JPH0724708A - Method and device for polishing - Google Patents

Method and device for polishing

Info

Publication number
JPH0724708A
JPH0724708A JP17461093A JP17461093A JPH0724708A JP H0724708 A JPH0724708 A JP H0724708A JP 17461093 A JP17461093 A JP 17461093A JP 17461093 A JP17461093 A JP 17461093A JP H0724708 A JPH0724708 A JP H0724708A
Authority
JP
Japan
Prior art keywords
polishing
end point
temperature
workpiece
surface plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17461093A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Kojima
勝義 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17461093A priority Critical patent/JPH0724708A/en
Publication of JPH0724708A publication Critical patent/JPH0724708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To detect the working end point accurately and in-process by detecting the end point of polishing based on the temperature variation on the acting surface of polishing resulting from variation in friction heat generation mode of a work being polished. CONSTITUTION:A work to be polished vacuum-chucked on an upper surface plate 19 is brought into contact with a polishing cloth 17 stuck on a lower surface plate 16, the upper and lower surface plates 19 and 16 are rotated by a machining control mechanism 21 in R2 and R1 directions, respectively, and working liquid L is sprayed from a nozzle 22 for polishing. The surface temperature of the work to be polished increased due to polishing is detected with a radiation temperature sensor 24 as the surface temperature of the polishing cloth 17. The detected signal SA is inputted into a calculation processing part 26 through an amplifier 25. The calculation processing part 26 calculates a differential factor of surface temperature to polishing time. Using a correlation drawing showing a preset differential factor and polishing time, the advancement of polishing is judged, and the end of polishing is judged. Then the working control mechanism 21 outputs rotation stop signals SSU and SSD to stop the upper and lower surface plates 19 and 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、研磨加工の終点検出を
行う研磨方法及び研磨装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing method and a polishing apparatus for detecting a polishing end point.

【0002】[0002]

【従来の技術】SOI(ilicon ns
ulator)は、耐放射性、耐ラッチアップおよび低
寄生容量の特徴により、高速LSIへの適用が期待され
ている。ところで、図6は、タブルゲートMOS(
tal xide emiconductor)構
造の製造プロセスを示している。すなわち、<工程1>
多結晶Si基板Aにフィールド酸化膜Bを形成後、通常
のゲート形成技術を用いてバックゲート酸化膜Cとバッ
クゲート電極Dを形成する。<工程2>CVD(化学蒸
着)酸化膜Eをバックゲート酸化膜Cの上から堆積させ
る。<工程3>CVD酸化膜Eを研磨し、バックゲート
の段差を平坦化する。<工程4>バックゲートを形成し
た基板FとBPSG(ボロン注入リン化ケイ素ガラス:
oron−doped hospho−ilic
ate lass)付きの支持基板Gをパルス静電接
着法により張り合わせる。<工程5>フィールド酸化膜
BをストッパとしてSi基板Aの研削と選択研磨を行
い、フィールド酸化膜Bの段差分の薄膜Si部Kを形成
する。<工程6>通常のプロセスにより、薄膜Si部K
にフロントゲートMOSFETのソースM,ドレインN
及びフロントゲートQを形成する。
BACKGROUND OF THE INVENTION SOI (S ilicon o n I ns
Due to the characteristics of radiation resistance, latch-up resistance, and low parasitic capacitance, the ululator) is expected to be applied to a high-speed LSI. By the way, FIG. 6, Portable gate MOS (M e
It shows a manufacturing process of the tal O xide S emiconductor) structure. That is, <Step 1>
After forming the field oxide film B on the polycrystalline Si substrate A, a back gate oxide film C and a back gate electrode D are formed by using a normal gate forming technique. <Step 2> A CVD (chemical vapor deposition) oxide film E is deposited on the back gate oxide film C. <Step 3> The CVD oxide film E is polished to flatten the steps of the back gate. <Step 4> Substrate F on which a back gate is formed and BPSG (boron-implanted silicon phosphide glass:
B oron-doped P hospho- S ilic
A supporting substrate G with an (Ate G lass) is attached by a pulse electrostatic adhesion method. <Step 5> The Si substrate A is ground and selectively polished using the field oxide film B as a stopper to form a thin film Si portion K corresponding to the step of the field oxide film B. <Step 6> By a normal process, the thin film Si portion K
Source M and drain N of the front gate MOSFET
And the front gate Q is formed.

【0003】ところで、<工程5>のSiの選択研磨に
より、通常、ウエハの厚さは、625μmから400μ
m程度まで減少する。しかしながら、この<工程5>に
おいては、選択研磨の終点検出が困難であるため、しば
しば過剰研磨(オーバポリシング)が問題となる。この
過剰研磨により、薄膜Si部Kに凹みが生じ、製造歩留
向上の阻害要因となっている。
By the way, by the selective polishing of Si in <Process 5>, the thickness of the wafer is usually 625 μm to 400 μm.
It decreases to about m. However, in this <Step 5>, since it is difficult to detect the end point of the selective polishing, overpolishing (overpolishing) often becomes a problem. Due to this excessive polishing, a dent is formed in the thin film Si portion K, which is an obstacle to improving the manufacturing yield.

【0004】そこで、従来においては、ある程度までは
加工時間で管理し、その後は、短時間ごとに目視により
観察して、加工終点を検出していた。そのため、能率が
悪いばかりか、加工終点の検出誤差が入る余地が大きか
った。他方、ウエハの厚さを光学法または電気容量法に
より測定することにより加工終点検出することも考えら
れるが、被測定面が加工液などで汚れていると測定誤差
を生じるため、オンマシン・インプロセス測定には適し
ていなかった。また、超音波法によりウエハの厚さを測
定することにより加工終点を検出する方法は、精度的に
不十分である。
Therefore, conventionally, the processing time is managed to some extent, and thereafter, the processing end point is detected by visually observing every short time. Therefore, not only is the efficiency inefficient, but there is also a lot of room for detection errors at the processing end point. On the other hand, it is possible to detect the processing end point by measuring the thickness of the wafer by an optical method or an electric capacitance method, but if the surface to be measured is contaminated with a processing liquid etc., a measurement error will occur, so on-machine in-machine It was not suitable for process measurement. Further, the method of detecting the processing end point by measuring the thickness of the wafer by the ultrasonic method is insufficient in accuracy.

【0005】[0005]

【発明が解決しようとする課題】以上のように、SOI
製造プロセスにおいて実施される選択研磨の従来の加工
終点検出装置は、検出精度及び検出能率の点で不十分で
あった。この発明は、上記事情を勘案してなされたもの
で、選択研磨の加工終点検出をインプロセスで、しかも
高精度で行うことのできる加工終点検出方法及び研磨装
置を提供することを目的とする。
As described above, the SOI
The conventional processing end point detection device for selective polishing performed in the manufacturing process is insufficient in terms of detection accuracy and detection efficiency. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a processing end point detection method and a polishing apparatus that can perform the processing end point detection of selective polishing in-process and with high accuracy.

【0006】[0006]

【課題を解決するための手段】本発明は、複数種の素材
からなる被加工物の研磨加工において、研磨されている
被加工物の摩擦熱発生モードの変化に基因する研磨作用
面の温度変化に基づいて研磨加工の終点検出を行い研磨
加工を停止させるようにしたものである。
SUMMARY OF THE INVENTION In the present invention, in the polishing of a workpiece made of plural kinds of materials, a temperature change of a polishing action surface due to a change of a frictional heat generation mode of the workpiece being polished. Based on the above, the end point of the polishing process is detected and the polishing process is stopped.

【0007】[0007]

【作用】本発明によれば研磨量の厳密な制御が可能とな
る結果、例えば高速MOS用に必要な超薄膜SOI等の
超精密研磨プロセスに適用した場合、加工能率、歩留
り、信頼性等が飛躍的に向上する。
According to the present invention, the polishing amount can be strictly controlled. As a result, when it is applied to an ultra-precision polishing process such as ultra-thin film SOI required for high-speed MOS, processing efficiency, yield, reliability, etc. Improve dramatically.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面を参照して詳
述する。図1は、この実施例の研磨装置を示している。
この研磨装置は、SOIとなる薄板状の被加工物1を平
面研磨する研磨部2と、この研磨部2により平面研磨さ
れている被加工物1の加工終点を検出する加工終点検出
部3とからなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows the polishing apparatus of this embodiment.
This polishing apparatus includes a polishing unit 2 for planarly polishing a thin plate-shaped workpiece 1 to be SOI, and a processing end point detection unit 3 for detecting a processing end point of the workpiece 1 planarly polished by the polishing unit 2. It consists of

【0009】しかして、図2は、被加工物1の加工前の
構造を示している。すなわち、この被加工物1は、第1
基板部4と、この第1基板部4に対して張り合わされた
第2基板部5とからなっている。しかして、第1基板部
4は、多結晶SiからなるSi薄膜6と、このSi薄膜
6上に形成されたSiO2 からなるフィールド酸化膜7
と、このフィールド酸化膜7の開口部7aに形成された
バックゲート酸化膜8と、このバックゲート酸化膜8上
に形成されたバックゲート電極9と、Si薄膜6のバッ
クゲート電極6側全面を被覆するCVD−SiO2 膜1
0とからなっている。すなわち、フィールド酸化膜7の
開口部7aには、その深さ方向の中央部にバックゲート
酸化膜8が板面に平行に配設され、このバックゲート酸
化膜8の両側にCVD−SiO2 膜10とSi薄膜6の
一部が充填されている。一方、第2基板部5は、支持基
板11と、この支持基板11上に形成されたBPSG膜
12とからなっている。そして、BPSG膜12とCV
D−SiO2 膜10との接着により第1基板部4と第2
基板部5とが一体的に接合されている。しかして、この
実施例にては、Si薄膜6をフィールド酸化膜7が露出
するまで平面研磨することを目的としている(図2想像
線領域)。
Therefore, FIG. 2 shows the structure of the workpiece 1 before processing. That is, this workpiece 1 is
It is composed of a substrate portion 4 and a second substrate portion 5 attached to the first substrate portion 4. Thus, the first substrate portion 4 has a Si thin film 6 made of polycrystalline Si and a field oxide film 7 made of SiO 2 formed on the Si thin film 6.
The back gate oxide film 8 formed in the opening 7a of the field oxide film 7, the back gate electrode 9 formed on the back gate oxide film 8, and the entire surface of the Si thin film 6 on the back gate electrode 6 side. CVD-SiO 2 film for coating 1
It consists of 0. That is, in the opening 7a of the field oxide film 7, the back gate oxide film 8 is arranged in parallel with the plate surface at the center in the depth direction, and the CVD-SiO 2 film is formed on both sides of the back gate oxide film 8. 10 and a part of the Si thin film 6 are filled. On the other hand, the second substrate portion 5 includes a support substrate 11 and a BPSG film 12 formed on the support substrate 11. Then, the BPSG film 12 and the CV
By adhering the D-SiO 2 film 10 to the first substrate portion 4 and the second substrate portion 4.
The substrate 5 is integrally joined. In the present embodiment, the purpose is to polish the Si thin film 6 until the field oxide film 7 is exposed (the phantom line area in FIG. 2).

【0010】しかして、研磨部2は、下定盤部13と、
この下定盤部13に対向して上方位置に配設された上定
盤部14と、下定盤部13と上定盤部14を電気的に統
御する加工制御機構21とからなっている。なお、この
研磨部2には、研磨部位に加工液Lを供給する給液部1
5が付随している。そして、下定盤部13は、円盤をな
す下定盤16と、この下定盤16に貼着された例えば発
泡ウレタンなどの研磨布17と、この下定盤16を保持
して回転駆動する下定盤駆動機構18とからなってい
る。さらに、下定盤駆動機構18は、下定盤16の下面
に同軸に連結された保持軸18aと、この保持軸18a
を軸支して回転駆動する下定盤駆動モータ18bとから
なっている。さらに、上定盤部14は、下定盤16の半
径よりも小さい直径の上定盤19と、この上定盤19を
軸支して回転駆動するとともに下定盤16に対して加圧
する上定盤駆動機構20とからなっている。さらに、上
定盤19の下面には、被加工物1を着脱自在に保持する
ための図示せぬポリウレタン系の吸着シートが装着され
ている。また、上定盤駆動機構20は、上定盤19の背
部に同軸に連結された保持軸20bと、この保持軸20
bの上端部を嵌脱自在に取付けられこの保持軸20bを
昇降駆動する例えば空気圧シリンダなどの加圧手段20
cと、この加圧手段20cへの空気圧の印加を制御する
電磁弁20dと、加圧手段20cの上端部を保持して軸
線の回りに回転駆動する上定盤駆動モータ20eとから
なっている。また、給液部15は、遊離砥粒(例えばコ
ロイダルシリカにアミンを加えたもの。)を含有する加
工液Lを研磨部位に噴射するノズル22と、このノズル
22に供給する加工液Lを貯蔵するタンク23とからな
っている。他方、加工終点検出部3は、下定盤16の研
磨布17に一定距離離間対向して配設され研磨加工中に
おける研磨布17の表面温度Tを検出する例えば赤外線
温度計などの放射温度センサ24と、この放射温度セン
サ24から出力された研磨布17の表面温度Tを示す電
気信号STを増幅する増幅器25と、この増幅器25か
ら出力された電気信号STを入力しこの電気信号STに
基づいて研磨布17の表面温度Tと研磨時間tとの関係
を演算する演算処理部26とからなっている。他方、加
工制御機構21は、電磁弁20d,上定盤駆動モータ2
0e,下定盤駆動モータ18b,給液部15及び演算処
理部26に電気的に接続され、後述するような研磨加工
の制御を行うように設けられている。
Therefore, the polishing section 2 includes the lower surface plate section 13 and
The upper surface plate portion 14 is disposed at an upper position so as to face the lower surface plate portion 13, and a processing control mechanism 21 that electrically controls the lower surface plate portion 13 and the upper surface plate portion 14. The polishing unit 2 includes a liquid supply unit 1 for supplying the processing liquid L to the polishing site.
5 is attached. The lower surface plate section 13 includes a lower surface plate 16 forming a disk, a polishing cloth 17 such as urethane foam adhered to the lower surface plate 16, and a lower surface plate drive mechanism for holding and rotating the lower surface plate 16. It consists of 18. Further, the lower surface plate drive mechanism 18 includes a holding shaft 18a coaxially connected to the lower surface of the lower surface plate 16 and the holding shaft 18a.
And a lower surface plate drive motor 18b for rotatably driving the shaft. Further, the upper surface plate portion 14 has an upper surface plate 19 having a diameter smaller than the radius of the lower surface plate 16 and an upper surface plate 19 which rotatably drives the upper surface plate 19 to rotate and pressurizes the lower surface plate 16. It is composed of a drive mechanism 20. Further, a polyurethane-based suction sheet (not shown) for detachably holding the work piece 1 is attached to the lower surface of the upper surface plate 19. The upper surface plate drive mechanism 20 includes a holding shaft 20b coaxially connected to the back of the upper surface plate 19 and the holding shaft 20b.
Pressurizing means 20 such as, for example, a pneumatic cylinder for attaching and detaching the upper end of b to drive the holding shaft 20b up and down.
c, an electromagnetic valve 20d that controls the application of air pressure to the pressurizing means 20c, and an upper surface plate drive motor 20e that holds the upper end of the pressurizing means 20c and rotationally drives around the axis. . Further, the liquid supply unit 15 stores a nozzle 22 that jets a processing liquid L containing free abrasive grains (for example, colloidal silica to which amine has been added) to a polishing portion, and the processing liquid L supplied to the nozzle 22. It is composed of a tank 23 that operates. On the other hand, the processing end point detection unit 3 is arranged facing the polishing cloth 17 of the lower surface plate 16 with a certain distance apart, and detects the surface temperature T of the polishing cloth 17 during polishing, for example, a radiation temperature sensor 24 such as an infrared thermometer. And an amplifier 25 for amplifying an electric signal ST indicating the surface temperature T of the polishing pad 17 output from the radiation temperature sensor 24, and an electric signal ST output from the amplifier 25, which is input and based on the electric signal ST. The arithmetic processing unit 26 calculates the relationship between the surface temperature T of the polishing pad 17 and the polishing time t. On the other hand, the processing control mechanism 21 includes the solenoid valve 20d, the upper surface plate drive motor 2
0e, the lower platen drive motor 18b, the liquid supply unit 15, and the arithmetic processing unit 26 are electrically connected and are provided to control the polishing process as described later.

【0011】つぎに、上記構成の研磨装置を用いて、こ
の実施例の研磨方法について述べる。まず、上定盤19
に被加工物1をSi薄膜6が研磨布17に対向するよう
に真空チャックさせる。つぎに、加工制御機構21から
下定盤駆動モータ18bに回転信号SRDを印加し、下
定盤16を矢印R1方向に例えば60〜120rpm程
度で回転させる。つづいて、加工制御機構21から上定
盤駆動モータ20eに回転信号SRUを印加するととも
に、電磁弁20dに下降信号SDを印加し、上定盤19
を矢印R2方向に例えば毎分60〜120rpm程度回
転させるとともに、矢印D1方向に下降させ、Si薄膜
6を研磨布17に接触させる。なお、上定盤19の下降
は、研磨圧が200〜1,600gf/cm2 程度の状
態で停止する。このとき、加工制御機構21から給液部
15に印加された給液信号SLに基づきノズル22を介
して加工液Lを被加工物1の研磨部位に噴射する。かく
して、Si薄膜6は、加工液Lに含有されている遊離砥
粒と研磨布17により平面研磨される。このとき、研磨
布17は、被加工物1との摩擦熱により、研磨の進行に
伴って表面温度Tが徐々に増加する(図3参照)。そこ
で、放射温度センサ24にては、研磨布17の表面温度
Tを検出し、これを電気信号STに変換する。この電気
信号STは、増幅器25にて増幅され、演算処理部26
に入力する。すると、この演算処理部26にては、表面
温度Tの研磨時間tに対する微分係数θ(=dT/d
t)を演算する。ここで、図4は、微分係数θと研磨時
間tとの関係を模式的に示している。この図4におい
て、領域R1は、Si薄膜6のみを研磨しているときの
微分係数θを示している。この領域R1は、図3におけ
る領域R1aに対応するもので、ほぼ一定の割合で研磨
布17の表面温度Tが増加していることがわかる。とこ
ろが、Si薄膜6の研磨加工が進行し、フィールド酸化
膜7が露出し研磨布17と接触し始める直前になると、
微分係数θは、図4における領域R2となる。すなわ
ち、この領域R2に対応している図3における領域R2
aが示すように、Si薄膜6の初期の研磨加工に比べて
研磨布17の表面温度Tの増加率が増加する。これは、
Si薄膜6の初層に比べて中間層以上の緻密度が上昇す
ることにより摩擦係数が増大したことによると考えられ
る。つづいて、Si薄膜6の研磨加工が完結し、フィー
ルド酸化膜7のみ研磨加工するようになると、微分係数
θは、図4における領域R3のように負の値となる。す
なわち、この領域R3に対応している図3における領域
R3aが示すように、研磨布17の表面温度Tは研磨加
工が進行するにつれて、徐々に減少する。これは、フィ
ールド酸化膜7と研磨布17の摩擦係数が、Si薄膜6
と研磨布17の摩擦係数よりも著しく小さいことによる
と考えられる。そこで、この実施例においては、演算処
理部26にて領域R1から領域R2に移行する図3にお
ける温度変化点T1を検出し、電磁弁20dに下降信号
SD1を印加することにより、上定盤19の研磨布17
に対する研磨圧を例えば10〜30%減圧する。これに
より、図3及び図4に示すように、微分係数θは、領域
R1レベルに修正される。その結果、被加工物1の過熱
を予防することができる。ついで、演算処理部26にて
は、領域R2から領域R3に移行する図3における温度
変化点T2を検出し、検出時点から数分後(または数度
研磨布17の表面温度Tが低下した後)、電磁弁20d
に上昇信号SD2を印加することにより、加圧手段20
cを逆方向に作動させ、保持軸20bを介して上定盤1
9に貼着されている被加工物1を下定盤16に貼着され
た研磨布17から離間させる。ついで、回転停止信号S
SU,SSDが、上定盤駆動モータ20e及び下定盤駆
動モータ18bに印加され、研磨加工が停止する。
Next, the polishing method of this embodiment will be described using the polishing apparatus having the above structure. First, upper platen 19
Then, the workpiece 1 is vacuum chucked so that the Si thin film 6 faces the polishing cloth 17. Next, the processing control mechanism 21 applies a rotation signal SRD to the lower surface plate drive motor 18b to rotate the lower surface plate 16 in the direction of arrow R1 at, for example, about 60 to 120 rpm. Subsequently, the machining control mechanism 21 applies the rotation signal SRU to the upper surface plate drive motor 20e, and also applies the lowering signal SD to the solenoid valve 20d.
Is rotated in the direction of arrow R2, for example, about 60 to 120 rpm, and is lowered in the direction of arrow D1 to bring the Si thin film 6 into contact with the polishing cloth 17. The lowering of the upper platen 19 is stopped when the polishing pressure is about 200 to 1,600 gf / cm 2 . At this time, the processing liquid L is jetted to the polishing portion of the workpiece 1 via the nozzle 22 based on the liquid supply signal SL applied to the liquid supply unit 15 from the processing control mechanism 21. Thus, the Si thin film 6 is surface-polished by the loose abrasive grains contained in the working liquid L and the polishing cloth 17. At this time, the surface temperature T of the polishing cloth 17 gradually increases as the polishing progresses due to the frictional heat with the workpiece 1 (see FIG. 3). Therefore, the radiation temperature sensor 24 detects the surface temperature T of the polishing cloth 17 and converts it into an electric signal ST. The electric signal ST is amplified by the amplifier 25, and the arithmetic processing unit 26
To enter. Then, in the arithmetic processing unit 26, the differential coefficient θ (= dT / d) of the surface temperature T with respect to the polishing time t.
t) is calculated. Here, FIG. 4 schematically shows the relationship between the differential coefficient θ and the polishing time t. In FIG. 4, the region R1 shows the differential coefficient θ when only the Si thin film 6 is being polished. This region R1 corresponds to the region R1a in FIG. 3, and it can be seen that the surface temperature T of the polishing pad 17 increases at a substantially constant rate. However, when the polishing process of the Si thin film 6 progresses, and immediately before the field oxide film 7 is exposed and starts to contact the polishing cloth 17,
The differential coefficient θ is the region R2 in FIG. That is, the region R2 in FIG. 3 corresponding to this region R2
As indicated by a, the increase rate of the surface temperature T of the polishing pad 17 is increased as compared with the initial polishing process of the Si thin film 6. this is,
It is considered that this is because the coefficient of friction increased due to the increase in the density of the intermediate layer and higher than that of the initial layer of the Si thin film 6. Subsequently, when the polishing process of the Si thin film 6 is completed and only the field oxide film 7 is polished, the differential coefficient θ has a negative value like the region R3 in FIG. That is, as indicated by the region R3a in FIG. 3 corresponding to this region R3, the surface temperature T of the polishing pad 17 gradually decreases as the polishing process progresses. This is because the friction coefficient between the field oxide film 7 and the polishing cloth 17 is
And the friction coefficient of the polishing cloth 17 is significantly smaller than that of the polishing cloth 17. Therefore, in this embodiment, the arithmetic processing unit 26 detects the temperature change point T1 in FIG. 3 that shifts from the region R1 to the region R2 and applies the descending signal SD1 to the solenoid valve 20d, whereby the upper platen 19 Polishing cloth 17
For example, the polishing pressure is reduced by 10 to 30%. Thereby, as shown in FIGS. 3 and 4, the differential coefficient θ is corrected to the level of the region R1. As a result, overheating of the work piece 1 can be prevented. Next, in the arithmetic processing unit 26, the temperature change point T2 in FIG. 3 where the region R2 shifts to the region R3 is detected, and several minutes after the detection time point (or after the surface temperature T of the polishing pad 17 decreases by several degrees). ), Solenoid valve 20d
By applying the rising signal SD2 to the pressurizing means 20
c is operated in the reverse direction, and the upper surface plate 1 is moved through the holding shaft 20b.
The work piece 1 attached to No. 9 is separated from the polishing cloth 17 attached to the lower surface plate 16. Then, the rotation stop signal S
SU and SSD are applied to the upper platen drive motor 20e and the lower platen drive motor 18b, and the polishing process is stopped.

【0012】このように、この実施例においては、加工
終点検出部3を具備し、この加工終点検出部3における
検出結果に基づいて研磨加工を制御するようにしている
ので、フィールド酸化膜7の開口部7aのダレ(凹み)
CC<図5参照>を1μm以下に高能率で研磨加工する
ことが可能となる。とくに、温度変化点T1を検出する
ことにより上定盤19の研磨布17に対する研磨圧を減
圧するようにしているので、被加工物1の過熱を予防す
ることができ、ダレ(凹み)抑制効果を一層高めること
ができる。
As described above, in this embodiment, since the processing end point detecting section 3 is provided and the polishing processing is controlled based on the detection result of the processing end point detecting section 3, the field oxide film 7 is formed. Sagging of the opening 7a (dent)
It becomes possible to polish CC <see FIG. 5> to 1 μm or less with high efficiency. In particular, since the polishing pressure of the upper surface plate 19 with respect to the polishing cloth 17 is reduced by detecting the temperature change point T1, it is possible to prevent the workpiece 1 from overheating and suppress the sag (depression). Can be further enhanced.

【0013】なお、上記実施例においては、領域R1か
ら領域R2に移行する温度変化点T1を検出に基づいて
研磨圧の調整を行っているが、このプロセスは省略し、
温度変化点T2による研磨加工の終点検出のみを行うよ
うにしてもよい。
In the above embodiment, the polishing pressure is adjusted based on the detection of the temperature change point T1 which shifts from the region R1 to the region R2, but this process is omitted.
Alternatively, only the end point of the polishing process may be detected based on the temperature change point T2.

【0014】さらに、上記実施例は、研磨加工がSi薄
膜6からフィールド酸化膜7に移行するときの研磨布1
7の表面温度が低下することに基づいて加工終点を検出
するようにしているが、材種によっては、研磨加工があ
る層から隣接する層に移行する際に研磨布の表面温度が
上昇する場合にも、本発明を適用することができる。
Further, in the above embodiment, the polishing cloth 1 when the polishing process is transferred from the Si thin film 6 to the field oxide film 7 is performed.
Although the processing end point is detected based on the decrease in the surface temperature of No. 7, depending on the material type, the surface temperature of the polishing cloth increases when the polishing processing moves from one layer to an adjacent layer. Also, the present invention can be applied.

【0015】さらにまた、上記実施例においては、研磨
布17の表面温度の検出を放射温度センサにより非接触
で検出するようにしているが、上定盤19または下定盤
16に温度センサを埋設するようにしてもよい。
Further, in the above embodiment, the surface temperature of the polishing cloth 17 is detected by the radiation temperature sensor without contact, but the temperature sensor is embedded in the upper surface plate 19 or the lower surface plate 16. You may do it.

【0016】のみならず、本発明は、研磨に伴う摩擦熱
発生モードの異なる複数種の素材からなる被加工物を研
磨加工する研磨加工であれば、特に平面加工に限ること
なく、曲面加工,溝加工等の他の研磨プロセスにも適用
可能である。
The present invention is not limited to flat surface processing as long as it is a polishing processing for polishing a workpiece made of a plurality of kinds of materials having different friction heat generation modes associated with polishing. It can also be applied to other polishing processes such as groove processing.

【0017】さらにまた、上記実施例においては、研磨
の種類として、ポリシングを例示しているが、ラッピッ
ング、研削等、平面研磨であるならばどのような加工方
法にも適用することができる。もちろん、片面研磨ある
いは両面研磨のいずれにも適用可能である。
Furthermore, in the above embodiment, polishing is exemplified as the type of polishing, but any processing method can be applied as long as it is plane polishing such as rapping and grinding. Of course, it can be applied to either single-sided polishing or double-sided polishing.

【0018】[0018]

【発明の効果】本発明の研磨装置は、加工終点検出部を
具備しているので、加工終点の自動検出を高精度で行う
ことができるようになり、研磨量の厳密な制御が可能と
なる。したがって、この本発明の研磨装置を例えば高速
MOS用に必要な超薄膜SOI等の超精密研磨プロセス
に適用した場合、歩留り,信頼性,スループット等が飛
躍的に向上する。
Since the polishing apparatus of the present invention is provided with the processing end point detecting section, the processing end point can be automatically detected with high accuracy, and the polishing amount can be strictly controlled. . Therefore, when the polishing apparatus of the present invention is applied to an ultra-precision polishing process for ultra-thin film SOI or the like required for high-speed MOS, the yield, reliability, throughput, etc. are dramatically improved.

【0019】本発明の研磨方法は、複数種の素材からな
る被加工物の研磨加工において、研磨されている被加工
物の摩擦熱発生モードの変化に基因する研磨作用面の表
面温度変化に基づいて研磨加工の終点検出を行い研磨加
工を停止させるようにしているので、研磨量の厳密な制
御が可能となる。したがって、この本発明の研磨方法を
例えば高速MOS用に必要な超薄膜SOI等の超精密研
磨プロセスに適用した場合、歩留りや信頼性等が飛躍的
に向上する。
The polishing method of the present invention is based on the change in the surface temperature of the polishing action surface due to the change in the friction heat generation mode of the workpiece being polished in the polishing of the workpiece made of plural kinds of materials. Since the end point of the polishing process is detected and the polishing process is stopped, the polishing amount can be strictly controlled. Therefore, when the polishing method of the present invention is applied to, for example, an ultra-precision polishing process for ultra-thin film SOI or the like required for high-speed MOS, the yield, reliability, etc. are dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の研磨装置の全体構成図であ
る。
FIG. 1 is an overall configuration diagram of a polishing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例の研磨装置により研磨される
被加工物の断面図である。
FIG. 2 is a cross-sectional view of a workpiece to be polished by a polishing apparatus according to an embodiment of the present invention.

【図3】本発明の一実施例を説明するための研磨温度と
研磨時間との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a polishing temperature and a polishing time for explaining an example of the present invention.

【図4】本発明の一実施例を説明するための研磨温度と
研磨時間との微分係数を示すグラフである。
FIG. 4 is a graph showing a differential coefficient between a polishing temperature and a polishing time for explaining an example of the present invention.

【図5】本発明の一実施例の作用効果を説明するための
被加工物の断面図である。
FIG. 5 is a cross-sectional view of a workpiece for explaining the function and effect of one embodiment of the present invention.

【図6】従来技術の説明図である。FIG. 6 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1:被加工物,2:研磨部,3:加工終点検出部,1
7:研磨布,24:放射温度センサ,26:演算処理
部。
1: Work piece, 2: Polishing part, 3: Processing end point detecting part, 1
7: polishing cloth, 24: radiation temperature sensor, 26: arithmetic processing unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】研磨に伴う摩擦熱発生モードの異なる複数
種の素材からなる被加工物を研磨加工する研磨方法にお
いて、研磨に伴って生ずる摩擦熱発生モード変化による
研磨作用面の温度変化に基づいて研磨加工の終点検出を
行い研磨加工を停止させることを特徴とする研磨方法。
1. In a polishing method for polishing a workpiece made of a plurality of materials having different friction heat generation modes associated with polishing, based on a temperature change of a polishing action surface due to a friction heat generation mode change caused by polishing. The polishing method is characterized by detecting the end point of the polishing process and stopping the polishing process.
【請求項2】研磨に伴う摩擦熱発生モードの異なる少な
くとも二種類の素材が平行に積層されてなる被加工物の
特定層のみを層面に平行に平面研磨する研磨方法におい
て、上記特定層の平面研磨から他層の平面研磨に移行す
る際に発生する摩擦熱発生モードの変化による研磨作用
面の温度変化に基づいて研磨加工の終点検出を行い研磨
加工を停止させることを特徴とする研磨方法。
2. A polishing method for flat-polishing only a specific layer of a workpiece, in which at least two kinds of materials having different frictional heat generation modes due to polishing are laminated in parallel, in a plane of the specific layer. A polishing method characterized in that the end point of polishing is detected and the polishing is stopped based on the temperature change of the polishing working surface caused by the change of frictional heat generation mode generated when shifting from polishing to planar polishing of another layer.
【請求項3】被加工物を研磨する研磨部と、上記研磨部
の研磨作用面の表面温度を検出する温度センサと、上記
研磨部による上記被加工物の研磨中に上記温度センサか
ら出力された上記研磨作用面の表面温度を示す電気信号
に基づいて研磨加工終点を検出する加工終点検出器とを
具備することを特徴とする研磨装置。
3. A polishing unit for polishing a workpiece, a temperature sensor for detecting a surface temperature of a polishing surface of the polishing unit, and an output from the temperature sensor during polishing of the workpiece by the polishing unit. And a processing end point detector for detecting the polishing processing end point based on an electric signal indicating the surface temperature of the polishing action surface.
【請求項4】温度センサは、研磨作用面の放射温度を検
出する放射温度センサであり、研磨作用面に離間対向し
て配設されていることを特徴とする請求項1記載の研磨
装置。
4. The polishing apparatus according to claim 1, wherein the temperature sensor is a radiation temperature sensor that detects a radiation temperature of the polishing action surface, and is arranged facing the polishing action surface with a space therebetween.
JP17461093A 1993-07-15 1993-07-15 Method and device for polishing Pending JPH0724708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17461093A JPH0724708A (en) 1993-07-15 1993-07-15 Method and device for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17461093A JPH0724708A (en) 1993-07-15 1993-07-15 Method and device for polishing

Publications (1)

Publication Number Publication Date
JPH0724708A true JPH0724708A (en) 1995-01-27

Family

ID=15981604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17461093A Pending JPH0724708A (en) 1993-07-15 1993-07-15 Method and device for polishing

Country Status (1)

Country Link
JP (1) JPH0724708A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722875A (en) * 1995-05-30 1998-03-03 Tokyo Electron Limited Method and apparatus for polishing
US5769697A (en) * 1995-08-24 1998-06-23 Matsushita Electric Industrial Co., Ltd. Method and apparatus for polishing semiconductor substrate
US5851846A (en) * 1994-12-22 1998-12-22 Nippondenso Co., Ltd. Polishing method for SOI
US5938502A (en) * 1996-11-15 1999-08-17 Nec Corporation Polishing method of substrate and polishing device therefor
JP2004522310A (en) * 2001-06-26 2004-07-22 ラム リサーチ コーポレーション Endpoint detection system for chemical mechanical polishing
JP2005260038A (en) * 2004-03-12 2005-09-22 Disco Abrasive Syst Ltd Polishing apparatus
US9625905B2 (en) 2001-03-30 2017-04-18 Immersion Corporation Haptic remote control for toys

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851846A (en) * 1994-12-22 1998-12-22 Nippondenso Co., Ltd. Polishing method for SOI
US5722875A (en) * 1995-05-30 1998-03-03 Tokyo Electron Limited Method and apparatus for polishing
US5769697A (en) * 1995-08-24 1998-06-23 Matsushita Electric Industrial Co., Ltd. Method and apparatus for polishing semiconductor substrate
US5938502A (en) * 1996-11-15 1999-08-17 Nec Corporation Polishing method of substrate and polishing device therefor
US9625905B2 (en) 2001-03-30 2017-04-18 Immersion Corporation Haptic remote control for toys
JP2004522310A (en) * 2001-06-26 2004-07-22 ラム リサーチ コーポレーション Endpoint detection system for chemical mechanical polishing
JP2005260038A (en) * 2004-03-12 2005-09-22 Disco Abrasive Syst Ltd Polishing apparatus
JP4631021B2 (en) * 2004-03-12 2011-02-16 株式会社ディスコ Polishing equipment

Similar Documents

Publication Publication Date Title
US6120347A (en) System for real-time control of semiconductor wafer polishing
US5643060A (en) System for real-time control of semiconductor wafer polishing including heater
US6315635B1 (en) Method and apparatus for slurry temperature control in a polishing process
JP4369122B2 (en) Polishing pad and polishing pad manufacturing method
TWI330385B (en) Method of grinding back surface of semiconductor wafer and semiconductor wafer grinding apparatus
JPH0855826A (en) Polishing method and equipment
JP3011113B2 (en) Substrate polishing method and polishing apparatus
TWI557790B (en) Wafer processing method
EP1072359A3 (en) Semiconductor wafer polishing apparatus
JPH0724708A (en) Method and device for polishing
EP0616362A2 (en) Method for polishing work piece and apparatus therefor
JPH0878369A (en) Polishing end point detecting method and its polishing apparatus
JPH0794452A (en) Method and device for polishing
JPH06320416A (en) Polishing method and polishing device
JPH0970753A (en) Polishing method and polishing device
TW202031424A (en) Grinding device capable of reducing air-cut period and enhancing production efficiency for grinding
JPH09131660A (en) Semiconductor manufacturing device and method thereof
JPH10315131A (en) Polishing method of semiconductor wafer and device therefor
JPH10180625A (en) Polishing method and polishing device
JPH08316179A (en) Flattening method and apparatus in semiconductor process
JPH10315124A (en) Polishing method and polishing device
JP3500783B2 (en) Polishing equipment for semiconductor substrates
JP2000340537A (en) Polishing apparatus and method
JPH07335845A (en) Manufacture of soi substrate and polisher
JPH08243917A (en) Polishing end point detecting method and polishing device and manufacture of semiconductor device using it