JPH07247437A - Poly(hydrosilane) composition - Google Patents

Poly(hydrosilane) composition

Info

Publication number
JPH07247437A
JPH07247437A JP6797794A JP6797794A JPH07247437A JP H07247437 A JPH07247437 A JP H07247437A JP 6797794 A JP6797794 A JP 6797794A JP 6797794 A JP6797794 A JP 6797794A JP H07247437 A JPH07247437 A JP H07247437A
Authority
JP
Japan
Prior art keywords
doping
polysilane
group
poly
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6797794A
Other languages
Japanese (ja)
Other versions
JP2970392B2 (en
Inventor
Yoshitaka Hamada
吉隆 濱田
Mikio Aramata
幹夫 荒又
Motoo Fukushima
基夫 福島
Shigeru Mori
滋 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6797794A priority Critical patent/JP2970392B2/en
Publication of JPH07247437A publication Critical patent/JPH07247437A/en
Application granted granted Critical
Publication of JP2970392B2 publication Critical patent/JP2970392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject composition suitable for an electrically- conductive material, having high electrical conductivity and light-transforming material by doping a polysilane of a specific formula with an oxidizing material. CONSTITUTION:A polysilane of the formula [R is a (substituted) alkyl or an aryl] is doped with an oxidizing material to give the objective composition. Iodine or ferric oxide is preferably used as the oxidizing material and the doping is carried out by a method such as vapor-phase doping.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光変換材料、導電性材
料として好適なポリシラン組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polysilane composition suitable as a light conversion material and a conductive material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ポリシ
ラン類はケイ素ケイ素主鎖のσ共役構造により特徴的な
光学的性質を示し、またアモルファス物質中最高のキャ
リアー移動度を持っていることから、導電性材料への応
用が期待されている。しかし、一般に知られているポリ
シランの電気伝導率は10-8〜10-6S/cmレベルと
極めて低いレベルに留まっている。これに対し、近年で
はウルツ反応により芳香族アミン含有側鎖基を持つポリ
シランが合成され、ドーピングにより通常のポリシラン
類に比べて10,000倍以上の導電率の向上が見い出
されている(田部井栄一他、特願平5−53043号;
田部井栄一他、第42会高分子年次大会予稿集第42巻
No.3,738(1993))。一方、理論計算の面
からはパーフロロポリシランがポリシランに比べてバン
ドギャップが小さくなっていることが報告されており
(Y.Yamaguchi,Synth.Met.,5
2,51(1992))、導電性向上に効果があると期
待されているが、実際に合成した例はない。
BACKGROUND OF THE INVENTION Polysilanes have characteristic optical properties due to the σ-conjugated structure of the silicon-silicon main chain and have the highest carrier mobility in amorphous materials. It is expected to be applied to conductive materials. However, the electric conductivity of generally known polysilane remains at an extremely low level of 10 −8 to 10 −6 S / cm. On the other hand, in recent years, polysilanes having an aromatic amine-containing side group have been synthesized by the Wurtz reaction, and it has been found that the conductivity is improved 10,000 times or more as compared with ordinary polysilanes by doping (Eiichi Tabei). In addition, Japanese Patent Application No. 5-53043;
Eiichi Tabei et al., Proceedings of 42nd Annual Meeting of Polymer, Vol. 42 No. 3, 738 (1993)). On the other hand, from the viewpoint of theoretical calculation, it has been reported that the band gap of perfluoropolysilane is smaller than that of polysilane (Y. Yamaguchi, Synth. Met., 5).
2, 51 (1992)), which is expected to be effective in improving conductivity, but there is no actual synthetic example.

【0003】ハロゲン側鎖のポリシランの合成は水素側
鎖のポリシランからの誘導が考えられる(J.P.Ba
novetz et.al.J.Am.Chem.So
c.,(1993),115,2540)が、側鎖に水
素基を持つポリシランの合成はウルツ反応を利用した例
が若干見られるものの、同反応条件下では一部Si−H
の分解が起こることが見い出されている。脱水素縮合法
によるポリシランの合成は、側鎖水素基の分解の心配は
ないものの、重合度の向上が問題であるとされており、
研究の主眼はもっぱら触媒の活性を上げ、高重合物を得
ることや、反応機構の解析に向けられ、電気伝導性に関
する研究はほとんど行われていなかった。
The synthesis of the halogen side chain polysilane is considered to be derived from the hydrogen side chain polysilane (JP Ba.
novetz et. al. J. Am. Chem. So
c. , (1993), 115 , 2540), the synthesis of polysilanes having a hydrogen group on the side chain uses some of the Wurtz reaction, but some Si-H
Has been found to occur. Synthesis of polysilane by the dehydrogenative condensation method is not concerned about decomposition of side chain hydrogen groups, but it is said that improvement in the degree of polymerization is a problem.
The main focus of the research was to increase the activity of the catalyst to obtain a high polymer and to analyze the reaction mechanism, and almost no research on electrical conductivity was conducted.

【0004】本発明は、上記事情に鑑みなされたもの
で、優れた導電性を有するポリシラン組成物を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a polysilane composition having excellent conductivity.

【0005】[0005]

【課題を解決するための手段及び作用】本発明者は、上
記目的を達成するため鋭意検討を行った結果、下記一般
式(1)で示される側鎖水素基を持つポリシランを酸化
性物質、特にハロゲン含有のドーパントで処理すること
により、優れた導電性を与え、通常のポリシランに比べ
て約100〜10,000倍ほど高い導電率を示すこと
を見い出し、本発明をなすに至った。
Means and Actions for Solving the Problems As a result of intensive studies to achieve the above object, the present inventor has found that polysilane having a side chain hydrogen group represented by the following general formula (1) is an oxidizing substance, In particular, by treating with a halogen-containing dopant, it has been found that it imparts excellent conductivity and exhibits a conductivity that is about 100 to 10,000 times higher than that of ordinary polysilane, and has completed the present invention.

【0006】[0006]

【化2】 (但し、式中Rは置換又は非置換のアルキル基又はアリ
ール基を示す。)
[Chemical 2] (However, in the formula, R represents a substituted or unsubstituted alkyl group or aryl group.)

【0007】従って、本発明は、式(1)のポリシラン
を酸化性物質でドーピングしてなることを特徴とするポ
リシラン組成物を提供する。
Therefore, the present invention provides a polysilane composition comprising the polysilane of formula (1) doped with an oxidizing substance.

【0008】以下、本発明につき更に詳しく説明する
と、本発明のポリシラン組成物で使用するポリシランは
下記式(1)で示されるものである。
The present invention will be described in more detail below. The polysilane used in the polysilane composition of the present invention is represented by the following formula (1).

【0009】[0009]

【化3】 [Chemical 3]

【0010】ここで、Rは置換又は非置換のアルキル基
又はアリール基を示し、アルキル基としては炭素数1〜
20、より好ましくは1〜6、アリール基としては炭素
数6〜20、より好ましくは6〜10のものが好適であ
る。具体的には、メチル、エチル、プロピル、ブチル、
ヘキシル等のアルキル基、フェニル、ナフチル等のアリ
ール基が挙げられ、置換アルキル基としては炭素数1〜
20、より好ましくは1〜6のアルキル基の水素原子の
一部又は全部がフッ素、塩素等のハロゲン原子で置換し
たものなどが挙げられる。置換アリール基としては下記
式のものが挙げられる。
Here, R represents a substituted or unsubstituted alkyl group or aryl group, and the alkyl group has 1 to 1 carbon atoms.
20, more preferably 1 to 6, and the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 10 carbon atoms. Specifically, methyl, ethyl, propyl, butyl,
Examples thereof include alkyl groups such as hexyl and aryl groups such as phenyl and naphthyl. The substituted alkyl group has 1 to 1 carbon atoms.
20, more preferably, those in which a part or all of the hydrogen atoms of the alkyl group of 1 to 6 are substituted with halogen atoms such as fluorine and chlorine. Examples of the substituted aryl group include those represented by the following formula.

【0011】[0011]

【化4】 [Chemical 4]

【0012】ここで、Xは、Cl,Br等のハロゲン原
子、メチル基、エチル基等の好ましくは炭素数1〜1
0、特に1〜6のアルキル基、トリフロロプロピル基等
のCm2m+1(mは好ましくは1〜4、特に1〜2)で
示されるフロロアルキル基、メトキシ基、エトキシ基等
の好ましくは炭素数1〜10、特に1〜4のアルコキシ
基、置換又は非置換のアミノ基、アシル基、又はアルデ
ヒド基を示す。また、Yは、水素原子、上記と同様のハ
ロゲン原子、アルキル基、フロロアルキル基、置換又は
非置換のアミノ基、アシル基、又はアルデヒド基を示
す。なお、置換アミノ基としては、アミノ基の水素原子
の1個又は2個が炭素数1〜10、特に1〜4のアルキ
ル基で置換されたアルキルアミノ基などが挙げられる。
また、mは1〜5、kは0〜4の整数を示し、k+m=
1〜5である。
Here, X is a halogen atom such as Cl or Br, a methyl group, an ethyl group or the like, preferably having 1 to 1 carbon atoms.
0, especially 1 to 6 alkyl groups, trifluoropropyl groups and other C m F 2m + 1 (m is preferably 1 to 4, especially 1 to 2) fluoroalkyl groups, methoxy groups, ethoxy groups, etc. It is preferably an alkoxy group having 1 to 10 carbon atoms, particularly 1 to 4 carbon atoms, a substituted or unsubstituted amino group, an acyl group, or an aldehyde group. Y represents a hydrogen atom, the same halogen atom as described above, an alkyl group, a fluoroalkyl group, a substituted or unsubstituted amino group, an acyl group, or an aldehyde group. Examples of the substituted amino group include an alkylamino group in which one or two hydrogen atoms of the amino group are substituted with an alkyl group having 1 to 10 carbon atoms, particularly 1 to 4 carbon atoms.
Further, m is an integer of 1 to 5 and k is an integer of 0 to 4, and k + m =
1 to 5.

【0013】本発明に用いられるポリシランは側鎖が水
素基のものであればその製造方法、分子量によらず使用
できる。また、ポリマー(オリゴマー)の構造は直鎖状
であっても環状であってもよく、通常の脱水素縮合で容
易に製造できる重合度が10程度のものであっても十分
に性能は発揮されるが、成膜性の観点から室温付近で固
体状のポリマーであることが望ましく、このような点か
ら式(1)においてnは3以上、好ましくは6以上、よ
り好ましくは10以上である。この場合、nの上限は特
に制限はないが、溶媒への溶解度を損なわない範囲で大
きいことが好ましく、上記ポリシランとしては通常重量
平均分子量が400以上、特に1000以上のものが好
適に用いられる。
The polysilane used in the present invention can be used regardless of its production method and molecular weight as long as its side chain has a hydrogen group. Further, the structure of the polymer (oligomer) may be linear or cyclic, and the performance is sufficiently exhibited even if the polymerization degree is about 10 which can be easily produced by ordinary dehydrogenative condensation. However, from the viewpoint of film-forming property, it is desirable that the polymer is a solid polymer at around room temperature. From such a point, n in the formula (1) is 3 or more, preferably 6 or more, more preferably 10 or more. In this case, the upper limit of n is not particularly limited, but is preferably large as long as the solubility in the solvent is not impaired, and as the polysilane, those having a weight average molecular weight of 400 or more, particularly 1000 or more are preferably used.

【0014】なお、上記ポリシランをトリヒドロシラン
の脱水素縮合反応で得る場合、脱水素縮合反応用触媒を
用い、室温又は加熱条件下で行うことができる。触媒と
しては、一般の脱水素縮合反応に用いられるいかなる触
媒を用いることもできるが、特にジルコノヒン又はチタ
ノセン系触媒が好ましい(Aitken,C.,Har
rod,J.F.,Samuel,F,J.Am.Ch
em.Soc.,(1986),108,4059)。
触媒の使用量は、通常の触媒量であり、シランに対して
0.001〜20重量%、特に0.01〜1重量%とす
ることが好ましい。
When the above polysilane is obtained by the dehydrogenative condensation reaction of trihydrosilane, it can be carried out at room temperature or under heating conditions using a catalyst for the dehydrogenative condensation reaction. As the catalyst, any catalyst used in a general dehydrogenative condensation reaction can be used, but a zirconohine or titanocene-based catalyst is particularly preferable (Aitken, C., Har.
rod, J.D. F. , Samuel, F, J .; Am. Ch
em. Soc. , (1986), 108 , 4059).
The amount of the catalyst used is a normal amount, and is preferably 0.001 to 20% by weight, and particularly preferably 0.01 to 1% by weight, based on the silane.

【0015】この反応には溶媒は必須ではないが、ヒド
ロシラン類と反応するおそれのない非プロトン性の溶
媒、例えばテトラヒドロフラン(THF)、トルエン、
ベンゼン、ヘキサン等を用いることが好ましい。反応温
度は0℃〜200℃、特に室温〜110℃が好ましく、
反応時間は通常3〜240時間、特に12〜70時間で
ある。
A solvent is not essential for this reaction, but an aprotic solvent such as tetrahydrofuran (THF), toluene, which does not react with hydrosilanes,
It is preferable to use benzene, hexane or the like. The reaction temperature is 0 ° C to 200 ° C, particularly preferably room temperature to 110 ° C,
The reaction time is usually 3 to 240 hours, especially 12 to 70 hours.

【0016】上記ポリシランをドーピングするための酸
化性物質としては、塩素、臭素、ヨウ素のようなハロゲ
ン類、塩化スズ、塩化第二鉄のような遷移金属塩化物、
五フッ化アンチモン、五フッ化砒素のようなルイス酸な
どが有効であるが、安全で取り扱いの易しいヨウ素や塩
化第二鉄でドーピングすることが望ましい。ドーピング
する方法としては、(1)ヨウ素や塩化第二鉄の蒸気雰
囲気下にさらすいわゆる気相(或いは乾式)ドーピン
グ、(2)ヨウ素や塩化第二鉄を不活性溶媒中に溶解し
た溶液中に当ポリマーを浸漬する湿式ドーピング、
(3)ヨウ素や塩化第二鉄を溶解した溶液中に当ポリマ
ーが溶解する場合、当溶液から乾式成膜することにより
フィルム或いは塗膜に賦形すると同時にドーピングする
同時ドーピングが用いられる。
Oxidizing substances for doping the polysilane include halogens such as chlorine, bromine and iodine, tin chloride, transition metal chlorides such as ferric chloride,
Although Lewis acids such as antimony pentafluoride and arsenic pentafluoride are effective, it is preferable to dope with iodine or ferric chloride that is safe and easy to handle. The doping method includes (1) so-called vapor phase (or dry type) doping in which iodine or ferric chloride is exposed to a vapor atmosphere, and (2) in a solution in which iodine or ferric chloride is dissolved in an inert solvent. Wet doping to dip the polymer,
(3) When the polymer is dissolved in a solution in which iodine or ferric chloride is dissolved, co-doping is used, in which a film is formed into a film or a coating film by dry film-forming from the solution and at the same time, doping is performed.

【0017】気相ドーピングでは、ドーパント雰囲気の
温度とドーパント分圧を制御することによりドーピング
速度をコントロールすることができる。一般に温度は−
30〜200℃の範囲で行うことが好ましい。それ以下
ではドーピング速度が遅く、またそれ以上ではドーピン
グ時にポリマーの劣化を招き、好ましくない。ドーパン
ト分圧は、0.001mmHg〜5気圧の範囲で行うこ
とが好ましい。それ以下ではドーピング速度が遅く、ま
たそれ以上では圧力を増してもドーピング速度は増加し
ない。なお、ヨウ素においては、常温、常圧ですみやか
にドーピングが進むが、塩化第二鉄の場合、蒸気圧が低
いためヨウ素とは異なったドーピングの条件となる。塩
化第二鉄ドーピングは一般に温度は50〜300℃の範
囲で行うことが好ましい。それ以下ではドーピング速度
が遅く、またそれ以上ではドーピング時にポリマーの劣
化を招き、好ましくない。ドーピングは、0.001m
mHg〜1気圧の範囲で行うことが好ましい。それ以下
ではその圧力に達するまでに長時間かかり経済的ではな
く、またそれ以上では塩化第二鉄が常圧で319℃とい
う沸点を持っているためドーピング速度は非常に遅い。
塩化第二鉄のドーパント分圧は、ポリマーの導電率を効
果的に上げるため、より好ましくは0.1〜10mmH
gの圧力で、温度50〜200℃の範囲で行われる。こ
の方法により、引火性の溶媒を使用することなく毒性の
少ない塩化第二鉄を用いて非常に簡単な操作で導電性ポ
リマーを製造することができる。
In vapor phase doping, the doping rate can be controlled by controlling the temperature of the dopant atmosphere and the dopant partial pressure. Generally the temperature is −
It is preferably carried out in the range of 30 to 200 ° C. If it is less than that, the doping rate is slow, and if it is more than that, the polymer is deteriorated during doping, which is not preferable. The dopant partial pressure is preferably in the range of 0.001 mmHg to 5 atm. Below that, the doping rate is slow, and above that, even if the pressure is increased, the doping rate does not increase. It should be noted that iodine is promptly doped at room temperature and atmospheric pressure, but in the case of ferric chloride, the vapor pressure is low, so that the doping condition is different from that of iodine. Ferric chloride doping is generally preferably carried out at a temperature in the range of 50 to 300 ° C. If it is less than that, the doping rate is slow, and if it is more than that, the polymer is deteriorated during doping, which is not preferable. Doping is 0.001m
It is preferably carried out in the range of mHg to 1 atm. Below that, it takes a long time to reach that pressure, which is not economical, and above that, ferric chloride has a boiling point of 319 ° C. at atmospheric pressure, and the doping rate is very slow.
The dopant partial pressure of ferric chloride is more preferably 0.1 to 10 mmH in order to effectively increase the conductivity of the polymer.
It is carried out at a pressure of g and a temperature in the range of 50 to 200 ° C. According to this method, a conductive polymer can be produced with a very simple operation using ferric chloride having low toxicity without using a flammable solvent.

【0018】[0018]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に示すが、本発明は下記の実施例に制限されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be specifically shown by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0019】なお、以下のポリマーの平均分子量はGP
Cによるポリスチレン換算の重量平均分子量を示す。ま
た、電気伝導度の測定は、スピンコートしたフィルムを
気相ドーピングをしながら4端子法にて直流抵抗の測定
を行い、安定値を得たところで導電率の算出に用いて行
った。
The average molecular weights of the following polymers are GP
The polystyrene equivalent weight average molecular weight by C is shown. Further, the electrical conductivity was measured by measuring the DC resistance by a four-terminal method while vapor-doping the spin-coated film, and when the stable value was obtained, it was used for calculating the conductivity.

【0020】〔実施例1〕フェニルシランの脱水素重合
により合成されたポリ(フェニルシラン)(Mw=65
0,Mn=640)のTHF溶液を基盤上にスピンコー
トし、気相ヨウ素ドーピングを行いながら導電率を測定
したところ、、4×10-3S/cmまで向上した。
Example 1 Poly (phenylsilane) synthesized by dehydrogenative polymerization of phenylsilane (M w = 65)
A THF solution of 0, M n = 640) was spin-coated on the substrate, and the conductivity was measured while performing vapor-phase iodine doping. As a result, it was improved to 4 × 10 −3 S / cm.

【0021】〔実施例2〕フェニルシランの脱水素重合
により合成されたポリ(フェニルシラン)(Mw=65
0,Mn=640)のTHF溶液を基盤上にスピンコー
トし、気相塩化鉄ドーピングを行いながら導電率を測定
したところ、7×10-5S/cmであった。
Example 2 Poly (phenylsilane) synthesized by dehydrogenative polymerization of phenylsilane (M w = 65)
A THF solution of 0, M n = 640) was spin-coated on the substrate, and the conductivity was measured while performing vapor phase iron chloride doping. As a result, it was 7 × 10 −5 S / cm.

【0022】〔実施例3〕β−ナフチルシランの脱水素
重合により合成されたポリ(β−ナフチルシラン)(M
w=1170,Mn=1140)のTHF溶液を基盤上に
スピンコートし、気相ヨウ素ドーピングを行いながら導
電率を測定したところ、4×10-4S/cmであった。
Example 3 Poly (β-naphthylsilane) (M synthesized by dehydrogenation polymerization of β-naphthylsilane)
A THF solution of w = 1170, M n = 1140) was spin-coated on the substrate, and the conductivity was measured while performing vapor-phase iodine doping. As a result, it was 4 × 10 −4 S / cm.

【0023】〔実施例4〕p−トリルシランの脱水素重
合により合成されたポリ(p−トリルシラン)(Mw
930,Mn=900)のTHF溶液を基盤上にスピン
コートし、気相ヨウ素ドーピングを行いながら導電率を
測定したところ、5×10-5S/cmであった。
Example 4 Poly (p-tolylsilane) synthesized by dehydrogenative polymerization of p-tolylsilane (M w =
A THF solution of 930, M n = 900) was spin-coated on the substrate, and the conductivity was measured while performing vapor-phase iodine doping, and it was 5 × 10 −5 S / cm.

【0024】〔実施例5〕p−ジメチルアミノフェニル
シランの脱水素重合により合成されたポリ(p−ジメチ
ルアミノフェニルシラン)(Mw=1170,Mn=11
30)のTHF溶液を基盤上にスピンコートし、気相ヨ
ウ素ドーピングを行いながら導電率を測定したところ、
7×10-3S/cmであった。
Example 5 Poly (p-dimethylaminophenylsilane) synthesized by dehydrogenative polymerization of p-dimethylaminophenylsilane (M w = 1170, M n = 11)
The THF solution of 30) was spin-coated on a substrate, and the conductivity was measured while performing vapor-phase iodine doping.
It was 7 × 10 −3 S / cm.

【0025】〔比較例1〕ウルツ反応によるポリ(メチ
ルフェニルシラン)(Mw=46000,Mn=1100
0)のTHF溶液を基盤上にスピンコートし、気相ヨウ
素ドーピングを行いながら導電率を測定したところ、
1.3×10-6S/cmであった。
Comparative Example 1 Poly (methylphenylsilane) by the Wurtz reaction (M w = 46000, M n = 1100)
The THF solution of 0) was spin-coated on a substrate, and the conductivity was measured while performing vapor phase iodine doping.
It was 1.3 × 10 −6 S / cm.

【0026】〔比較例2〕ウルツ反応によるポリ(ジブ
チルシラン)(Mw=21000,Mn=12000)の
THF溶液を基盤上にスピンコートし、気相ヨウ素ドー
ピングを行いながら導電率を測定したところ、3.5×
10-6S/cmであった。
[Comparative Example 2] A THF solution of poly (dibutylsilane) (M w = 21000, M n = 12000) by the Wurtz reaction was spin-coated on a substrate, and the electrical conductivity was measured while performing vapor-phase iodine doping. By the way, 3.5 ×
It was 10 −6 S / cm.

【0027】なお、実施例3,4のポリシランの製造例
を参考例として下記に示す。
The production examples of the polysilanes of Examples 3 and 4 are shown below as reference examples.

【0028】〔参考例1〕p−(N,N−ジメチルアニ
リノ)シラン2.626g(17.35mmol)をT
HF中、ジルコノセン触媒3mgの存在下、封管中で1
05℃、72時間反応させたところ、収率94.3%で
w=1,330,Mn=1,260のポリ(p−ジメチ
ルアミノフェニルシラン)が得られた。
Reference Example 1 2.626 g (17.35 mmol) of p- (N, N-dimethylanilino) silane was added to T
1 in a sealed tube in the presence of 3 mg of zirconocene catalyst in HF
When reacted at 05 ° C. for 72 hours, poly (p-dimethylaminophenylsilane) with a yield of 94.3% and M w = 1,330 and M n = 1,260 was obtained.

【0029】〔参考例2〕参考例1に準じて、β−シリ
ルナフタレン1.225g(7.74mmol)をTH
F中、ジルコノセン触媒4mgの存在下、封管中で10
5℃、72時間反応させたところ、収率90.8%でM
w=1,170,Mn=1,140のポリ(β−ナフチル
シラン)が得られた。
[Reference Example 2] According to Reference Example 1, 1.225 g (7.74 mmol) of β-silylnaphthalene was added to TH.
10 mg in a sealed tube in the presence of 4 mg of zirconocene catalyst in F.
When reacted at 5 ° C for 72 hours, the yield was 90.8% and M
Poly (β-naphthylsilane) having w = 1,170 and M n = 1,140 was obtained.

【0030】[0030]

【発明の効果】本発明のポリシラン組成物は、導電率が
高く、このため光変換材料、導電性材料に好適に用いら
れる。
EFFECT OF THE INVENTION The polysilane composition of the present invention has a high electric conductivity, and therefore is suitable for use as a light conversion material and a conductive material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福島 基夫 神奈川県川崎市高津区坂戸3丁目2番1号 信越化学工業株式会社コーポレートリサ ーチセンター内 (72)発明者 森 滋 神奈川県川崎市高津区坂戸3丁目2番1号 信越化学工業株式会社コーポレートリサ ーチセンター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoo Fukushima 3-2-1 Sakado, Takatsu-ku, Kawasaki City, Kanagawa Prefecture Corporate Research Center, Shin-Etsu Chemical Co., Ltd. (72) Shigeru Mori Sakado, Takatsu-ku, Kawasaki City, Kanagawa Prefecture 3-2-1, Shin-Etsu Chemical Co., Ltd. Corporate Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で示されるポリシラン 【化1】 (但し、式中Rは置換又は非置換のアルキル基又はアリ
ール基を示す。)を酸化性物質でドーピングしてなるこ
とを特徴とするポリ(ヒドロシラン)組成物。
1. A polysilane represented by the following general formula (1): (However, R in the formula represents a substituted or unsubstituted alkyl group or aryl group.) A poly (hydrosilane) composition characterized by being doped with an oxidizing substance.
JP6797794A 1994-03-11 1994-03-11 Poly (hydrosilane) composition Expired - Fee Related JP2970392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6797794A JP2970392B2 (en) 1994-03-11 1994-03-11 Poly (hydrosilane) composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6797794A JP2970392B2 (en) 1994-03-11 1994-03-11 Poly (hydrosilane) composition

Publications (2)

Publication Number Publication Date
JPH07247437A true JPH07247437A (en) 1995-09-26
JP2970392B2 JP2970392B2 (en) 1999-11-02

Family

ID=13360564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6797794A Expired - Fee Related JP2970392B2 (en) 1994-03-11 1994-03-11 Poly (hydrosilane) composition

Country Status (1)

Country Link
JP (1) JP2970392B2 (en)

Also Published As

Publication number Publication date
JP2970392B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US4808681A (en) Conductive poly(2,5-furanylene vinylene) and poly(2,5-thienylene vinylene)
US5549851A (en) Conductive polymer composition
KR101595928B1 (en) Conducting polymer materials based on carbonyl-functionalized polysilicones and methods for their preparation
JP4269113B2 (en) Aromatic amine derivatives and soluble conductive compounds
US5407987A (en) Polycyclic aromatic group - pendant polysilanes and conductive polymers derived therefrom
JP2970392B2 (en) Poly (hydrosilane) composition
JPH07242830A (en) Electroconducting polymer composition
US4923949A (en) Ethynylene-disilanylene copolymers and method of preparing same
KR20100087093A (en) Polythienylenevinylene thermoelectric conversion material
Munardi et al. Polymerization of acetylene with Ti (OC4H9) 4/butyllithium as catalyst system and silicone oil as reaction medium
JPH0751627B2 (en) Method for producing aniline-based polymer
JP2730444B2 (en) Conductive polymer
JP3218928B2 (en) Method for producing conductive polymer
JP2950137B2 (en) Conductive polymer and method for producing the same
JP3060857B2 (en) Polycyclic fused aromatic group pendant polysilanes, process for producing the same, and conductive polymer
JP3116759B2 (en) Polysilane and method for producing the same
JP3164671B2 (en) Arylene vinylene polymer and method for producing the same
JP2685699B2 (en) Conductive silicon polymer composition
JP2974369B2 (en) Diphenylacetylene polymer having a substituent on the aromatic ring
JP3275736B2 (en) Highly conductive polymer composition and method for producing the same
JP3180358B2 (en) Method for manufacturing solid electrolytic capacitor
JPH09143273A (en) Production of electroconductive polymer
Sakamaki et al. Synthesis and properties of novel σ–π alternating polymers with triphenylamine and organosilicon units
Nemoto et al. Electrically conductive polymer-ultrahigh-modulus polymer alloys. A solution processing route to hybrid fibers of Kevlar-polypyrrole
Selig et al. Doping of (CH) X films to the metallic state with transition metal pentafluorides

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20070827

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080827

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090827

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees