becomes to rise steeply and the characteristic becomes to tilt as a whole, since the injecting position 2 of a bias current IB is asymmetric with respect to inductances 3 and 4. In the graph showing the flux-flux vs voltage conversion factor characteristic obtained from the graph showing the flux-voltage characteristic, the flux-voltage conversion factor is a measure representing dV/dPHI. The ratio of external magnetic fluxes PHI to the magnetic flux quantum PHI0 is shown as the abscissa and the voltage (microvolts) is shown as the ordinate. Since the graph showing the flux-voltage characteristic is inclined, the value of the flux-voltage conversion factor (dV/dPHI) in the graph showing the flux-flux vs voltage conversion factor characteristic also increases. Therefore, the amplitude of the output voltage of a SQUID(superconducting quantum interference device) becomes larger and the SQUID does not produce much noise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人体から発生する磁場
を計測することによる医療診断装置(詳細には心磁波、
脳磁波、眼筋磁場等の生体磁気を計測する装置)、また
は、地磁気計測用装置、あるいは物性測定装置(詳細に
は物質の帯磁率を計測する装置)、さらには通信装置
(詳細には磁気的信号伝送用のインターフェイス)等に
適したSQUID(Superconducting Quantum Interfer
ence Device :超伝導量子干渉デバイス)磁束計に関す
る。ここに、SQUIDとは、超伝導ループ21内に外
部から磁束が印加されると、ループに周回電流が誘起さ
れ、ループ内のジョセフソン接合における量子的な干渉
効果により、印加された外部磁束の微小な変化が周回電
流の大きな変化となって現れることを利用して、微小磁
束変化を測定するための素子である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical diagnostic device (specifically, a magnetocardiogram,
A device for measuring biomagnetism such as brain magnetic waves and eye muscle magnetic fields), a device for measuring geomagnetism, or a device for measuring physical properties (specifically, a device for measuring magnetic susceptibility of a substance), and a communication device (specifically magnetic device). SQUID (Superconducting Quantum Interfer) suitable for dynamic signal transmission interface)
ence Device: superconducting quantum interference device) Here, SQUID means that when a magnetic flux is applied to the superconducting loop 21 from the outside, a circulating current is induced in the loop, and the applied external magnetic flux is caused by a quantum interference effect in the Josephson junction in the loop. This is an element for measuring a minute change in magnetic flux by utilizing the fact that a minute change appears as a large change in the circulating current.

【0002】[0002]

【従来の技術】従来のSQUID磁束計では、磁束電圧
特性の周期関数に対して、ある周波数の変調磁束を加え
てその出力電圧を同じ周波数で検波することにより磁場
を計測する方式が知られている。すなわち、ピックアッ
プコイルや入力コイルを通じてSQUIDループに外部
磁束を結合し、SQUIDループに変調コイルを近接さ
せて配置する。SQUIDの出力電圧を、インピーダン
ス整合回路や前置増幅器を経てPSD(Phase Sensitiv
e Detector:位相弁別器)においてロックイン検波し、
Φ−V曲線の1次微分が得る。この出力を上記の変調コ
イルに加算してネガティブフィードバックすると、Φ−
V曲線の1次微分が零になる点(山あるいは谷)に安定
し、測定すべき磁場は、上記のフィードバック量を出力
でモニターすることにより得ることができる。上記の方
法は、FLL(Flux Locked Loop:磁束ロックループ)
法と呼ばれ、いわゆる「零位法」の一種である。しか
し、上記のように、磁束電圧特性(Φ−V特性)の周期
関数に対して、ある周波数の変調磁束を与えてその出力
電圧を同じ周波数で検波する方式では、変調を加えるた
めの発振器、検波するための位相弁別器などが必要にな
り、電子回路が複雑になる、という欠点があった。ま
た、この方式では、図5に示すように、バイアス電流I
B の注入位置12はSQUIDループ11のインダクタ
ンス13,14に関して対称位置となっていた。これに
対して、D. Drungらは、変調をかけずにSQUIDの出
力電圧を直接基準電圧と比較する方式を提案し、回路が
複雑になることを防いだ。また、磁束電圧変換係数を増
すためにAPF(Additional Positive Feedback )コ
イルを付加するという工夫を行った。
2. Description of the Related Art In a conventional SQUID magnetometer, there is known a method of measuring a magnetic field by adding a modulating magnetic flux of a certain frequency to a periodic function of a magnetic flux voltage characteristic and detecting its output voltage at the same frequency. There is. That is, the external magnetic flux is coupled to the SQUID loop through the pickup coil and the input coil, and the modulation coil is arranged close to the SQUID loop. The output voltage of SQUID is passed through an impedance matching circuit and a preamplifier to PSD (Phase Sensitiv
e Detector: Phase discriminator) for lock-in detection,
The first derivative of the Φ-V curve is obtained. When this output is added to the above modulation coil and negative feedback is performed, Φ−
The magnetic field that is stable at the point (peak or valley) where the first derivative of the V curve becomes zero can be obtained by monitoring the above feedback amount at the output. The above method is FLL (Flux Locked Loop)
It is called the law and is a kind of the so-called "zero-level method". However, as described above, in the method of applying a modulation magnetic flux of a certain frequency to the periodic function of the magnetic flux voltage characteristic (Φ-V characteristic) and detecting the output voltage at the same frequency, an oscillator for applying modulation, A phase discriminator or the like for detection is required, and the electronic circuit becomes complicated. In addition, in this method, as shown in FIG.
The injection position 12 of B was symmetrical with respect to the inductances 13 and 14 of the SQUID loop 11. On the other hand, D. Drung et al. Proposed a method of directly comparing the output voltage of the SQUID with a reference voltage without applying modulation, and prevented the circuit from becoming complicated. Further, in order to increase the magnetic flux voltage conversion coefficient, an APF (Additional Positive Feedback) coil is added.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のD. Dru
ngらの方式のSQUID磁束計では、図6に示すよう
に、抵抗Rと超伝導コイル18を直列接続した回路をS
QUID11の出力端子に並列接続する構成を採用して
おり、図7に示すように通常は対称な正弦波形となる磁
束−電圧特性が全体として傾斜するが、抵抗Rによって
発生する電流性の雑音がSQUID磁束雑音としてSQ
UID出力に結合してしまう、という欠点があった。上
記において、VA はSQUIDの出力電圧、Φexは、S
QUID11の外部から印加される外部磁束、Mは相互
インダクタンスである。本発明は、上記の問題点を解決
するためになされたものであり、電子回路を複雑化する
ことなく磁束雑音を低減しうるSQUID磁束計を提供
することを目的とする。
[Problems to be Solved by the Invention] However, the above-mentioned D. Dru
In the SQUID magnetometer of the method of ng et al., as shown in FIG. 6, a circuit in which a resistor R and a superconducting coil 18 are connected in series is used.
The configuration in which the output terminal of the QUID 11 is connected in parallel is adopted, and as shown in FIG. 7, the magnetic flux-voltage characteristic, which normally has a symmetrical sine waveform, is inclined as a whole, but the current noise generated by the resistor R is SQUID SQ as magnetic flux noise
There was a drawback that it was tied to the UID output. In the above, VA is the output voltage of SQUID and Φex is S
External magnetic flux applied from the outside of the QUID 11 and M are mutual inductances. The present invention has been made to solve the above problems, and an object of the present invention is to provide an SQUID magnetometer capable of reducing magnetic flux noise without complicating an electronic circuit.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本発明に係るSQUID磁束計は、SQUIDルー
プのバイアス電流注入位置を非対称位置に設けることに
より電圧磁束特性を傾斜させ、出力電圧を基準電圧と比
較することにより磁束ロックループを構成する。
In order to solve the above problems, in the SQUID magnetometer according to the present invention, the bias current injection position of the SQUID loop is provided at an asymmetrical position so that the voltage magnetic flux characteristic is inclined and the output voltage is reduced. A magnetic flux lock loop is constructed by comparing with a reference voltage.

【0005】[0005]

【作用】上記構成を有する本発明によれば、バイアス電
流の注入位置を非対称位置とすることにより、磁束電圧
特性が傾斜し、磁束電圧変換係数(dV/dΦ)が増大
し、磁束雑音は低減することができる。
According to the present invention having the above-mentioned structure, by making the injection position of the bias current asymmetrical, the magnetic flux voltage characteristic is inclined, the magnetic flux voltage conversion coefficient (dV / dΦ) is increased, and the magnetic flux noise is reduced. can do.

【0006】[0006]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。図1は、本発明の一実施例であるSQUID磁
束計におけるSQUIDループ1の構成を示した等価回
路図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an equivalent circuit diagram showing the configuration of the SQUID loop 1 in the SQUID magnetometer which is an embodiment of the present invention.

【0007】このSQUIDループ1は、インダクタン
ス3,4と、ジョセフソン接合5,6とを有し、その一
部が位置7で接地されたSQUIDループであり、イン
ダクタンスに関して非対称となる位置2にバイアス電流
IB が注入されるように構成されている。
The SQUID loop 1 is an SQUID loop having inductances 3 and 4 and Josephson junctions 5 and 6, and a part of the SQUID loop is grounded at a position 7. The SQUID loop 1 is biased at a position 2 which is asymmetric with respect to the inductance. The current IB is arranged to be injected.

【0008】図2は、上記のSQUID1の外部から印
加される磁束である外部磁束Φexと出力電圧Vとの関係
(Φ−V特性)を示す磁束−電圧特性グラフである。グ
ラフの横軸は、外部磁束Φと磁束量子Φo との比Φ/Φ
o 、グラフの縦軸は、電圧(単位:マイクロボルト)で
ある。
FIG. 2 is a magnetic flux-voltage characteristic graph showing the relationship (Φ-V characteristic) between the output voltage V and the external magnetic flux Φex which is the magnetic flux applied from the outside of the SQUID 1. The horizontal axis of the graph is the ratio of external magnetic flux Φ and magnetic flux quantum Φo Φ / Φ
o, the vertical axis of the graph is voltage (unit: microvolt).

【0009】図2の磁束−電圧特性グラフは、通常は対
称な正弦波形となるが、本実施例では、バイアス電流I
B の注入位置2がインダクタンスに関して非対称となっ
ているので、波形の立上りが急になり、磁束−電圧特性
は全体として傾斜する。
The magnetic flux-voltage characteristic graph of FIG. 2 usually has a symmetrical sine waveform, but in this embodiment, the bias current I
Since the injection position 2 of B is asymmetric with respect to the inductance, the rising edge of the waveform becomes steep and the magnetic flux-voltage characteristic is inclined as a whole.

【0010】図3は、上記の磁束−電圧特性グラフから
得られる磁束−磁束電圧変換係数特性のグラフである。
ここに、磁束電圧変換係数とは、dV/dΦを示す量で
ある。グラフの横軸は、外部磁束Φと磁束量子Φo との
比Φ/Φo 、グラフの縦軸は、電圧(単位:マイクロボ
ルト)である。
FIG. 3 is a graph of the magnetic flux-magnetic flux voltage conversion coefficient characteristic obtained from the above magnetic flux-voltage characteristic graph.
Here, the magnetic flux voltage conversion coefficient is an amount indicating dV / dΦ. The horizontal axis of the graph is the ratio Φ / Φo of the external magnetic flux Φ and the magnetic flux quantum Φo, and the vertical axis of the graph is the voltage (unit: microvolt).

【0011】上述したように、図2に示す本実施例の磁
束−電圧特性グラフが傾斜するので、磁束−磁束電圧変
換係数特性グラフにおける磁束電圧変換係数(dV/d
Φ)の値も増大している。
As described above, since the magnetic flux-voltage characteristic graph of this embodiment shown in FIG. 2 is inclined, the magnetic flux voltage conversion coefficient (dV / d) in the magnetic flux-magnetic flux voltage conversion coefficient characteristic graph is shown.
The value of Φ) is also increasing.

【0012】次に、従来のSQUIDと本実施例のSQ
UIDを比較する。従来のAPF法により磁束電圧特性
を傾斜させた場合のSQUID出力電圧を図4のbに、
本実施例のようにバイアス電流IB の注入位置2をイン
ダクタンスに関して非対称とすることにより磁束電圧特
性を傾斜させた場合のSQUID出力電圧を図4のa
に、それぞれ示す。図4からわかるように、SQUID
の出力電圧振幅は、従来のAPF法の場合に比べ、本実
施例の方が大きい。これは、APF法に比べ、本実施例
の構成の方が雑音が少ないからである。
Next, the conventional SQUID and the SQ of this embodiment
Compare UIDs. The SQUID output voltage when the magnetic flux voltage characteristic is inclined by the conventional APF method is shown in b of FIG.
The SQUID output voltage in the case where the magnetic flux voltage characteristic is inclined by making the injection position 2 of the bias current IB asymmetric with respect to the inductance as in the present embodiment is shown in FIG.
, Respectively. As you can see from Figure 4, SQUID
The output voltage amplitude of 1 is larger in this embodiment than in the case of the conventional APF method. This is because the configuration of this embodiment has less noise than the APF method.

【0013】なお、本発明は、上記実施例に限定される
ものではない。上記実施例は、例示であり、本発明の特
許請求の範囲に記載された技術的思想と実質的に同一な
構成を有し、同様な作用効果を奏するものは、いかなる
ものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-mentioned embodiment is an exemplification, has substantially the same configuration as the technical idea described in the scope of the claims of the present invention, and has any similar effect to the present invention. It is included in the technical scope of the invention.

【0014】[0014]

【発明の効果】以上説明したように、上記構成を有する
本発明によれば、バイアス電流の注入位置を非対称位置
とすることにより、磁束電圧特性が傾斜し、磁束電圧変
換係数(dV/dΦ)が増大し、磁束雑音は低減するこ
とができる、という利点を有している。
As described above, according to the present invention having the above-described structure, by making the injection position of the bias current asymmetrical, the magnetic flux voltage characteristic is inclined, and the magnetic flux voltage conversion coefficient (dV / dΦ). , And the magnetic flux noise can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるSQUID磁束計にお
けるSQUIDループの等価回路図である。
FIG. 1 is an equivalent circuit diagram of an SQUID loop in an SQUID magnetometer that is an embodiment of the present invention.

【図2】図1に示すSQUID磁束計の磁束−電圧特性
を示す図である。
FIG. 2 is a diagram showing a magnetic flux-voltage characteristic of the SQUID magnetometer shown in FIG.

【図3】図1に示すSQUID磁束計の磁束−磁束電圧
変換係数特性を示す図である。
FIG. 3 is a diagram showing a magnetic flux-magnetic flux voltage conversion coefficient characteristic of the SQUID magnetometer shown in FIG. 1.

【図4】図1に示すSQUID磁束計の電圧振幅を従来
のSQUID磁束計の電圧振幅と比較して示した図であ
る。
FIG. 4 is a diagram showing the voltage amplitude of the SQUID magnetometer shown in FIG. 1 in comparison with the voltage amplitude of a conventional SQUID magnetometer.

【図5】従来のSQUID磁束計におけるSQUIDル
ープの等価回路図である。
FIG. 5 is an equivalent circuit diagram of a SQUID loop in a conventional SQUID magnetometer.

【図6】Drung らによって提案されたSQUID磁束計
の構成を示す回路図である。
FIG. 6 is a circuit diagram showing the configuration of the SQUID magnetometer proposed by Drung et al.

【図7】図7に示す従来のSQUID磁束計の特性を示
す図である。
FIG. 7 is a diagram showing characteristics of the conventional SQUID magnetometer shown in FIG. 7.

【符号の説明】[Explanation of symbols]

1 SQUIDループ 2 バイアス電流注入位置 3,4 インダクタンス 5,6 ジョセフソン接合 7 接地位置 11 SQUIDループ 12 バイアス電流注入位置 14 入力コイル 15,16 ジョセフソン接合 17 接地位置 18 超伝導コイル 1 SQUID loop 2 Bias current injection position 3,4 Inductance 5,6 Josephson junction 7 Grounding position 11 SQUID loop 12 Bias current injection position 14 Input coil 15,16 Josephson junction 17 Grounding position 18 Superconducting coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 SQUIDループのバイアス電流注入位
置を非対称位置に設けることにより電圧磁束特性を傾斜
させ、出力電圧を基準電圧と比較することにより磁束ロ
ックループを構成したことを特徴とするSQUID磁束
計。
1. A SQUID magnetometer characterized in that a bias current injection position of the SQUID loop is provided at an asymmetrical position to incline the voltage magnetic flux characteristic, and a magnetic flux lock loop is formed by comparing the output voltage with a reference voltage. .
JP6068952A 1994-03-15 1994-03-15 Squid fluxmeter Pending JPH07253455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6068952A JPH07253455A (en) 1994-03-15 1994-03-15 Squid fluxmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6068952A JPH07253455A (en) 1994-03-15 1994-03-15 Squid fluxmeter

Publications (1)

Publication Number Publication Date
JPH07253455A true JPH07253455A (en) 1995-10-03

Family

ID=13388521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6068952A Pending JPH07253455A (en) 1994-03-15 1994-03-15 Squid fluxmeter

Country Status (1)

Country Link
JP (1) JPH07253455A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104404A (en) * 1993-10-04 1995-04-21 Hitachi Medical Corp Film transfer mechanism for x-ray cassetteless snapshot device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104404A (en) * 1993-10-04 1995-04-21 Hitachi Medical Corp Film transfer mechanism for x-ray cassetteless snapshot device

Similar Documents

Publication Publication Date Title
US6008642A (en) Stochastic resonance detector for weak signals
EP0053625A1 (en) Ac biasing of a dc squid.
JP3518184B2 (en) SQUID with integrated detection coil
Drung DC SQUID systems overview
JPH0672913B2 (en) Magnetic flux measurement device
Drung et al. Measured performance parameters of gradiometers with digital output
JPH07253455A (en) Squid fluxmeter
Foglietti et al. Performance of a flux locked series SQUID array
JP2537129B2 (en) Narrow band FLL circuit
JP2579283B2 (en) SQUID magnetometer
Nakanishi et al. Analysis of first-order feedback loop with lock-in amplifier
Nichols et al. Linearity of high‐T c dc superconducting quantum interference device operated in a flux‐locked loop
US20050052181A1 (en) Method and apparatus for magnetic field measurement
JP2552250B2 (en) SQUID magnetometer
JPH03131781A (en) Squid fluxmeter measurement system
JPH06174811A (en) Squid magnetic flux meter
JP2613559B2 (en) SQUID magnetometer
Kung et al. A direct current superconducting quantum interference device gradiometer with a digital signal processor controlled flux‐locked loop and comparison with a conventional analog feedback scheme
AU2002302178B2 (en) Method and apparatus for magnetic field measurement
JPH0792247A (en) Squid magnetometer
JP2537130B2 (en) SQUID spectrum analyzer
JPH0933626A (en) Squid element
Peterson Sinusoidal Response of dc SQUIDs for rf Power Measurements
JPH044555B2 (en)
Oyama et al. Mobile High-$ T_ {\rm c} $ SQUID System for MCG Measurement