JPH07252596A - Double-layered high damping steel - Google Patents
Double-layered high damping steelInfo
- Publication number
- JPH07252596A JPH07252596A JP4437094A JP4437094A JPH07252596A JP H07252596 A JPH07252596 A JP H07252596A JP 4437094 A JP4437094 A JP 4437094A JP 4437094 A JP4437094 A JP 4437094A JP H07252596 A JPH07252596 A JP H07252596A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- compsn
- layer part
- constituted
- vibration damping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は強度、靭性、加工性およ
び溶接性などの通常鋼に要求される使用性能を十分に満
足すると同時に、優れた制振性を有する鋼に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel having excellent vibration damping properties while sufficiently satisfying the usage properties required for ordinary steel such as strength, toughness, workability and weldability.
【0002】[0002]
【従来の技術】現在、制振性の優れた鋼としては、
(1)合金系、(2)複合系の2種類がある(「鉄と
鋼」第60年(1974)第14号p.127〜144
および第70年(1984)第2号p.16〜19参
照)。合金系には、母相と析出相との界面、または粒
界での粘性、塑性流動を利用して制振性を高めた複合型
(片状黒鉛鋳鉄など)、磁区壁の非可逆移動に伴う磁
気の機械的静履歴を利用した強磁性型(12%Cr、純
鉄など)、すべり転位と不純物原子の相互作用による
機械的静履歴を利用した転位型(Mgなど)、熱弾性
マルテンサイトにおける変態双晶型などがある。2. Description of the Related Art Currently, as a steel having excellent vibration damping property,
There are two types, (1) alloy system and (2) composite system ("Iron and Steel" 60th (1974) No. 14 p.127-144.
70th (1984) No. 2 p. 16-19). The alloy system is a composite type (flake graphite cast iron, etc.) that has improved damping properties by utilizing the viscosity and plastic flow at the interface between the matrix phase and the precipitation phase, or at grain boundaries, and for irreversible movement of domain walls. Ferromagnetic type (12% Cr, pure iron, etc.) using the accompanying mechanical static history of magnetism, dislocation type (Mg, etc.) using mechanical static history due to the interaction between sliding dislocations and impurity atoms, thermoelastic martensite There is a transformation twin type in.
【0003】また複合系には、鋼にダンピングシート
(アスファルト−ゴム質−無機充填材)を接着し、その
伸び変形による粘弾性ヒステリシスを利用した非拘束型
と、 鋼の間に粘弾性樹脂をサンドウィッチし、樹脂のずり
変形による粘弾性ヒステリシスを利用した拘束型がある
(例えば特開昭63−188040号公報など参照)。
複合系は制振性において優れるが、使用性能は十分でな
く、ガス切断や溶接が大きく制約される。Further, in the composite system, a damping sheet (asphalt-rubber-inorganic filler) is adhered to steel, and a viscoelastic resin is used between steel and a non-constrained type which utilizes viscoelastic hysteresis due to its elongation deformation. There is a restraint type that utilizes sandwiching and viscoelastic hysteresis due to shear deformation of resin (see, for example, JP-A-63-188040).
Although the composite system has excellent vibration damping properties, its use performance is not sufficient and gas cutting and welding are severely restricted.
【0004】合金系においても、そのほとんどのものが
特殊合金であるために製造性や使用性能に大きな制約が
ある。純鉄は製造性と使用性能をまずまず満足できる
が、制振性の面で不十分である。また、特開平2−84
396号公報に見られるFe−Al合金は制振性は良好
であるが、Al添加量が多くなると靭性、加工性が劣化
し、使用性能上問題がある。このような現状に鑑み、こ
れら性能を満たす制振鋼の製造が強く要望されている。Even in alloy systems, most of them are special alloys, so that there are great restrictions on manufacturability and use performance. Pure iron can satisfy manufacturability and use performance, but is insufficient in terms of vibration damping property. In addition, JP-A-2-84
The Fe-Al alloy found in Japanese Patent No. 396 has good vibration damping properties, but when the amount of Al added is large, the toughness and workability deteriorate, and there is a problem in terms of use performance. In view of such a current situation, there is a strong demand for the production of damping steel that satisfies these performances.
【0005】[0005]
【発明が解決しようとする課題】本発明は十分な制振性
と機械的性質、ガス切断・溶接性などの使用性能を同時
に満足できると共に、経済的に大量生産可能な制振鋼の
製造技術を提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention is a technique for manufacturing vibration-damping steel which can simultaneously satisfy sufficient vibration-damping properties, mechanical properties, gas cutting / welding properties, and the like, and which can be economically mass-produced. The purpose is to provide.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は下記の通
りである。鋼材の全厚の5〜20%までが表裏面表層部
であり、その内層部の鋼組成が重量%で、C:0.05
%以下、Si:0.5〜5.0%、Mn:0.5%以
下、Al:0.05〜2.0%以下、B:0.0003
〜0.0050%、Mo:0〜5.0%(無添加の場合
を含む)、Cr:0〜5.0%(無添加の場合を含
む)、Ni:0〜4.0%(無添加の場合を含む)、残
部が鉄または不可避的不純物からなることを特徴とする
複層制振鋼。The gist of the present invention is as follows. 5 to 20% of the total thickness of the steel material is the front and back surface layer portions, and the steel composition of the inner layer portion is% by weight, and C: 0.05.
% Or less, Si: 0.5 to 5.0%, Mn: 0.5% or less, Al: 0.05 to 2.0% or less, B: 0.0003
˜0.0050%, Mo: 0 to 5.0% (including no addition), Cr: 0 to 5.0% (including no addition), Ni: 0 to 4.0% (none) (Including the case of addition), the balance consists of iron or unavoidable impurities, and is a multilayer damping steel.
【0007】[0007]
【作用】まず、ガス切断や溶接などの使用性能を容易に
するためには、樹脂、ゴムなどを接着またはサンドウ
ィッチすることや、特殊な合金成分を用いることはで
きない。そこで純鉄系を基本とする成分系について検討
し、純鉄系における前述の問題の解決を試みた。その結
果、Si,Al,Cr,Moなどのフェライト・フォー
マー元素を数種組み合わせて所定量添加し、C,Mnな
どのオーステナイト・フォーマー元素やその他の元素を
適正範囲に制御することで優れた制振性を発現すること
を見出した。すなわち、これらの成分系によって結晶粒
が著しく粗大し、磁区壁の移動が容易になって制振性が
向上する(強磁性型制振機構)ものとの推察を得た。鋼
のフェライト・オーステナイト変態を回避し、結晶粒を
粗大化させるためには他に不純物元素がない場合、Si
単独では約2%以上、Al単独では約1%以上、Cr単
独では約12%以上添加する必要があり、C,Mnなど
のオーステナイト・フォーマー元素が含まれると必要量
はさらに増加する。First, in order to facilitate the use performance such as gas cutting and welding, it is not possible to bond or sandwich resin or rubber or to use a special alloy component. Therefore, we investigated the component system based on pure iron and tried to solve the above-mentioned problems in pure iron. As a result, it is possible to combine several kinds of ferrite former elements such as Si, Al, Cr and Mo and add them in a predetermined amount, and control austenite former elements such as C and Mn and other elements within an appropriate range. It was found that the vibrancy was expressed. That is, it was presumed that the crystal grains were remarkably coarsened by these component systems, the domain wall was easily moved, and the vibration damping property was improved (ferromagnetic vibration damping mechanism). In order to avoid ferrite-austenite transformation of steel and coarsen the crystal grains, if there is no other impurity element, Si
It is necessary to add about 2% or more by itself, about 1% or more by Al alone, and about 12% or more by Cr alone, and the necessary amount is further increased when an austenite former element such as C or Mn is contained.
【0008】ところで、結晶粒粗大化は一般的な鋼の強
靭化策とは相反し、強磁性型制振機構に基づく鋼は強度
が低く、靭性が著しく劣るという欠点を有している。発
明者らの実験室検討によれば、Fe−Si系、Fe−C
r系では引張強度は300〜400N/mm2 、0℃におけ
るVシャルピー衝撃吸収エネルギーは約10J程度であ
る。この程度の特性値では、構造部材、強度部材として
使用することができないばかりでなく、軽度の曲げ加
工、場合によってはやや低温での熱間加工すら困難であ
ることが予想される。このような状況に鑑み、強磁性型
制振鋼を使用目的に応じた強度、靭性その他の特性値レ
ベルを有する普通鋼材で包み込んだような複層鋼を発明
するに至った。このように複層にすることで、延靭性に
劣る制振鋼も強度の曲げ加工や比較的低温での熱間加工
も容易に行える。By the way, grain coarsening is contrary to the general toughening measures for steel, and steel based on the ferromagnetic vibration damping mechanism has the drawbacks of low strength and markedly poor toughness. According to the laboratory study by the inventors, Fe-Si system, Fe-C
In the r type, the tensile strength is 300 to 400 N / mm 2 , and the V Charpy impact absorption energy at 0 ° C. is about 10 J. With such a characteristic value, not only can it not be used as a structural member or a strength member, but it is expected that it will be difficult to perform light bending, and in some cases even hot working at a slightly low temperature. In view of such a situation, the inventors have invented a multi-layer steel in which a ferromagnetic vibration-damping steel is wrapped with an ordinary steel material having strength, toughness and other characteristic value levels according to the purpose of use. By forming a multi-layer structure as described above, vibration-damping steel having poor ductility can be easily subjected to strong bending and hot working at relatively low temperatures.
【0009】以下、本発明の限定理由について説明す
る。鋼材の表裏面表層部の鋼組成は特に限定しない。こ
れは、表裏部には特別な組成は必要なく、現在使用され
ている種々の鋼組成がほとんど適用でき、主として使用
性能に応じた鋼種、組成を選定できるためである。例え
ば、一般構造用鋼材(JIS規格におけるSSシリー
ズ)としての性能が必要な場合、表裏部にその鋼組成を
適用すればよい。ただし、その際鋼材全厚での特性(例
えば強度)が必要な場合は、厚さ比、内層の制振鋼の特
性値を考慮する必要がある。The reasons for limitation of the present invention will be described below. The steel composition of the front and back surface layers of the steel material is not particularly limited. This is because no special composition is required for the front and back parts, most of the various steel compositions currently used can be applied, and the steel type and composition can be selected mainly according to the use performance. For example, when the performance as a general structural steel material (SS series in JIS standard) is required, the steel composition may be applied to the front and back parts. However, in that case, when the characteristics (for example, strength) in the total thickness of the steel material are required, it is necessary to consider the thickness ratio and the characteristic value of the damping steel of the inner layer.
【0010】表裏面表層部の厚さは複層の効果を発揮す
るため最低鋼材全厚の5%は必要である。しかし厚すぎ
ると、内層の最大の特徴である制振性が発揮されないた
め、鋼材全厚の20%までに限定した。なお、表裏面側
で表層部の厚さは必ずしも同じである必要はなく、例え
ば、表面側5%、裏面側20%としても構わない。The thickness of the front and back surface layers is required to be 5% of the minimum total thickness of steel in order to exert the effect of multiple layers. However, if it is too thick, the most characteristic feature of the inner layer, which is the vibration damping property, will not be exhibited. The thickness of the surface layer does not necessarily have to be the same on the front and back sides, and may be 5% on the front side and 20% on the back side, for example.
【0011】次に、内層すなわち制振鋼の組成の限定理
由について説明する。上述したように、Si,Al,C
r各々単独でも鋼のフェライト・オーステナイト変態を
回避し、結晶粒を粗大化することは可能である。しか
し、単独では添加量が非常に多くなり、合金コストを増
大させる。また、オーステナイト・フォーマー元素であ
るC,Mnなどをゼロにすることは不可能であり、合金
添加量はさらに増大する。本発明においては、フェライ
ト・フォーマー元素を複合添加することで、各元素の添
加量を低減できることがポイントである。Next, the reasons for limiting the composition of the inner layer, that is, the damping steel will be described. As mentioned above, Si, Al, C
It is possible to avoid the ferrite-austenite transformation of the steel and coarsen the crystal grains by using each r alone. However, when added alone, the amount added becomes very large, which increases the alloy cost. Further, it is impossible to reduce the austenite former elements C, Mn, etc. to zero, and the alloy addition amount is further increased. In the present invention, the point is that the addition amount of each element can be reduced by adding the ferrite-former element in combination.
【0012】Si,Alは、鉄との二元系状態図に示さ
れるように、比較的少ない量でフェライト・オーステナ
イト変態を回避できる。このため、本発明においては必
須元素で、各々最低0.5%、0.05%の添加が必要
である。添加量の上限は、添加量に対する制振性の改善
効果や合金コストなどによって制限され、本発明におい
てはSiは5.0%、Alは2.0%である。これらの
元素は結晶粒粗大化に寄与するだけでなく、固溶強化に
よって強度も増加させる効果を有する。As shown in the binary system phase diagram with iron, Si and Al can avoid the ferrite-austenite transformation with a relatively small amount. Therefore, in the present invention, it is an essential element, and it is necessary to add at least 0.5% and 0.05%, respectively. The upper limit of the added amount is limited by the effect of improving the vibration damping property with respect to the added amount, alloy cost, etc. In the present invention, Si is 5.0% and Al is 2.0%. These elements not only contribute to the coarsening of crystal grains, but also have the effect of increasing strength by solid solution strengthening.
【0013】Bは、結晶粒の粗大化を抑制する侵入型に
固溶したNを固定するためのみならず強度を上昇させる
ために添加するものである。Bによる強化機構は明確で
はないが、発明者らの研究によればB添加により強度が
20〜100N/mm2 程度の上昇が確認されている。した
がって、その効果を発現させるために少なくとも0.0
003%の添加が必要である。しかし、多すぎると他の
不純物元素と同様、結晶粒の粗大化を阻害し制振性を劣
化させるため0.0050%以下に限定した。B is added not only to fix the interstitial solid solution N which suppresses the coarsening of crystal grains but also to increase the strength. Although the strengthening mechanism by B is not clear, studies by the inventors have confirmed that the addition of B increases the strength by about 20 to 100 N / mm 2 . Therefore, at least 0.0 in order to exert its effect.
Addition of 003% is required. However, if it is too large, like other impurity elements, it inhibits the coarsening of crystal grains and deteriorates the vibration damping property, so the content is limited to 0.0050% or less.
【0014】選択元素の一つであるMoは、フェライト
・フォーマー元素であるため、添加することより制振性
を向上させる。これは、Siと同様に結晶粒を粗大化さ
せるためと考えられる。Moはこの他の作用として、固
溶強化によって強度を上昇させ、フェライト値の靭性を
高める効果も有する。これらの効果を有効に利用するた
めには、少なくとも0.2%以上の添加が必要である。
一方、ある程度以上添加すると、効果に対して製鋼工程
やコストの面での問題が大きくなるため上限を5.0%
に限定した。Since Mo, which is one of the selective elements, is a ferrite former element, its addition improves the damping property. It is considered that this is because the crystal grains are coarsened similarly to Si. In addition to this, Mo also has the effect of increasing the strength by solid solution strengthening and increasing the toughness of the ferrite value. In order to make effective use of these effects, it is necessary to add at least 0.2%.
On the other hand, if added more than a certain amount, the problem in terms of steelmaking process and cost becomes large against the effect, so the upper limit is 5.0%.
Limited to.
【0015】Crも選択元素の一つでフェライト・フォ
ーマー元素であるが、フェライト・オーステナイト変態
を回避する効果はSi,Alなどに比して小さいが、複
合添加により結晶粒粗大化に寄与し制振性を向上させる
ほか、固溶強化による強度の上昇に寄与する。これら効
果を発揮するためには最低0.5%の添加が必要であ
る。上限については、他の元素同様、効果とコストとの
関係から5.0%に限定した。Although Cr is also one of the selective elements and is a ferrite former element, the effect of avoiding the ferrite-austenite transformation is smaller than that of Si, Al, etc., but the addition of multiple elements contributes to the coarsening of crystal grains and suppresses In addition to improving vibration characteristics, it contributes to the increase in strength by solid solution strengthening. In order to exert these effects, it is necessary to add at least 0.5%. As with other elements, the upper limit was limited to 5.0% due to the relationship between effect and cost.
【0016】一方、粗大結晶粒とすることは鋼の一般的
な強靭化対策と相反し、靭性が著しく劣る。これに対
し、本発明者らの検討によれば、2.0%以上のNi添
加により、制振性を損なわず(粗大結晶粒のまま)に、
低温靭性を改善できることが確認できた。これは、Ni
が積層欠陥エネルギーを上昇させ交差すべりを容易にす
るためと考えられる。このように内層の制振鋼部分にも
靭性を必要とする場合、選択元素としてNiを添加する
ことは有効である。しかし、Niはオーステナイト・フ
ォーマー元素であるため、多量に添加すると高価なだけ
でなく状態図中のオーステナイト領域を拡大し変態によ
って組織を細粒化してしまうため、上限を4.0%に限
定した。On the other hand, the use of coarse crystal grains is contrary to the general measures for strengthening steel, and the toughness is remarkably inferior. On the other hand, according to the study by the present inventors, the addition of Ni of 2.0% or more does not impair the vibration damping property (coarse crystal grains remain),
It was confirmed that the low temperature toughness can be improved. This is Ni
Is believed to increase the stacking fault energy and facilitate cross-slip. Thus, when toughness is also required for the damping steel portion of the inner layer, it is effective to add Ni as a selective element. However, since Ni is an austenite former element, if added in a large amount, it is not only expensive, but also the austenite region in the phase diagram is expanded and the structure is refined by transformation, so the upper limit was limited to 4.0%. .
【0017】C,Mnは、オーステナイト・フォーマー
元素で、強磁性型の制振性発現機構上少ないほど好まし
いため、下限については特に規定しないが、製鋼工程の
負荷やコスト上自ずと制限されるものである。上限につ
いては、制振性に顕著に影響するため、Cは0.050
%以下、Mnは0.50%以下に限定した。この他、
P,S,O,Nをはじめとする不可避的不純物は、特に
範囲を限定するものではないが、いずれも結晶粒粗大化
を阻害し、制振性発現機構である磁区壁の移動を妨げる
ことになるため、その含有量は低いほど好ましいことは
明らかである。C and Mn are austenite former elements, and the smaller the ferromagnetic type damping mechanism is, the more preferable it is. Therefore, the lower limit is not particularly specified, but it is naturally limited in view of the load and cost of the steelmaking process. is there. As for the upper limit, C is 0.050 because it significantly affects the vibration damping property.
% And Mn are limited to 0.50% or less. Besides this,
The unavoidable impurities such as P, S, O, and N do not limit the range in particular, but they all hinder the coarsening of crystal grains and hinder the movement of the magnetic domain wall, which is the vibration damping mechanism. Therefore, it is clear that the lower the content, the better.
【0018】一般的な製鋼工程能力上、P:0.020
%以下、S:0.020%以下、N:0.006%以
下、O:0.006%以下程度およびその他の不可避的
不純物を含有するものである。Due to the general steelmaking process capacity, P: 0.020
% Or less, S: 0.020% or less, N: 0.006% or less, O: 0.006% or less, and other unavoidable impurities.
【0019】なお、本発明鋼板の製造方法としては、特
開昭63−108947号公報などに示すような表層と
内層の化学成分がそれぞれ異なるように複層に連続鋳造
し、その後、これを所定の厚さに圧延成形する方法、鋳
片段階で溶接あるいは爆着などによりクラッディング
し、所定の厚さに圧延成形する方法、所定の厚さとした
鋼板段階で爆着などによりクラッディングする方法など
があり、いずれの方法によっても良い。As a method for producing the steel sheet of the present invention, as shown in Japanese Patent Laid-Open No. 63-108947, continuous casting is performed in multiple layers so that the chemical composition of the surface layer is different from that of the inner layer. Thickness, the method of rolling and forming to a predetermined thickness, the method of cladding by welding or explosive welding at the slab stage, the method of rolling and forming to a predetermined thickness, the method of cladding by explosive welding and the like at the stage of steel plate having a predetermined thickness, etc. However, any method may be used.
【0020】本発明は厚板ミルに適用することが最も好
ましいが、ホットコイル、形鋼などにも幅広く適用でき
る。また本発明鋼は、造船、建築、橋梁、産業機械、自
動車などの制振性、防振性などを必要とする箇所に用い
ることができる。Although the present invention is most preferably applied to a thick plate mill, it can be widely applied to hot coils, shaped steel and the like. Further, the steel of the present invention can be used in places where vibration damping properties, vibration damping properties, etc. are required in shipbuilding, construction, bridges, industrial machinery, automobiles and the like.
【0021】[0021]
【実施例】表1に表裏面表層部をJIS規格に定めるS
S400あるいはSM490とした厚さ10mmの複層鋼
板の表裏面表層部の厚さ比率、内層の制振鋼組成を、表
2に各鋼の機械インピーダンス法により測定した制振性
の指標である損失係数、180°曲げ加工性を示す。本
発明鋼(複層鋼板)はすべて優れた制振性を有すると同
時に、180°曲げ加工によっても割れを生じず、良好
な特性を有する。これに対して複層でない鋼や、複層比
率が本発明範囲を逸脱する鋼では、制振性あるいは18
0°曲げ加工性に劣り、制振性を兼ね備えた部材として
は使用性能上問題がある。[Example] In Table 1, the surface layers of the front and back surfaces are defined by JIS standard S
The thickness ratio of the front and back surfaces of the multi-layer steel sheet having a thickness of 10 mm, which is S400 or SM490, and the damping steel composition of the inner layer are shown in Table 2, which is an index of the damping property measured by the mechanical impedance method for each steel. Coefficient, 180 ° bending workability. The steels of the present invention (multi-layered steel sheets) all have excellent vibration damping properties and, at the same time, do not crack even when bent by 180 ° and have good properties. On the other hand, in the case of a steel that is not a multi-layered steel or a steel whose multi-layered ratio deviates from the scope of the present invention, the vibration damping property or 18
There is a problem in use performance as a member having poor 0 ° bending workability and vibration damping property.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【発明の効果】本発明により制振性と使用性能の優れた
鋼の安価な提供が可能となった。その結果、造船、建
築、橋梁、建・産機分野や工場設備などでの制振性の要
求される強度部材、構造部材として使用でき、騒音・振
動などの低減や労働環境の改善に大いに寄与できる。EFFECTS OF THE INVENTION The present invention makes it possible to inexpensively provide steel having excellent vibration damping properties and use performance. As a result, it can be used as a strength member or structural member that requires vibration damping in shipbuilding, construction, bridges, construction / industrial machinery fields, factory equipment, etc., and contributes greatly to reducing noise and vibration and improving the working environment. it can.
Claims (1)
層部であり、その内層部の鋼組成が重量%で、 C :0.05%以下、 Si:0.5〜5.0%、 Mn:0.5%以下、 Al:0.05〜2.0%以下、 B :0.0003〜0.0050%、 Mo:0〜5.0%(無添加の場合を含む)、 Cr:0〜5.0%(無添加の場合を含む)、 Ni:0〜4.0%(無添加の場合を含む)、 残部が鉄または不可避的不純物からなることを特徴とす
る複層制振鋼。1. A total of 5 to 20% of the total thickness of the steel material is the front and back surface layer portions, and the steel composition of the inner layer portions is wt%, C: 0.05% or less, Si: 0.5 to 5. 0%, Mn: 0.5% or less, Al: 0.05 to 2.0% or less, B: 0.0003 to 0.0050%, Mo: 0 to 5.0% (including no addition) Cr: 0 to 5.0% (including no addition), Ni: 0 to 4.0% (including no addition), the balance being iron or inevitable impurities Layer damping steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4437094A JPH07252596A (en) | 1994-03-15 | 1994-03-15 | Double-layered high damping steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4437094A JPH07252596A (en) | 1994-03-15 | 1994-03-15 | Double-layered high damping steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07252596A true JPH07252596A (en) | 1995-10-03 |
Family
ID=12689634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4437094A Withdrawn JPH07252596A (en) | 1994-03-15 | 1994-03-15 | Double-layered high damping steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07252596A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011129062A1 (en) * | 2010-04-14 | 2011-10-20 | 株式会社豊田自動織機 | Iron alloy having excellent processability, and vibration damping member comprising same |
CN111235371A (en) * | 2020-02-29 | 2020-06-05 | 上海材料研究所 | Elastic-plastic damping steel plate with layered composite structure and manufacturing method and application thereof |
CN111235370A (en) * | 2020-02-29 | 2020-06-05 | 上海材料研究所 | Laminated composite elastic-plastic damping steel plate and manufacturing method and application thereof |
-
1994
- 1994-03-15 JP JP4437094A patent/JPH07252596A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011129062A1 (en) * | 2010-04-14 | 2011-10-20 | 株式会社豊田自動織機 | Iron alloy having excellent processability, and vibration damping member comprising same |
CN111235371A (en) * | 2020-02-29 | 2020-06-05 | 上海材料研究所 | Elastic-plastic damping steel plate with layered composite structure and manufacturing method and application thereof |
CN111235370A (en) * | 2020-02-29 | 2020-06-05 | 上海材料研究所 | Laminated composite elastic-plastic damping steel plate and manufacturing method and application thereof |
CN111235371B (en) * | 2020-02-29 | 2021-07-27 | 上海材料研究所 | Elastic-plastic damping steel plate with layered composite structure and manufacturing method and application thereof |
CN111235370B (en) * | 2020-02-29 | 2021-07-27 | 上海材料研究所 | Laminated composite elastic-plastic damping steel plate and manufacturing method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3064871B2 (en) | Ferritic stainless steel hot-rolled steel sheet with excellent roughening resistance and high temperature fatigue properties after forming | |
KR101032007B1 (en) | Damping alloy sheet and process for producing the same | |
JP4185425B2 (en) | Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time | |
JPH05255813A (en) | High strength alloy excellent in workability and damping capacity | |
KR101029229B1 (en) | Damping alloy sheet and process for producing the same | |
KR20180070383A (en) | High strength clad steel having good delayed fracture resistance | |
JPH07252596A (en) | Double-layered high damping steel | |
JP2001081535A (en) | Austenitic stainless steel and steel sheet for press forming, excellent in formability and hot workability | |
JPH11172369A (en) | Cr-containing ferritic steel excellent in high temperature fatigue characteristic in weld zone | |
JPH07268554A (en) | Ferritic stainless steel for automobile exhaust system excellent in formability and heat resistance | |
JP3420371B2 (en) | Chrome steel sheet with excellent formability and weatherability | |
JP3582182B2 (en) | Cold rolled steel sheet excellent in impact resistance and method for producing the same | |
JP2000144344A (en) | Ferritic stainless hot rolled steel sheet excellent in surface roughening resistance after forming and high temperature fatigue characteristic | |
JPS60114551A (en) | High strength bolt steel | |
JP2718550B2 (en) | Method for producing high-strength hot-rolled steel sheet for strong working with excellent fatigue properties | |
JP2627126B2 (en) | Manufacturing method of high-strength steel with excellent vibration damping properties | |
JP3208498B2 (en) | Manufacturing method of steel with excellent vibration damping properties | |
JP2987735B2 (en) | High fatigue strength thick steel plate | |
JP3236418B2 (en) | Thin steel plate with excellent impact resistance | |
JPH06293911A (en) | Production of steel plate excellent in damping characteristic | |
JP2577685B2 (en) | Manufacturing method of steel sheet with excellent vibration damping properties | |
JP2801635B2 (en) | High toughness welded structural steel with high vibration damping capacity | |
JPH06293909A (en) | Production of high damping steel | |
JPH05105949A (en) | Production of steel excellent in damping characteristic | |
JPH06228638A (en) | Production of steel sheet excellent in damping capacity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010605 |