JPH07253404A - Liquid thermal conductivity measuring method using natural convection heat transfer - Google Patents

Liquid thermal conductivity measuring method using natural convection heat transfer

Info

Publication number
JPH07253404A
JPH07253404A JP7162894A JP7162894A JPH07253404A JP H07253404 A JPH07253404 A JP H07253404A JP 7162894 A JP7162894 A JP 7162894A JP 7162894 A JP7162894 A JP 7162894A JP H07253404 A JPH07253404 A JP H07253404A
Authority
JP
Japan
Prior art keywords
heat transfer
liquid
thermal conductivity
steady state
heating surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7162894A
Other languages
Japanese (ja)
Inventor
Shigeo Kimura
繁男 木村
Michio Yonetani
道夫 米谷
Yoshio Masuda
善雄 増田
Shinichi Washimi
新一 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7162894A priority Critical patent/JPH07253404A/en
Publication of JPH07253404A publication Critical patent/JPH07253404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To calculate a heat transfer coefficient of liquid by measuring a heat transfer amount of the liquid by utilizing steady state convection heat transfer in the liquid along a heat generator. CONSTITUTION:A similarity rule exists for a convective heat transfer in liquid along a heat generator. That is, when geometric conditions of a heating surface are decided, convective heat transfer characteristics can be represented in terms of the relationship between a dimensionless heat transfer coefficient (Nusselt number Nu) and a dimensionless number (Rayleigh number Ra) indicating the strength of the convection irrespective of the hydrodynamic properties and the thermal physical properties of the liquid. When the heated surface has a simple shape, a convective heat transfer measuring system is introduced by the formula indicating the relationship Nu=a+bRa<c> (a, b, c are constants determined according to the system). Liquid having unknown heat transfer coefficient is filled in this measuring system, the temperature of the heating surface is raised, and a transfer heat quantity (consumed power) in a steady state is measured. This operation is executed a plurality of times by altering the raised temperature, the consumed power and the raised temperature on the heating surface in the steady state at this time are measured and the unknown heat transfer coefficient can be derived by calculation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加熱面に沿って液体中に
発生する自然対流による熱伝達を利用することにより液
体固有の熱物性(熱伝導率)を計測する計測原理に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring principle for measuring a thermophysical property (thermal conductivity) inherent in a liquid by utilizing heat transfer by natural convection generated in the liquid along a heating surface.

【0002】[0002]

【従来の技術】従来、液体の熱伝導率の計測方法として
は非定常法と定常法が知られている。定常法は水平な薄
いスリット状空間(間隙)に液体を満たし、上方から加
熱することにより自然対流の発生を防ぎ、液体の熱伝導
率を計測する方法である。この方法は一般に装置の製作
が複雑になる傾向があり、一般に普及してない。一方非
定常法の代表的なものとして非定常細線加熱法があげら
れる。この方法は鉛直に張った細い白金せんを電気的に
加熱する事により、対流が発生する前の熱伝導が支配的
である計測初期の段階で、白金線で消費する電力と白金
線の温度上昇の経時変化から液体の熱伝導率を判定する
ものである。非定常細線加熱法は最も高い精度で熱伝導
率を直接測定する方法として確立されつつある。
2. Description of the Related Art Conventionally, a nonsteady method and a steady method are known as methods for measuring the thermal conductivity of liquid. The steady-state method is a method in which a horizontal thin slit-shaped space (gap) is filled with a liquid and heated from above to prevent the occurrence of natural convection and to measure the thermal conductivity of the liquid. This method generally tends to complicate the fabrication of the device and is generally not popular. On the other hand, the unsteady thin wire heating method is a typical unsteady method. In this method, the electric power consumed by the platinum wire and the temperature rise of the platinum wire are raised in the initial stage of measurement when the heat conduction before convection is dominant by electrically heating the thin platinum wire stretched vertically. The thermal conductivity of the liquid is determined from the change with time. The unsteady thin wire heating method is being established as a method for directly measuring the thermal conductivity with the highest accuracy.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この非
定常細線加熱法は白金の細線に直接電流を流すため、電
気伝導製を有する液体の測定には細線を電気的に絶縁す
る必要がある。この目的のために細線に対する種々の絶
縁方法が考案されている。これらの絶縁方法は200〜
300℃以下においてはその有効性が一部確認されてい
るが、一般には高温液体の熱伝導率の直接測定はきわめ
て困難である。また、細線加熱法で用いられる加熱線は
数十ミクロンと非常に細いため、その扱いには細心の注
意が要求され、室温の液体であっても現位置計測に使用
するのは難しい。
However, since the unsteady thin wire heating method applies an electric current directly to the platinum thin wire, it is necessary to electrically insulate the thin wire for the measurement of a liquid having electrical conductivity. Various insulation methods for thin wires have been devised for this purpose. These insulation methods are 200-
Although its effectiveness has been partially confirmed at 300 ° C or lower, it is generally extremely difficult to directly measure the thermal conductivity of a high temperature liquid. In addition, since the heating wire used in the thin wire heating method is very thin, such as several tens of microns, it must be handled with extreme care, and even a liquid at room temperature is difficult to use for current position measurement.

【0004】[0004]

【課題を解決するための手段】本発明は、発熱体に沿う
液体内での定常状態対流熱伝達を利用することにより液
体の熱伝導率を測定しようとするものである。当該方法
は定常法であるため加熱部分の熱容量を小さくする必要
がなく、一般的には電気的絶縁なども容易にほどこすこ
とができる。したがって、線熱源法でも加熱線を太くす
ることが出来、現位置計測も容易となる。また、電気伝
導性液体や高温溶液などの熱伝導率に応用できる。
SUMMARY OF THE INVENTION The present invention seeks to measure the thermal conductivity of a liquid by utilizing steady state convection heat transfer in the liquid along a heating element. Since this method is a stationary method, it is not necessary to reduce the heat capacity of the heating portion, and in general, electrical insulation can be easily provided. Therefore, the heating wire can be thickened by the linear heat source method, and the current position can be easily measured. It can also be applied to the thermal conductivity of electrically conductive liquids and high temperature solutions.

【0005】[0005]

【作用】発熱体に沿う液体内での対流熱伝達に対しては
相似則が存在する。すなわち、加熱面あるいは加熱体の
幾何学的条件が決まれば個々の液体の流体力学的物性
(粘性など)や熱物性(熱伝導率など)にかかわりな
く、その対流熱伝達特性は無次元熱伝達係数(ヌッセル
ト数Nu)と対流の強度を示す無次元数(レイリー数R
a)との関係で一義的に表すことができる。加熱面や加
熱体が単純な形状を有している場合、その関係は普通次
のような式で表現される。 Nu = a + bRac (1) 但し、a、bおよびcは系(加熱面や加熱体の幾何学的
な形状)によって定まる定数であり個々の流体の物性と
は独立に決まる。今、式(1)により、その対流熱伝達
が記述される系が存在する。この測定系に物性値が未知
である液体を入れ加熱面を昇温させ、定常状態での伝熱
量(消費電力)を計測する。この操作を昇温温度を変え
て複数回行う。式(1)の関係とヌッセルト数およびレ
イリー数の定義より、この時の消費電力qと定常状態で
の加熱面の温度上昇ΔTとの間には次の関係が成立す
る。 q1d/kΔT1=a+bRa1 c (2) q2d/kΔT2=a+bRa2 c=a+b(ΔT2/ΔT1)cRa1 c (3) ここで下付きの数値は測定の順序を示す。またd、kは
系の代表長さおよび液体の熱伝導率である。式(2)と
式(3)の比を取ることにより未知の定数のRa1につい
て解くことが出来る。さらにその結果を式(3)に代入
することにより、未知の熱伝導率kについて次式を得
る。 k=q1d/(T1(a+bRa1 c)) (4)
There is a similarity law for convective heat transfer in a liquid along a heating element. That is, if the geometrical conditions of the heating surface or heating body are determined, the convection heat transfer characteristics of the liquid are dimensionless heat transfer, regardless of the hydrodynamic properties (viscosity, etc.) and thermophysical properties (thermal conductivity, etc.) of each liquid. Coefficient (Nussert number Nu) and dimensionless number (Rayleigh number R
It can be uniquely expressed in relation to a). When the heating surface or the heating body has a simple shape, the relation is usually expressed by the following equation. Nu = a + bRa c (1) However, a, b and c are constants determined by the system (geometrical shape of the heating surface or heating body) and are independent of the physical properties of each fluid. There now exists a system whose convective heat transfer is described by equation (1). A liquid whose physical properties are unknown is put into this measurement system to raise the temperature of the heating surface, and the amount of heat transfer (power consumption) in a steady state is measured. This operation is repeated multiple times while changing the temperature rise temperature. From the relation of the equation (1) and the definitions of the Nusselt number and the Rayleigh number, the following relation is established between the power consumption q at this time and the temperature rise ΔT of the heating surface in the steady state. q 1 d / kΔT 1 = a + bRa 1 c (2) q 2 d / kΔT 2 = a + bRa 2 c = a + b (ΔT 2 / ΔT 1 ) c Ra 1 c (3) where subscript The numbers indicate the order of measurement. Further, d and k are the representative length of the system and the thermal conductivity of the liquid. By taking the ratio of the equations (2) and (3), the unknown constant Ra 1 can be solved. Further, by substituting the result into the equation (3), the following equation is obtained for the unknown thermal conductivity k. k = q 1 d / (T 1 (a + bRa 1 c )) (4)

【0006】[0006]

【実施例】本説明書において提案した液体の熱伝導率原
理を確かめる目的で、長さ155mm,直径2mmの円
柱形発熱体(プローブ)を液体を満たした円筒容器に鉛
直に設置して測定を実施した。実験装置の概略を第1図
に示す。プローブへは定電力源を用いて電力を供給し
た。発熱体の温度はプローブ内部に設置された熱電対を
利用して測定した。この時のプローブからの伝熱量につ
いては以下の式が成立することが知られている。 Nu=0.5635+0.2034Ra1/4 (5) 被測定液として20℃における水とエタノールを用い
た。プローブへの供給電力を変化させ、定常状態におけ
るプローブの温度ΔTと供給電力qを計測し、式(4)
および(5)を用いて水とエタノールについて熱伝導率
kを計算した。水およびエタノールを被測定液とした時
のqとΔTの値を第2図に、また測定結果より得られた
水とエタノールの熱伝導率を第3図に示す。その結果、
水の熱伝導率に対しては0.59[w/mK]から0.
62[w/mK]の間に値のばらつきが見られたが、そ
の平均としては0.612[w/mK]が得られた。こ
の値は文献値と3%以下の誤差で一致している。また、
エタノールに対しては0.19[w/mK]から0.2
1[w/mK]の間に値のばらつきが見られ平均値とし
た0.200[w/mK]が得られた。この値は文献値
0.168[w/mK]に比較して19%程度大きな値
であった。エタノールの測定で誤差が増大した原因とし
ては被測定物の熱伝導率が低下したためプローブが大気
と接している部分からの熱のリークが増大したことによ
ると思われる。
[Example] In order to confirm the principle of thermal conductivity of a liquid proposed in this instruction, a cylindrical heating element (probe) having a length of 155 mm and a diameter of 2 mm is vertically installed in a liquid-filled cylindrical container. Carried out. The outline of the experimental apparatus is shown in FIG. Power was supplied to the probe using a constant power source. The temperature of the heating element was measured using a thermocouple installed inside the probe. It is known that the following equation holds for the amount of heat transfer from the probe at this time. Nu = 0.5635 + 0.2034Ra 1/4 (5) Water and ethanol at 20 ° C. were used as the liquids to be measured. The power supply to the probe is changed, the probe temperature ΔT and the power supply q in the steady state are measured, and the equation (4)
Using (5) and (5), the thermal conductivity k was calculated for water and ethanol. The values of q and ΔT when water and ethanol were used as the liquids to be measured are shown in FIG. 2, and the thermal conductivities of water and ethanol obtained from the measurement results are shown in FIG. as a result,
The thermal conductivity of water is from 0.59 [w / mK] to 0.
Although there was a variation in the value during 62 [w / mK], the average was 0.612 [w / mK]. This value agrees with the literature value with an error of 3% or less. Also,
0.19 [w / mK] to 0.2 for ethanol
A variation in values was observed during 1 [w / mK], and an average value of 0.200 [w / mK] was obtained. This value was about 19% larger than the literature value of 0.168 [w / mK]. The cause of the increase in the error in the measurement of ethanol is considered to be that the thermal conductivity of the object to be measured decreased and the heat leakage from the portion where the probe was in contact with the atmosphere increased.

【0007】[0007]

【発明の効果】以上説明したように、本発明による液体
の熱伝導率測定方法によれば、自然対流が存在する状態
での熱伝達量を計測することにより、その液体の熱伝導
率を算出することが出来る。
As described above, according to the method for measuring the thermal conductivity of a liquid according to the present invention, the thermal conductivity of the liquid is calculated by measuring the amount of heat transfer in the presence of natural convection. You can do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】細長い円柱形発熱体(プローブ)を用いて行っ
た実験装置の既略を示す。
FIG. 1 shows an abbreviated view of an experimental apparatus that was performed using an elongated cylindrical heating element (probe).

【図2】水とエタノールを測定した時の伝熱量qとプロ
ーブ温度上昇ΔTを示す。
FIG. 2 shows a heat transfer amount q and a probe temperature increase ΔT when water and ethanol are measured.

【図3】第2図の結果に基づいて算出した熱伝導率kの
結果であり、横軸には比を取って算出した回数また縦軸
にその時の熱伝導率を示す。
3 is a result of thermal conductivity k calculated based on the result of FIG. 2, where the horizontal axis shows the number of times calculated by taking a ratio, and the vertical axis shows the thermal conductivity at that time.

【符号の説明】[Explanation of symbols]

a 定数 b 定数 d 代表長さ [m] k 熱伝導率 [w/mK] n 算出回数 Nu ヌッセルト数 q 単位面積当たりの熱伝達量[w/m2] Ra レイリー数 上付き c レイリー数のべき数 下付き 1 計測事例1 2 計測事例2a constant b constant d representative length [m] k thermal conductivity [w / mK] n number of calculations Nu Nusselt number q heat transfer amount per unit area [w / m 2 ] Ra Rayleigh number superscript c power of Rayleigh number Subscript 1 Measurement example 1 2 Measurement example 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷲見 新一 宮城県多賀城市高橋1丁目10−13 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Sumi 1-10-13 Takahashi, Tagajo City, Miyagi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円柱、平板等の単純な幾何学的形状を有
する発熱体を被計測試料である液体や溶融液に接触さ
せ、自然対流による熱伝達量を発熱体の温度を変化させ
て複数回計測する。この時の定常伝熱量および発熱体と
液体との温度差から対流強度を示す無次元数(レイリー
数)と測定系の無次元熱伝達率(ヌッセルト数)を求
め、レイリー数とヌッセルト数との関係を利用して液体
の熱伝導率を決定する原理。
1. A heating element having a simple geometrical shape such as a cylinder or a flat plate is brought into contact with a liquid or a melt which is a sample to be measured, and a plurality of heat transfer amounts by natural convection are changed by changing the temperature of the heating element. Measure times. The non-dimensional number (Rayleigh number) showing the convection intensity and the non-dimensional heat transfer coefficient (Nussert number) of the measurement system are calculated from the steady heat transfer amount and the temperature difference between the heating element and the liquid, and the Rayleigh number and Nusselt number A principle that determines the thermal conductivity of liquids using relationships.
JP7162894A 1994-03-15 1994-03-15 Liquid thermal conductivity measuring method using natural convection heat transfer Pending JPH07253404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7162894A JPH07253404A (en) 1994-03-15 1994-03-15 Liquid thermal conductivity measuring method using natural convection heat transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7162894A JPH07253404A (en) 1994-03-15 1994-03-15 Liquid thermal conductivity measuring method using natural convection heat transfer

Publications (1)

Publication Number Publication Date
JPH07253404A true JPH07253404A (en) 1995-10-03

Family

ID=13466118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7162894A Pending JPH07253404A (en) 1994-03-15 1994-03-15 Liquid thermal conductivity measuring method using natural convection heat transfer

Country Status (1)

Country Link
JP (1) JPH07253404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081060A (en) * 2010-12-14 2011-06-01 哈尔滨工程大学 Multifunctional wide flow single-phase convective heat exchange test device
CN107064209A (en) * 2017-03-21 2017-08-18 湘潭大学 A kind of high-efficiency high-accuracy electronic equipment determination experiment device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144495A (en) * 1974-04-08 1975-11-20
JPS57211048A (en) * 1981-06-22 1982-12-24 Satoru Fujii Measuring system for thermal conductivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144495A (en) * 1974-04-08 1975-11-20
JPS57211048A (en) * 1981-06-22 1982-12-24 Satoru Fujii Measuring system for thermal conductivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081060A (en) * 2010-12-14 2011-06-01 哈尔滨工程大学 Multifunctional wide flow single-phase convective heat exchange test device
CN107064209A (en) * 2017-03-21 2017-08-18 湘潭大学 A kind of high-efficiency high-accuracy electronic equipment determination experiment device
CN107064209B (en) * 2017-03-21 2019-07-09 湘潭大学 A kind of high-efficiency high-accuracy electronic equipment measurement experiment device

Similar Documents

Publication Publication Date Title
Zhang et al. Simultaneous measurements of the thermal conductivity and thermal diffusivity of molten salts with a transient short-hot-wire method
JPS5822973B2 (en) Red bean sprouts
KR870008174A (en) Measurement method of fluid state
Yang et al. An experimental study of natural convection heat transfer from a horizontal cylinder in high Rayleigh number laminar and turbulent regions
Bleazard et al. Thermal conductivity of electrically conducting liquids by the transient hot-wire method
US3360990A (en) Thermoelectric liquid level indicating system
Woolf et al. Thermal conductivity of liquids
JPH07253404A (en) Liquid thermal conductivity measuring method using natural convection heat transfer
WO2004046672A1 (en) Fluid temperature measurement
JPH061185B2 (en) Method and apparatus for detecting state of adhered matter in fluid pipe
JPS61153555A (en) Method and device for detecting presence of substance or generation of change immediately before physical state change in fluid
US1291489A (en) Fluid-meter
Trommelmans et al. INFLUENCE OF ELECTRIC FIELDS ON CONDENSATION HEAT TRANSFER OF NONCONDUCTING FLUIDS ON HORIZONTAL TUBES.
Widdis The indirectly heated thermistor as a precise ac-dc transfer device
US1766148A (en) Flow meter
US1766149A (en) Flow meter
JPS5850295Y2 (en) Gauge for measuring heat flow
Lewandowski et al. Effect of the use of the balance and gradient methods as a result of experimental investigations of natural convection action with regard to the conception and construction of measuring apparatus
Zhang et al. Determination of thermal conductivity of cryoprotectant solutions and cell suspensions
Farber et al. Variation of heat transfer coefficient with length
SU765712A1 (en) Device for measuring thermal conductivity coefficient of electroconductive materials
WO2019172794A1 (en) Instrument for measuring the thermal conductivity of liquid by using a needle-shaped sensor
JPS6050299B2 (en) Thermal resistance measuring device
Marcellus et al. Heat transfer characteristics of fluorochemical inert liquid FC-75
Khosla et al. Combined forced and natural convective heat transfer to air in a vertical tube