JPH07250332A - Saturated output expanding method for four-plate solid-state image pickup device - Google Patents
Saturated output expanding method for four-plate solid-state image pickup deviceInfo
- Publication number
- JPH07250332A JPH07250332A JP6042465A JP4246594A JPH07250332A JP H07250332 A JPH07250332 A JP H07250332A JP 6042465 A JP6042465 A JP 6042465A JP 4246594 A JP4246594 A JP 4246594A JP H07250332 A JPH07250332 A JP H07250332A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- light
- image
- ccd
- green
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920006395 saturated elastomer Polymers 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title claims description 13
- 238000000926 separation method Methods 0.000 claims abstract description 18
- 230000007935 neutral effect Effects 0.000 claims abstract description 5
- 238000003384 imaging method Methods 0.000 claims description 34
- 230000003287 optical effect Effects 0.000 claims description 13
- 239000003086 colorant Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000009738 saturating Methods 0.000 abstract 1
- 238000001444 catalytic combustion detection Methods 0.000 description 44
- 238000010586 diagram Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 2
- LFVLUOAHQIVABZ-UHFFFAOYSA-N Iodofenphos Chemical compound COP(=S)(OC)OC1=CC(Cl)=C(I)C=C1Cl LFVLUOAHQIVABZ-UHFFFAOYSA-N 0.000 description 1
- 102220470558 Proteasome subunit beta type-3_D32R_mutation Human genes 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Color Television Image Signal Generators (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は固体撮像装置、特に被写
体像を赤、緑および青の3原色像に分解してそれぞれ固
体撮像素子によって受光し、赤、緑および青色信号を取
り出すようにした4板式固体撮像装置の飽和出力拡張方
法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, and more particularly to a subject image is decomposed into three primary color images of red, green and blue, which are respectively received by a solid-state image pickup device to extract red, green and blue signals. The present invention relates to a saturation output expansion method for a four-plate solid-state imaging device.
【0002】[0002]
【従来の技術】近年固体撮像装置の解像度を向上するた
めに、緑色(G)チャネルに2枚の撮像素子を配置し、
これら2枚の撮像素子の間で空間画像ずらしを行うよう
にした4板式固体撮像装置が提案されている。このよう
な4板式固体撮像装置は、例えば特開昭60-154781 号公
報、特開平5-129513号公報及びNHK 放送技術研究所1993
年公開技報に記載されている。2. Description of the Related Art Recently, in order to improve the resolution of a solid-state image pickup device, two image pickup elements are arranged in a green (G) channel,
A four-plate type solid-state image pickup device has been proposed in which a spatial image shift is performed between these two image pickup elements. Such a four-plate solid-state image pickup device is disclosed, for example, in Japanese Patent Laid-Open No. 60-154781, Japanese Patent Laid-Open No. 5-129513 and NHK Broadcasting Technology Research Institute 1993.
It is described in the annual technical report.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
4板式固体撮像装置では解像度は向上するが、固体撮像
装置の重要な性質の一つであるレンズへの入射光量に対
する飽和出力すなわちダイナミックレンジが制限される
欠点がある。このように4板式固体撮像装置において飽
和出力が限定される理由について、以下説明する。However, although the resolution is improved in the conventional 4-plate type solid-state image pickup device, the saturation output, that is, the dynamic range with respect to the amount of light incident on the lens, which is one of the important properties of the solid-state image pickup device, is limited. There is a drawback. The reason why the saturation output is limited in the four-plate type solid-state imaging device will be described below.
【0004】結像した光を撮像素子が電気信号に変換し
てこれを出力する際、この電気信号のレベルは撮像素子
に入力した光量に比例する。すなわち、弱い光はレベル
の低い信号に、強い光はレベルの高い信号にそれぞれ変
換される。しかしながら、このような比例関係が常に成
立するわけでなく、ある一定以上の光量が入射すると、
電気信号のレベルは入射光量に比例せずに一定のレベル
となる。図1に、固体撮像素子への入射光量と固体撮像
素子の出力信号のレベルとの関係を示す。出力信号のレ
ベルが入射光量に比例する領域を線型領域といい、また
入射光量が増大しても出力信号のレベルが一定値以上に
増大しない領域は飽和領域と呼ばれ、線型領域から飽和
領域に変化する飽和入射光量は各撮像素子の構造等から
製造時に決定される。When the image pickup device converts the imaged light into an electric signal and outputs the electric signal, the level of the electric signal is proportional to the amount of light input to the image pickup device. That is, weak light is converted into a low level signal, and strong light is converted into a high level signal. However, such a proportional relationship does not always hold, and when a certain amount of light is incident,
The level of the electric signal is not proportional to the amount of incident light and is a constant level. FIG. 1 shows the relationship between the amount of light incident on the solid-state image sensor and the level of the output signal of the solid-state image sensor. The region where the output signal level is proportional to the incident light amount is called the linear region, and the region where the output signal level does not increase above a certain value even when the incident light amount increases is called the saturation region. The saturated incident light amount that changes is determined at the time of manufacture from the structure of each image sensor and the like.
【0005】図2は、従来の3板式固体撮像装置の概略
構成図である。このような3板式固体撮像装置では、被
写体の像を対物レンズ10によって形成し、これを3色
分解プリズム11によって赤、緑および青色像に分解
し、これらの色画像をそれぞれCCD12R,12Gお
よび12Bによって撮像する。この際、通常スタジオ等
で用いられる色温度3000°K前後の光源の下ではC
CD12R,12Gおよび12Bに入射する光量は、3
色分解プリズム11の特性により赤色光と緑色光とはほ
ぼ同一量となり、青色光は赤色光または緑色光のほぼ1/
3 〜1/4 となる。この固体撮像装置で被写体像を撮影す
る場合、被写体の光量を増加させていくと、最初にCC
D12Rおよび12Gが飽和し、次にCCD12Bが飽
和する。このようにCCD間で飽和するタイミングが異
なる場合、いずれかのCCD(この場合はCCD12R
および12G)が飽和した後光量をそれ以上増加させる
とそれぞれの色の被写体像の光量レベルと対応したCC
Dの出力レベルとの比例関係が崩れ、色の再現性が劣化
することになる。例えば白色の被写体像を撮影し、光量
を増加させた場合、いずれかのCCD(この場合はCC
D12Rおよび12G)が飽和した後光量をそれ以上増
加させると白色の被写体像が着色して再現されることに
なる。FIG. 2 is a schematic configuration diagram of a conventional three-plate type solid-state image pickup device. In such a three-plate solid-state image pickup device, an image of a subject is formed by the objective lens 10, this is separated into red, green, and blue images by the three-color separation prism 11, and these color images are respectively CCDs 12R, 12G, and 12B. To image. At this time, under a light source with a color temperature of around 3000 ° K, which is usually used in studios, etc., C
The amount of light incident on the CDs 12R, 12G and 12B is 3
Due to the characteristics of the color separation prism 11, the red light and the green light have almost the same amount, and the blue light has almost 1/1 / the red light or the green light.
It will be 3-1 / 4. When shooting a subject image with this solid-state imaging device, when the light amount of the subject is increased, the CC
D12R and 12G saturate, then CCD 12B saturates. In this way, when the saturation timing is different between the CCDs, one of the CCDs (in this case, the CCD 12R
And 12G) after saturation, when the amount of light is further increased, CC corresponding to the amount of light of the subject image of each color is obtained.
The proportional relationship with the output level of D is broken, and the color reproducibility is deteriorated. For example, when a white subject image is taken and the amount of light is increased, either CCD (in this case, CC
If the amount of light is further increased after saturation of D12R and 12G), a white subject image will be colored and reproduced.
【0006】このような着色を防ぐために、図2に示す
従来の装置ではCCD12R,12Gおよび12Bに対
してホワイトクリップ回路13R,13Gおよび13B
がそれぞれ設けられている。ホワイトクリップ回路13
R,13Gおよび13Bは、固体撮像装置の信号処理系
に各色の撮像装置出力のうち最初に飽和するCCD(こ
の場合はCCD12Rおよび12G)の出力の最大値に
合わせて、他のCCD(この場合はCCD12B)の最
大出力レベルを同一に制限するものである。また、ホワ
イトクリップ回路13R,13Gおよび13Bのクリッ
プ点は通常調整可能であり、これらのクリップ点は、白
色の被写体を撮像して入射光量を増加させた後CCD1
2R,12Gおよび12Bのうち最初に飽和点に達する
CCD(この場合はCCD12Rおよび12G)の飽和
点に設定される。したがって3板式固体撮像装置の場
合、CCD12R,12Gおよび12Bの内、最も入射
光量の比率の高いCCD12Rおよび12Gによって飽
和量は制限される。In order to prevent such coloring, in the conventional device shown in FIG. 2, white clip circuits 13R, 13G and 13B are provided for CCDs 12R, 12G and 12B.
Are provided respectively. White clip circuit 13
R, 13G, and 13B correspond to other CCDs (in this case, in accordance with the maximum value of the output of the first saturated CCD (in this case, CCD 12R and 12G) of the imager outputs of the respective colors in the signal processing system of the solid-state imager. Is to limit the maximum output level of the CCD 12B) to the same level. Further, the clipping points of the white clipping circuits 13R, 13G and 13B are usually adjustable, and these clipping points are taken by the CCD 1 after the white subject is imaged and the incident light amount is increased.
It is set to the saturation point of the CCD (CCD 12R and 12G in this case) which reaches the saturation point first among 2R, 12G and 12B. Therefore, in the case of the three-plate type solid-state imaging device, the saturation amount is limited by the CCD 12R, 12G and 12B having the highest incident light amount ratio.
【0007】CCD12R,12Gおよび12Bから得
られる赤、緑および青色信号をそれぞれ、クリップ点を
赤および緑色信号の飽和点に設定したホワイトクリップ
回路13R,13Gおよび13Bと、信号処理回路14
R,14Gおよび14Bとを通して輝度マトリックス回
路15に供給し、ここで予め決められた比率で混合して
輝度信号を作成する。White clip circuits 13R, 13G and 13B in which the red, green and blue signals obtained from the CCDs 12R, 12G and 12B are set to the saturation points of the red and green signals respectively, and the signal processing circuit 14
It is supplied to the luminance matrix circuit 15 through R, 14G and 14B, and mixed at a predetermined ratio to generate a luminance signal.
【0008】図3は、従来の4板式固体撮像装置の概略
構成図である。この4板式固体撮像装置は、被写体像を
対物レンズ20によって形成し、これを4分光プリズム
21によって赤、緑および青色像に分解し、さらに緑色
像をハーフミラー21aによって二つの画像に分解する
ようにしたものである。また、CCD22G−1および
22G−2の受光素子は、その配列間隔のほぼ半分だけ
水平走査方向に互いにずらし、分割された緑色光を受光
するようにそれぞれ配置されている。分解された緑色光
がそれぞれCCD22G−1および22G−2にそれぞ
れ入射された後、これによって得られる画像信号が加算
器26にて合成される。したがって緑色信号の感度が損
なわれることはない。FIG. 3 is a schematic configuration diagram of a conventional four-plate type solid-state image pickup device. In this four-plate type solid-state image pickup device, a subject image is formed by an objective lens 20, and the four-spectrum prism 21 divides it into red, green, and blue images, and further, a green image is divided into two images by a half mirror 21a. It is the one. Further, the light receiving elements of the CCDs 22G-1 and 22G-2 are arranged so as to receive the divided green light by being shifted from each other in the horizontal scanning direction by almost half of the arrangement interval. After the decomposed green lights are respectively incident on the CCDs 22G-1 and 22G-2, the image signals obtained thereby are combined by the adder 26. Therefore, the sensitivity of the green signal is not impaired.
【0009】このような4板式固体撮像装置では緑色光
が2等分割されるため、CCD22G−1および22G
−2にそれぞれ入射される光量は、図3の3板式固体撮
像装置のCCD12Gに比べて1/2 となる。この際一つ
のCCDの飽和量は変化しないため、緑色光を受光する
各CCDの飽和量は3板式固体撮像装置の場合に比べて
2倍となる。しかしながら赤色光については、緑色光と
同様の光量が入射するにもかかわらず3板式固体撮像装
置と変わらないため、このような4板式固体撮像装置の
飽和量は赤色光によって制限されることになり、このま
までは3板式固体撮像装置と変わらないこととなる。す
なわち、3板式から4板式に変えても固体撮像装置とし
ての飽和量は変わらないことになり、この飽和量に関し
ては4板式とした効果が何ら得られない欠点がある。In such a four-plate type solid-state image pickup device, since the green light is equally divided into two, CCDs 22G-1 and 22G are used.
The amount of light incident on each -2 is 1/2 that of the CCD 12G of the three-plate solid-state imaging device of FIG. At this time, since the saturation amount of one CCD does not change, the saturation amount of each CCD that receives green light is twice as large as that of the three-plate solid-state imaging device. However, the amount of red light is the same as that of the three-plate solid-state image pickup device even though the same amount of light as that of the green light is incident, and thus the saturation amount of such a four-plate solid-state image pickup device is limited by the red light. As it is, it is no different from the three-plate type solid-state imaging device. That is, even if the 3-plate type is changed to the 4-plate type, the saturation amount as the solid-state imaging device does not change, and there is a drawback in that the effect of the 4-plate type cannot be obtained.
【0010】本発明の目的は、それぞれの色の被写体像
の光量レベルと対応した撮像素子出力レベルとの比例関
係を崩すことなく飽和出力を拡張することができる4板
式固体撮像装置の飽和出力拡張方法を提供するものであ
る。An object of the present invention is to expand the saturation output of a four-plate type solid-state image pickup device capable of expanding the saturation output without breaking the proportional relationship between the light amount level of each color subject image and the corresponding output level of the image pickup device. It provides a method.
【0011】[0011]
【課題を解決するための手段】本発明による4板式固体
撮像装置の飽和出力拡張方法は、4板式固体撮像装置の
飽和出力を拡張するに当たり、被写体像を、色分解光学
系を介して赤、緑および青の3原色の像に分解するとと
もに緑色像をさらに2分割して四つの画像とし、2分割
された緑色像を、受光素子がその配列間隔のほぼ半分だ
け水平走査方向に互いにずらして配置された第1および
第2の固体撮像素子で受光し、青色像を第3の固体撮像
素子で受光するとともに、光量を減少させた赤色像を第
4の固体撮像素子で受光し、前記第1および第2の固体
撮像素子からの第1および第2の画像信号を合成して得
られる緑色信号と、前記第3の固体撮像素子から得られ
る青色信号と、前記第4の固体撮像素子から得られる赤
色信号とを、輝度マトリックスにおいて合成して輝度信
号を作成することを特徴とするものである。According to the method for expanding saturation output of a four-plate type solid-state image pickup device according to the present invention, when expanding the saturation output of a four-plate type solid-state image pickup device, a subject image is red-colored via a color separation optical system. It is decomposed into three primary color images of green and blue, and the green image is further divided into two to obtain four images, and the two divided green images are shifted from each other in the horizontal scanning direction by about half of the arrangement interval of the light receiving elements. The first and second solid-state imaging devices arranged in this way receive light, the third solid-state imaging device receives a blue image, and the fourth solid-state imaging device receives a red image with a reduced amount of light, From the fourth solid-state image sensor, the green signal obtained by combining the first and second image signals from the first and second solid-state image sensors, the blue signal obtained from the third solid-state image sensor, and the fourth solid-state image sensor. The obtained red signal and the brightness Synthesized by the trix is characterized in creating a luminance signal.
【0012】[0012]
【作用】本発明による4板式固体撮像装置の飽和出力拡
張方法では、被写体像を色分解光学系で、赤、緑および
青の3原色の像に分解するとともに緑色像をさらに2分
割して四つの画像とする。2分割された緑色像を、受光
素子がその配列間隔のほぼ半分だけ水平走査方向に互い
にずらして配置された第1および第2の固体撮像素子で
受光し、青色像を第3の固体撮像素子で受光し、赤色像
を第4の固体撮像素子で受光するが、この赤色像の光量
は、例えば色分解光学系の赤色像を出力する面にニュー
トラルデンシティフィルタまたは赤色の透過光量を減少
させるフィルタを配置することによって減少させる。In the saturation output expansion method of the four-plate solid-state image pickup device according to the present invention, the subject image is separated into the images of the three primary colors of red, green and blue by the color separation optical system, and the green image is further divided into two and divided into four. Two images. The two-divided green image is received by the first and second solid-state imaging devices in which the light-receiving elements are displaced from each other in the horizontal scanning direction by almost half of the arrangement interval, and the blue image is received by the third solid-state imaging device. The red image is received by the fourth solid-state image sensor, and the light amount of the red image is, for example, a neutral density filter or a filter for reducing the amount of red transmitted light on the surface of the color separation optical system that outputs the red image. Decrease by placing.
【0013】ここで、被写体像を形成するレンズの前面
または直後に赤色光の光量のみを減少させる理想的なフ
ィルタを挿入しても本発明と同様の効果が得られるはず
であるが、実際には赤色の一定領域の波長のみの光量を
減少させる光学的フィルタを得るのは困難である。レン
ズの前面または直後にフィルタを配置する場合には他の
色のチャネルにも影響が及ぼされるため、本発明と同等
の効果を得ることは困難である。Here, even if an ideal filter that reduces only the amount of red light is inserted in front of or immediately after the lens forming the subject image, the same effect as that of the present invention should be obtained. It is difficult to obtain an optical filter that reduces the amount of light in the red wavelength range. When the filter is arranged in front of or immediately after the lens, channels of other colors are also affected, and it is difficult to obtain the same effect as that of the present invention.
【0014】通常スタジオ等で用いられる色温度300
0K前後の光源の下では、色分解光学系によって分解さ
れた各色の光量は、色分解光学系の性質により赤色光と
緑色光がほぼ同一量となり、青色光は赤色光または緑色
光の1/3〜1/4 となるが、緑色光の光量を2分割するた
めこの光量が2分割しない場合の1/2 となり、さらに赤
色光の光量を減少させているため、固体撮像素子に入射
する各色の光量の比率は従来の3板式または4板式固体
撮像装置の場合よりも等しい比率に近くなる。例えば、
従来の3板式の赤、緑、青の各チャネルの固体撮像素子
に入射する光量の比率が1:1:1/3 とした場合、従来の4
板式では緑の固体撮像素子に入射する光量は1/2 となる
が、赤の固体撮像素子に入射する光量は変わらないた
め、赤、緑、青の各チャネルの固体撮像素子に入射する
光量の比率は2:1:2/3 となり、本発明では、緑の固体撮
像素子に入射する光量は1/2 となり、赤の固体撮像素子
に入射する光量をニュートラルデンシティフィルタで1/
2 に減少させたとすると光量の比率は1:1:2/3 となり、
その比率が1に近づく。Color temperature 300 usually used in studios
Under a light source of around 0K, the amount of light of each color decomposed by the color separation optical system is almost the same for red light and green light due to the nature of the color separation optical system, and blue light is 1 / red of red light or green light. It becomes 3 to 1/4, but since the amount of green light is divided into two, it becomes 1/2 of that when it is not divided into two, and since the amount of red light is further reduced, each color incident on the solid-state image sensor is reduced. The ratio of the light amount of is closer to the same ratio as in the case of the conventional three-plate type or four-plate type solid-state imaging device. For example,
If the ratio of the amount of light incident on the solid-state image sensor of the conventional 3-plate red, green, and blue channels is 1: 1: 1/3,
In the plate type, the amount of light incident on the green solid-state image sensor is halved, but the amount of light incident on the red solid-state image sensor does not change, so the amount of light incident on the red, green, and blue channel solid-state image sensors does not change. The ratio is 2: 1: 2/3, and in the present invention, the amount of light incident on the green solid-state image sensor is 1/2, and the amount of light incident on the red solid-state image sensor is 1 / n by the neutral density filter.
If it is reduced to 2, the light intensity ratio becomes 1: 1: 2/3,
The ratio approaches 1.
【0015】固体撮像装置の飽和出力は上述したように
最も入射光量の比率の高い固体撮像素子によって制限さ
れるので、各固体撮像素子に入射する光量の比率が1に
近づく本発明の方式により固体撮像装置の飽和出力が拡
張される。したがって、被写体像の光量レベルと対応し
た撮像素子出力レベルとの比例関係が崩れることなく各
固体撮像素子の入射光量を、飽和量付近まで増加させる
ことができ、同一の固体撮像素子を用いた従来の固体撮
像装置に比べて飽和出力を拡張することができる。As described above, the saturation output of the solid-state image pickup device is limited by the solid-state image pickup device having the highest incident light amount ratio. The saturation output of the imager is expanded. Therefore, the incident light quantity of each solid-state image pickup element can be increased to near the saturation amount without breaking the proportional relationship between the light quantity level of the subject image and the corresponding output level of the image pickup element. The saturation output can be expanded as compared with the solid-state image pickup device.
【0016】[0016]
【実施例】本発明による4板式固体撮像装置の飽和出力
拡張方法を図面を参照して説明する。図4は、本発明に
よる飽和出力拡張方法を用いた4板式固体撮像装置の概
略構成図である。この4板式固体撮像装置は、従来の4
板式固体撮像装置にND(Neutral Density) フィルタ3
7を、色分解プリズム31とCCD32Rとの間に挿入
したものである。この色分解プリズム31は、対物レン
ズ30によって形成される被写体像を赤、緑および青色
像に分解し、さらに緑色像をハーフミラー31aによっ
て二つの緑色像に分解する。分解された緑色像は、受光
素子がその配列間隔のほぼ半分だけ水平走査方向に互い
にずれ、分割された緑色光を受光するように配置された
CCD32G−1および32G−2にそれぞれ入射し、
CCD32G−1および32G−2から得られる画像信
号が加算器36にて合成される。したがって緑色信号の
感度が損なわれることはない。なお、NDフィルタ37
の挿入によって赤色チャネルすなわちCCD32Rの光
路長が他のチャネルの光路長とズレが生じないように、
このための調整が施されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A saturation output expansion method for a four-plate solid-state image pickup device according to the present invention will be described with reference to the drawings. FIG. 4 is a schematic configuration diagram of a four-plate type solid-state imaging device using the saturation output expansion method according to the present invention. This four-plate type solid-state imaging device is
ND (Neutral Density) filter 3 for plate type solid-state imaging device
7 is inserted between the color separation prism 31 and the CCD 32R. The color separation prism 31 separates the subject image formed by the objective lens 30 into red, green and blue images, and further separates the green image into two green images by the half mirror 31a. The decomposed green image enters the CCDs 32G-1 and 32G-2, which are arranged so that the light receiving elements are displaced from each other in the horizontal scanning direction by about half of the arrangement interval and receive the divided green light,
The image signals obtained from the CCDs 32G-1 and 32G-2 are combined by the adder 36. Therefore, the sensitivity of the green signal is not impaired. The ND filter 37
Insertion of the red channel, that is, the optical path length of the CCD 32R does not deviate from the optical path lengths of other channels.
Adjustments have been made for this.
【0017】このような4板式固体撮像装置では緑色光
は2等分されるため、CCD32G−1および32G−
2にそれぞれ入射する光量は、図2に示す3板式固体撮
像装置のCCD12Gに比べて1/2 となる。この際一つ
のCCDの飽和量は変化しないため、緑色光の飽和量は
3板式固体撮像装置の場合に比べて2倍となる。一方赤
色光は、NDフィルタ37によって光量が減少した後に
CCD32Rに入射する。すなわちCCD32Rで受光
される赤色光の光量は減少する。In such a four-plate type solid-state image pickup device, green light is divided into two equal parts, and therefore CCDs 32G-1 and 32G-
The amount of light incident on each of the two is half that of the CCD 12G of the three-plate type solid-state imaging device shown in FIG. At this time, since the saturation amount of one CCD does not change, the saturation amount of green light is twice as large as that of the three-plate type solid-state imaging device. On the other hand, the red light enters the CCD 32R after the light amount is reduced by the ND filter 37. That is, the amount of red light received by the CCD 32R decreases.
【0018】色分解プリズム31によって分解された各
色の光量は、色分解プリズムの性質により赤色光および
緑色光がほぼ同一量となり、青色光が赤色光または緑色
光の1/3〜1/4 となるが、緑色光の光量を2分割するた
め光量が2分割しない場合の1/2 となり、赤色光の透過
光量をNDフィルタ37によって減少させているため、
CCD32R,CCD32G−1,CCD32G−2お
よびCCD32Bに入射する各色の光量の比率は従来の
3板式または4板式固体撮像装置の場合よりも等しい比
率に近くなる。すなわち、白色像を撮像した場合、対物
レンズ30への入射光量に対してのCCD32R、32
G−1、32G−2および32Bそれぞれの固体撮像素
子が動作する線形領域が近づく。したがって、被写体像
のレベルと、これと対応したCCD32R,CCD32
G−1,CCD32G−2およびCCD32Bの出力レ
ベルとの比例関係が崩れることなく、CCD32R,C
CD32G−1,CCD32G−2およびCCD32B
それぞれへの入射光量を、飽和点付近まで増加させるこ
とができ、同一のCCDを用いた従来の固体撮像装置に
比べて飽和出力を拡張することができる。The amount of light of each color separated by the color separation prism 31 is substantially the same for red light and green light due to the property of the color separation prism, and blue light is 1/3 to 1/4 of red light or green light. However, since the amount of green light is divided into two, the amount of light is 1/2 of that when not divided, and the amount of transmitted red light is reduced by the ND filter 37.
The ratio of the amount of light of each color incident on the CCD 32R, CCD 32G-1, CCD 32G-2, and CCD 32B is closer to the same ratio as in the case of the conventional 3-plate or 4-plate solid-state imaging device. That is, when a white image is taken, the CCDs 32R, 32 corresponding to the amount of light incident on the objective lens 30.
The linear regions in which the G-1, 32G-2, and 32B solid-state imaging devices operate are approaching. Therefore, the level of the subject image and the CCD 32R, CCD 32 corresponding to this level
G32, CCD32G-2, CCD32B, CCD32R
CD32G-1, CCD32G-2 and CCD32B
The amount of light incident on each can be increased to near the saturation point, and the saturation output can be expanded as compared with the conventional solid-state imaging device using the same CCD.
【0019】図4に示す本発明の4板式固体撮像装置に
おいて、CCD32Rへの赤色光の入射光量はNDフィ
ルタ37によって減少するが、CCD32Rの絶対的な
飽和量は変わらない。したがって赤色光の飽和点は、N
Dフィルタ37を挿入しない場合に比べて上昇する。上
昇の割合は、NDフィルタ37の光透過率に依存する。
図1の4板式固体撮像装置においては、CCD32Rの
飽和出力とCCD32G−1およびCCD32G−2の
飽和出力とが同一となるように、NDフィルタ37の光
透過率を設定すれば、4板式固体撮像装置全体の飽和出
力を拡張することができる。In the four-plate solid-state image pickup device of the present invention shown in FIG. 4, the amount of red light incident on the CCD 32R is reduced by the ND filter 37, but the absolute saturation amount of the CCD 32R does not change. Therefore, the saturation point of red light is N
It rises as compared with the case where the D filter 37 is not inserted. The rate of increase depends on the light transmittance of the ND filter 37.
In the four-plate solid-state imaging device of FIG. 1, if the light transmittance of the ND filter 37 is set so that the saturated output of the CCD 32R and the saturated output of the CCD32G-1 and CCD32G-2 are the same, the four-plate solid-state imaging device. The saturation output of the entire device can be expanded.
【0020】上述した実施例のように赤色光の透過光量
を減少させることなく、3板式固体撮像装置または従来
の4板式固体撮像装置で飽和出力を拡張しようとする場
合、R,GおよびBの全ての信号処理系の増幅率を上
げ、色分解光学系への入射光量に対するそれぞれの撮像
素子への入射光量を全体的に減少させる方法があるが、
この場合増幅率の増加がR,GおよびBの全てのチャネ
ルにおいて行われるために、増幅率の上昇分だけ撮像装
置のノイズ成分が上昇してしまうことになり不都合であ
る。When the saturation output is to be expanded in the three-plate type solid-state image pickup device or the conventional four-plate type solid-state image pickup device without reducing the transmitted light amount of red light as in the above-mentioned embodiment, R, G and B There is a method to increase the amplification rate of all signal processing systems and reduce the amount of light incident on each image sensor with respect to the amount of light incident on the color separation optical system.
In this case, since the amplification factor is increased in all the R, G, and B channels, the noise component of the image pickup device is increased by the increase in the amplification factor, which is inconvenient.
【0021】本例において、色分解プリズム31とCC
D32Rとの間にNDフィルタ37を挿入することによ
りRチャネルの感度が低下し、CCD32Rの信号出力
が減少する。したがってR,G,Bのバランスを保つた
めにRチャネルの信号処理系の増幅率を上げる必要があ
り、RチャネルのS/Nが低下する。一方、固体撮像装
置のS/Nは輝度信号で判断される。輝度信号におけ
る、R,G,B信号の比はHDTV信号の場合には、In this example, the color separation prism 31 and CC
By inserting the ND filter 37 between it and D32R, the sensitivity of the R channel is lowered and the signal output of the CCD 32R is reduced. Therefore, in order to maintain the balance of R, G, and B, it is necessary to increase the amplification factor of the signal processing system of the R channel, and the S / N of the R channel decreases. On the other hand, the S / N of the solid-state imaging device is determined by the brightness signal. In the case of HDTV signals, the ratio of R, G, B signals in the luminance signal is
【数1】 Y=0.2125R+0.7154G+0.0721B であり、Rチャネルは全体の2割にすぎず、Rチャネル
のS/N低下分が固体撮像装置全体のS/N低下に大き
く影響しない。## EQU00001 ## Y = 0.2125R + 0.7154G + 0.0721B, and the R channel accounts for only 20% of the whole, and the S / N reduction of the R channel does not significantly affect the S / N reduction of the entire solid-state imaging device.
【0022】本例において、NDフィルタ37を取り外
し自在にすることにより低照度時のRチャネルのS/N
比を上げることができる。この場合、NDフィルタ37
を取り外すとともにRチャネルのゲインを連動して下
げ、かつ、光路長が変わらないようにNDフィルタ37
と同一の屈折率の板を代わりに挿入する。In this example, by making the ND filter 37 detachable, the S / N ratio of the R channel at low illuminance is reduced.
The ratio can be increased. In this case, the ND filter 37
ND filter 37 so that the gain of the R channel is lowered in conjunction with the removal of the optical path and the optical path length does not change.
A plate with the same refractive index as is inserted instead.
【0023】本発明は上述した実施例に限定されるもの
ではなく、幾多の変形および変更が可能である。上述し
た実施例では、赤色光の透過率を減少させるためにND
フィルタを用いたが、代わりに赤色光の透過率の低い硝
材を用いたり、色分解プリズムに赤色光の反射率を変え
たダイクロック膜を設けてもよい。The present invention is not limited to the above-mentioned embodiments, but various modifications and changes can be made. In the above-described embodiment, ND is used to reduce the transmittance of red light.
Although a filter is used, a glass material having a low red light transmittance may be used instead, or a dichroic film having a different red light reflectance may be provided on the color separation prism.
【0024】[0024]
【発明の効果】上述したように本発明による4板式固体
撮像装置の飽和出力拡張方法によれば、被写体像のレベ
ルと対応した撮像素子出力レベルとの比例関係が崩れる
ことなく各固体撮像素子の入射光量を、飽和量付近まで
増加させることができるため固体撮像装置としての最大
許容入射光量を増加させることができ、したがって同一
の固体撮像素子を用いた従来の3板式または4板式固体
撮像装置に比べて飽和出力を拡張することができる。As described above, according to the saturation output expansion method of the four-plate solid-state image pickup device according to the present invention, the proportional relationship between the level of the subject image and the corresponding output level of the image pickup device is maintained and the solid-state image pickup device of each solid-state image pickup device is maintained. Since the incident light amount can be increased to near the saturation amount, the maximum allowable incident light amount as a solid-state image pickup device can be increased. Therefore, a conventional three-plate type or four-plate type solid-state image pickup device using the same solid-state image pickup device can be used. The saturated output can be expanded in comparison.
【図1】固体撮像素子への入射光量と固体撮像素子の信
号出力との関係図である。FIG. 1 is a relationship diagram between the amount of light incident on a solid-state image sensor and the signal output of the solid-state image sensor.
【図2】従来の3板式固体撮像装置の概略構成図であ
る。FIG. 2 is a schematic configuration diagram of a conventional three-plate solid-state imaging device.
【図3】従来の4板式固体撮像装置の概略構成図であ
る。FIG. 3 is a schematic configuration diagram of a conventional four-plate solid-state imaging device.
【図4】本発明による飽和出力拡張方法を用いた4板式
固体撮像装置の概略構成図である。FIG. 4 is a schematic configuration diagram of a four-plate solid-state imaging device using the saturation output expansion method according to the present invention.
30 対物レンズ 31 色分解プリズム 31a ハーフミラー 32R,32G−1,32G−2,32B CCD 33R,33G,33B ホワイトクリップ回路 34R,34G,34B 信号処理回路 35 輝度マトリックス回路 36 加算器 37 NDフィルタ 30 Objective Lens 31 Color Separation Prism 31a Half Mirror 32R, 32G-1, 32G-2, 32B CCD 33R, 33G, 33B White Clip Circuit 34R, 34G, 34B Signal Processing Circuit 35 Luminance Matrix Circuit 36 Adder 37 ND Filter
Claims (2)
るに当たり、 被写体像を、色分解光学系を介して赤、緑および青の3
原色の像に分解するとともに緑色像をさらに2分割して
四つの画像とし、 2分割された緑色像を、受光素子がその配列間隔のほぼ
半分だけ水平走査方向に互いにずらして配置された第1
および第2の固体撮像素子で受光し、青色像を第3の固
体撮像素子で受光するとともに、光量を減少させた赤色
像を第4の固体撮像素子で受光し、 前記第1および第2の固体撮像素子からの第1および第
2の画像信号を合成して得られる緑色信号と、前記第3
の固体撮像素子から得られる青色信号と、前記第4の固
体撮像素子から得られる赤色信号とを、輝度マトリック
スにおいて合成して輝度信号を作成することを特徴とす
る4板式固体撮像装置の飽和出力拡張方法。1. When expanding the saturation output of a four-plate type solid-state imaging device, a subject image is separated into three colors of red, green and blue via a color separation optical system.
A first image in which the green image is decomposed into primary color images and the green image is further divided into four images into four images, and the two divided green images are arranged such that the light receiving elements are offset from each other in the horizontal scanning direction by about half of the arrangement interval.
And the second solid-state imaging device receives the light, the third solid-state imaging device receives the blue image, and the fourth solid-state imaging device receives the red image with a reduced amount of light. A green signal obtained by combining the first and second image signals from the solid-state image sensor;
A saturated output of a four-plate solid-state image pickup device, characterized in that a blue signal obtained from the solid-state image pickup device of 1) and a red signal obtained from the fourth solid-state image pickup device are combined in a luminance matrix to create a luminance signal. Expansion method.
解光学系の赤色像を出力する面にニュートラルデンシテ
ィフィルタまたは赤色の透過光量を減少させるフィルタ
を配置して赤色光の光量を減少させることを特徴とする
4板式固体撮像装置の飽和出力拡張方法。2. The method according to claim 1, wherein a neutral density filter or a filter that reduces the amount of transmitted red light is disposed on the surface of the color separation optical system that outputs a red image to reduce the amount of red light. A method for expanding saturation output of a four-plate solid-state imaging device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6042465A JP2801853B2 (en) | 1994-03-14 | 1994-03-14 | Method for extending saturation level of signal output of four-chip solid-state imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6042465A JP2801853B2 (en) | 1994-03-14 | 1994-03-14 | Method for extending saturation level of signal output of four-chip solid-state imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07250332A true JPH07250332A (en) | 1995-09-26 |
JP2801853B2 JP2801853B2 (en) | 1998-09-21 |
Family
ID=12636829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6042465A Expired - Lifetime JP2801853B2 (en) | 1994-03-14 | 1994-03-14 | Method for extending saturation level of signal output of four-chip solid-state imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2801853B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019053764A1 (en) * | 2017-09-12 | 2019-03-21 | 株式会社日立国際電気 | Image-capturing device |
US11683568B2 (en) | 2020-02-21 | 2023-06-20 | Hitachi Kokusai Electric Inc. | Image capturing system, image processing program, and image processing method |
-
1994
- 1994-03-14 JP JP6042465A patent/JP2801853B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019053764A1 (en) * | 2017-09-12 | 2019-03-21 | 株式会社日立国際電気 | Image-capturing device |
US11683568B2 (en) | 2020-02-21 | 2023-06-20 | Hitachi Kokusai Electric Inc. | Image capturing system, image processing program, and image processing method |
Also Published As
Publication number | Publication date |
---|---|
JP2801853B2 (en) | 1998-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4688085A (en) | Enhanced sensitivity color video camera with reduced red component in second luminance signal | |
JPH06335006A (en) | Solid-state image pickup device | |
JPS59123387A (en) | Image pickup device | |
US20030016295A1 (en) | Image signal processor | |
JPS6351436B2 (en) | ||
EP0561409B1 (en) | Solid-state color imaging apparatus | |
US4860092A (en) | Color image signal processing circuit with white balance control and gain control | |
JP2002354493A (en) | Multi-lens and multi-ccd type image pickup device | |
KR960033042A (en) | Signal processing device and video camera incorporating this device | |
JPH03139084A (en) | Solid-state color image pickup device | |
JP2801853B2 (en) | Method for extending saturation level of signal output of four-chip solid-state imaging device | |
JP4323043B2 (en) | Solid-state imaging device and optical filter | |
JP4002050B2 (en) | Imaging device | |
JP2002354492A (en) | Multi-lens and multi-ccd type image pickup device | |
JP3513194B2 (en) | Imaging device | |
JP4145704B2 (en) | White balance circuit | |
US5793418A (en) | Shading correction on a CRT telecine | |
JPH06197371A (en) | White balance adjustment method for still video camera | |
JPH06141247A (en) | Solid image pickup device | |
JPS62183695A (en) | Signal processing method for frequency separation system color video camera | |
JPH04172789A (en) | Image pickup device | |
JPH01268285A (en) | Solid image pick-up element for camera | |
JPH02205187A (en) | Image pickup device | |
JPS61150488A (en) | Color video camera | |
JPH11234691A (en) | Image processing unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100710 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100710 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140710 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |