JPH07245831A - Gas-insulated switchgear - Google Patents

Gas-insulated switchgear

Info

Publication number
JPH07245831A
JPH07245831A JP6059787A JP5978794A JPH07245831A JP H07245831 A JPH07245831 A JP H07245831A JP 6059787 A JP6059787 A JP 6059787A JP 5978794 A JP5978794 A JP 5978794A JP H07245831 A JPH07245831 A JP H07245831A
Authority
JP
Japan
Prior art keywords
gas
accident
current
section
insulated switchgear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6059787A
Other languages
Japanese (ja)
Inventor
Eiji Itakura
英治 板倉
Akira Ito
明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP6059787A priority Critical patent/JPH07245831A/en
Publication of JPH07245831A publication Critical patent/JPH07245831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To get information for the early recovery at the time of an accident by accurately judging an accident block, using the magnitude of a current for detection of the accident. CONSTITUTION:A gas-insulated switchgear 3, where a container for accommodating each element is divided into a plurality of gas blocks, are provided with current detectors, which severally detect the currents of three-phase buses built in insulating spacers 1AB, 1AC, 1CD, 1DE, 1DF, 1E, 1F, and 1A for dividing each gas block, and an accident block judging part 4, which compares the magnitude of this current with the specified judgment level and judges the gas block of accident occurrence.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガス絶縁開閉装置(以
下、GISと言う)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas insulated switchgear (hereinafter referred to as GIS).

【従来の技術】[Prior art]

【0002】一般に、GISは、変電所の機器のうち、
遮断器、断路器、接地開閉器、変成器などの変圧器以外
の機器をSF6ガスなどの絶縁ガスを封入した金属容器
に収納し、絶縁スペーサでユニットを各ガス区画に区分
したものである。この結果、GISでは、充電部を露出
せずに、ガス絶縁による装置の縮小化、信頼性、運転保
守性や安全性の向上を実現している。しかし、一方で、
GISは各機器が金属容器内に密閉されているために、
万一内部事故が発生した場合に、事故の生じたガス区画
の発見が難しく、復旧に時間を要する事がある。
In general, GIS is one of the substation equipments.
Devices other than transformers, such as circuit breakers, disconnectors, grounding switches, and transformers, are housed in metal containers filled with an insulating gas such as SF6 gas, and the units are divided into gas compartments by insulating spacers. As a result, GIS realizes downsizing of the device by gas insulation, improvement of reliability, operation and maintenance, and safety without exposing the charging part. But on the other hand,
In GIS, since each device is sealed in a metal container,
If an internal accident should occur, it may be difficult to find the gas compartment where the accident occurred, and it may take time to recover.

【0003】内部事故の例としては、容器内部に混入し
た導電性異物による部分放電からの絶縁劣化による尖絡
事故(地絡または相間短絡)や、容器内部の母線接続部
の接触不良から発生する導体溶断から尖絡に至る事など
がある。
Examples of internal accidents are caused by a pointed accident (ground fault or interphase short circuit) due to insulation deterioration due to partial discharge due to conductive foreign substances mixed in the container, and a poor contact at a busbar connection portion inside the container. There are cases where the conductor melts to a pointed tip.

【0004】従来、内部事故発生時には、金属容器内の
圧力上昇が生ずるので、ガス圧力をモニタして、事故区
画を的確に判定する事が試られている。
Conventionally, when an internal accident occurs, the pressure in the metal container rises, so it has been tried to monitor the gas pressure and accurately determine the accident zone.

【0005】図3はGISの構成例である。GIS3
は、ガス区画AからFは絶縁スペーサ1で区分されてい
る。ガス区画Aにはケーブル接続部(CH)が、ガス区
画Bには計器用変圧器(PT)が、ガス区画Cには断路
器(DS)および接地開閉器(ES)が、ガス区画Dに
は計器用変流器(CT)および遮断機(CB)が、ガス
区画Eおよびガス区画Fにはそれぞれ断路器(DS)が
収納されている。ガス区画Eおよびガス区画Fのもう1
端には他の回線と接続される母線(BUS)が接続され
ている。
FIG. 3 shows an example of the structure of GIS. GIS3
The gas compartments A to F are separated by an insulating spacer 1. The gas section A has a cable connection (CH), the gas section B has an instrument transformer (PT), the gas section C has a disconnector (DS) and a grounding switch (ES), and the gas section D has a The instrument current transformer (CT) and the circuit breaker (CB) are housed in the gas section E and the gas section F, respectively. Another of gas compartment E and gas compartment F
A bus bar (BUS) connected to another line is connected to the end.

【0006】図4に従来のガス圧力をモニタして事故区
画を検出する場合の例を示す。GIS3は、絶縁スペー
サ1’で、ガス区画A〜Fに区分されている。各ガス区
画にはそれぞれ配管60を介して、バルブ61、圧力セ
ンサ62が取り付けられている。各圧力センサ62で検
出された各ガス区画の圧力信号は各電気ケーブル63
で、信号処理回路7に送られる。信号処理回路7では、
各増幅器71でその信号を増幅して、また、ガスの反射
衝突による影響を取除くために、各ローパスフィルタ7
2で高周波成分を除去して、圧力時間変化検出回路73
に送る。圧力時間変化検出回路73では、各ガス区画ご
とに圧力の時間変化Δpを検出し、この圧力時間変化Δ
pとガス区画情報Nを事故区画判定回路74に送る。時
間変化Δpを予め判定レベル設定回路75で設定してあ
る判定レベルと事故区画判定回路74で比較して、判定
レベルを越えたガス区画を事故区画N’として出力す
る。
FIG. 4 shows an example of a case where a conventional gas pressure is monitored to detect an accident section. The GIS 3 is divided into gas sections A to F by an insulating spacer 1 '. A valve 61 and a pressure sensor 62 are attached to each gas compartment via a pipe 60. The pressure signal of each gas section detected by each pressure sensor 62 is sent to each electric cable 63.
Then, it is sent to the signal processing circuit 7. In the signal processing circuit 7,
In order to amplify the signal in each amplifier 71 and to remove the influence of the reflection collision of gas, each low pass filter 7
The high frequency component is removed at 2, and the pressure time change detection circuit 73
Send to. The pressure time change detection circuit 73 detects the time change Δp of the pressure for each gas section, and detects the pressure time change Δp.
p and the gas section information N are sent to the accident section determination circuit 74. The time change Δp is compared with the judgment level preset by the judgment level setting circuit 75 and the accident section judgment circuit 74, and the gas section exceeding the judgment level is output as the accident section N ′.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、ガス圧
力のモニタにより事故の発生したガス区画を判定する方
法では次の問題がある。
However, the method of determining the gas compartment where the accident has occurred by monitoring the gas pressure has the following problems.

【0008】配管を介して、圧力センサを取り付けるた
めに、圧力センサで検出する圧力と実際のガス区画の中
の圧力に差があり、事故時の衝撃圧など時間変化の早い
圧力を検出する時には、特に配管の形状や内部機器の構
造によって圧力変化検出の精度が悪くなる事がある。
In order to attach a pressure sensor via a pipe, there is a difference between the pressure detected by the pressure sensor and the actual pressure in the gas compartment, and when detecting a pressure that changes rapidly with time, such as impact pressure at the time of an accident. In particular, the accuracy of pressure change detection may deteriorate depending on the shape of the pipe and the structure of the internal equipment.

【0009】ガス区画の大きさや収納機器の構造によっ
て、判定レベルを設定する必要があり、その設定を誤る
と、圧力の時間変化が緩慢な事故を検出できなかった
り、逆に事故ではない緩慢な圧力の時間変化を事故と判
定してしまう事がある。このことを避けるためには、ガ
ス区画ごとに実験を繰り返して、正確な判定レベルを設
定しなければならず、判定レベルの設定が繁雑である。
It is necessary to set the judgment level depending on the size of the gas compartment and the structure of the storage device. If the setting is incorrect, an accident in which the change in pressure with time is slow cannot be detected, or conversely, it is not an accident. Occasionally, the change in pressure over time may be determined to be an accident. In order to avoid this, it is necessary to repeat the experiment for each gas section to set an accurate determination level, and setting the determination level is complicated.

【0010】また、圧力は温度により変化するので、日
射や風速等外部環境条件やガス区画によって流れる電流
の大きさが異なってガス区画によるガス温度上昇に差が
ある場合、ガス圧力の時間変化に差が生じ、温度上昇の
大きいガス区画の圧力時間変化が大きくなるが、当該ガ
ス区画を事故と判定しないためには、判定レベルを高く
設定せざるを得ず、判定の分解能に限界がある。
Further, since the pressure changes depending on the temperature, when there is a difference in the gas temperature rise due to the gas compartment due to the difference in the external environmental conditions such as solar radiation and wind speed and the magnitude of the current flowing in the gas compartment, there is a change in the gas pressure with time. A difference occurs, and the pressure-time change in the gas compartment with a large temperature rise becomes large, but in order not to judge that gas compartment as an accident, the judgment level must be set high, and the resolution of the judgment is limited.

【0011】そこで、本発明では、ガス区画の大きさや
収納機器、温度の影響を受けることなく、正確に事故区
画の判別を行なうようにするものである。
Therefore, the present invention is intended to accurately determine the accident section without being affected by the size of the gas section, the storage equipment, and the temperature.

【0012】[0012]

【課題を解決するための手段】請求項1の発明では、各
エレメントを収納する容器が複数のガス区画に分けられ
たGISにおいて、各ガス区画を区分する絶縁スペーサ
に内蔵された三相母線をそれぞれ検出対象とした電流検
出部と、各絶縁スペーサを貫通して流れる電流の時間変
化の大きさを所定の判定レベルと比較することにより事
故発生のガス区画を判定する事故区画判定部を設ける。
According to a first aspect of the present invention, in a GIS in which a container accommodating each element is divided into a plurality of gas compartments, a three-phase bus bar built in an insulating spacer for partitioning each gas compartment is provided. A current detection unit that is a detection target and an accident section determination unit that determines the gas section in which an accident has occurred by comparing the magnitude of the time change of the current flowing through each insulating spacer with a predetermined determination level are provided.

【0013】請求項2の発明では、事故区画判定部の所
定の判定レベルとして、他の絶縁スペーサを貫通して流
れている電流を用いる。
According to the second aspect of the invention, the current flowing through the other insulating spacer is used as the predetermined determination level of the accident section determination section.

【0014】請求項3の発明では、事故区間判定部にお
いて、各絶縁スペーサにおける三相の電流のベクトル和
を求めて、零相電流を演算し、零相電流の大きさまたは
零相電流の時間変化の大きさを、所定の判定レベルと比
較して、事故発生のガス区画を判定する。
According to the third aspect of the present invention, in the accident section determination unit, the vector sum of the three-phase currents in each insulating spacer is obtained, the zero-phase current is calculated, and the magnitude of the zero-phase current or the time of the zero-phase current is calculated. The magnitude of change is compared to a predetermined decision level to determine the gas compartment in which the accident occurred.

【0015】請求項4の発明では、電流検出部を光電流
検出器で構成する。
According to another aspect of the present invention, the current detector is composed of a photocurrent detector.

【0016】[0016]

【作用】請求項1の発明では、電流の大きさを検出する
事で、事故の発生を判定できる。また、事故の生じたガ
ス区画より電源側のみで、電流が増大するので、電流の
増大した区画としなかった区画を判別し、その境界を知
る事で、容易に事故区画を判別できる。さらに、相毎の
電流増加を比較する事によって、事故原因の推定ができ
る。
In the invention of claim 1, the occurrence of an accident can be determined by detecting the magnitude of the current. Further, since the current increases only on the power supply side of the gas section where the accident has occurred, the section where the current has increased and the section where the current has not increased are discriminated, and the boundary can be known to easily discriminate the fault section. Furthermore, the cause of the accident can be estimated by comparing the current increase for each phase.

【0017】請求項2の発明では、他の絶縁スペーサを
貫通して流れる電流を事故区画判定部の所定の判定レベ
ルとして用いるので、所定の判定レベルを用いる場合で
は検出できない微小な電流増加をともなう事故も検出で
きるので、より正確に事故区画の判定ができる。
According to the second aspect of the present invention, since the current flowing through the other insulating spacer is used as the predetermined determination level of the accident section determination section, there is a slight increase in the current that cannot be detected when the predetermined determination level is used. Since an accident can also be detected, the accident area can be determined more accurately.

【0018】請求項3の発明では、零相電流またはその
時間変化を利用して、事故を検出するので、絶縁スペー
サを貫通して流れる電流を検出する場合に較べて、事故
時の電流変化が大きいので、事故区画の判定が正確にで
きる。
According to the third aspect of the present invention, since the accident is detected by utilizing the zero-phase current or its time change, the current change at the time of the accident is smaller than that when the current flowing through the insulating spacer is detected. Since it is large, it is possible to accurately determine the accident zone.

【0019】請求項4の発明では、電流検出手段として
光電流検出器を用いるので、主回路と電流検出器の絶縁
が容易になり、事故時の大電流が流れた時に発生するノ
イズの影響を受けないので、より正確な事故区画の判定
ができる。
In the invention of claim 4, since the photocurrent detector is used as the current detecting means, the insulation between the main circuit and the current detector is facilitated, and the influence of noise generated when a large current flows at the time of an accident is reduced. Since it is not received, it is possible to more accurately determine the accident section.

【0020】[0020]

【実施例】図1は請求項1の発明のGISの一例であ
る。GIS3の、ガス区画Aにはケーブル接続部(C
H)が、ガス区画Bには計器用変圧器(PT)が、ガス
区画Cには断路器(DS)および接地開閉器(ES)
が、ガス区画Dには計器用変流器(CT)および遮断機
(CB)が、ガス区画Eおよびガス区画Fにはそれぞれ
断路器(DS)が収納されている。ガス区画Eおよびガ
ス区画Fのもう1端には他の回線と接続される母線(B
US)が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of the GIS of the first aspect of the invention. The cable section (C
H), the instrument transformer (PT) in the gas compartment B, the disconnector (DS) and the earthing switch (ES) in the gas compartment C.
However, an instrument current transformer (CT) and a circuit breaker (CB) are stored in the gas section D, and a disconnector (DS) is stored in the gas section E and the gas section F, respectively. At the other end of the gas section E and the gas section F, a bus bar (B
US) is connected.

【0021】ガス区画AからFはそれぞれ絶縁スペーサ
1AB、1AC、1CD、1DE、1DF、1E、1F、1Aによっ
て各ガス区画に区分されている。各絶縁スペーサ1AB、
1AC、1CD、1DE、1DF、1E、1F、1Aは各相ごとに
電流検出部を内蔵し、その出力は電流信号伝送部2を介
して、事故区画判定部4に伝えられる。事故区画判定部
4では、判定レベルと電流の大きさを比較し、判定レベ
ルよりも大きければ、事故電流の流れている区間と判定
する。全検出部の出力を比較して、事故区画を評定し、
事故区画を出力する。
Gas compartments A to F are divided into gas compartments by insulating spacers 1AB, 1AC, 1CD, 1DE, 1DF, 1E, 1F, 1A, respectively. Each insulating spacer 1AB,
Each of 1AC, 1CD, 1DE, 1DF, 1E, 1F, and 1A has a built-in current detection unit for each phase, and its output is transmitted to the accident section determination unit 4 via the current signal transmission unit 2. In the accident section judging unit 4, the judgment level is compared with the magnitude of the current, and if it is larger than the judgment level, it is judged as a section in which the accident current is flowing. Comparing the outputs of all detectors to assess the accident zone,
Output the accident section.

【0022】ガス区画CでS相とT相の間で相間短絡事
故が発生した時を考える。通常、電流はガス区画でいう
と、A、C、D、と流れ、EまたはFを通って、他回線
へ流れる。ガス区画Cで事故が生じると、絶縁スペーサ
1ACに内蔵したS相、T相の電流検出部の出力は事故に
よって増大するので、判定レベルを越え、事故を検出で
きる。一方で、絶縁スペーサ1CDのS相、T相の電流は
増大しないので、絶縁スペーサ1CDと1ACの間で事故が
起きた事が分かる。さらに、R相の電流が増えていない
事に着目すれば、S相とT相の短絡事故である事が分か
る。
Consider a case where an interphase short circuit accident occurs between the S phase and the T phase in the gas compartment C. Generally, the electric current flows in the gas section as A, C, D, and flows through E or F to another line. When an accident occurs in the gas compartment C, the outputs of the S-phase and T-phase current detectors built in the insulating spacer 1AC increase due to the accident, so the judgment level is exceeded and the accident can be detected. On the other hand, since the S-phase and T-phase currents of the insulating spacer 1CD do not increase, it can be seen that an accident occurred between the insulating spacer 1CD and 1AC. Furthermore, if attention is paid to the fact that the current of the R phase does not increase, it can be seen that there is a short circuit accident between the S phase and the T phase.

【0023】もし、1A、1AC、1CD、1DEと1Eもしく
は1DFと1Fのすべてが電流が増大していれば、このG
IS外部の事故であると判定する。
If the currents of 1A, 1AC, 1CD, 1DE and 1E or 1DF and 1F all increase, this G
Judged as an accident outside the IS.

【0024】請求項2の発明では、事故区画判定部4の
判定レベルとして、他の電流検出部の出力を用いる。例
えば、その電流検出部を内蔵する絶縁スペーサより負荷
側の電流検出部の出力を用いることができる。この場
合、事故の生じた区画の電源側のスペーサを貫通して流
れる電流は、事故により増大するが、負荷側のスペーサ
を貫通して流れる電流は負荷の大きさで決まり、変らな
い。そこで、負荷側のスペーサの電流検出部の出力を事
故区画判定部4の判定レベルとして用いれば、電源側の
スペーサの電流検出部出力、すなわちスペーサを貫通し
て流れる電流の増大を、固定の判定レベルより、精度よ
く検出できる。
According to the second aspect of the present invention, the output of another current detecting section is used as the determination level of the accident section determining section 4. For example, it is possible to use the output of the current detection unit on the load side of the insulating spacer that incorporates the current detection unit. In this case, the current flowing through the spacer on the power supply side of the section where the accident has occurred increases due to the accident, but the current flowing through the spacer on the load side is determined by the size of the load and does not change. Therefore, if the output of the current detection unit of the spacer on the load side is used as the determination level of the accident section determination unit 4, the output of the current detection unit of the spacer on the power supply side, that is, the increase in the current flowing through the spacer is fixedly determined. It can be detected more accurately than the level.

【0025】請求項3の発明では、事故区画判定部4に
おいて、R相、S相、T相の出力をベクトル的に合成し
て、零相電流を求め、その大きさが、通常の平衡三相電
流では零もしくは零に近いが、事故時に大きく変動する
ことを利用して、零相電流の大きさもしくはその時間変
化を判定レベルと比較して、事故を検出する事もでき
る。
In the third aspect of the invention, in the accident section judging section 4, the outputs of the R phase, the S phase and the T phase are combined in a vector manner to obtain a zero phase current. Although the phase current is zero or close to zero, it can be detected by comparing the magnitude of the zero-phase current or its change over time with the determination level by utilizing the fact that it greatly fluctuates at the time of an accident.

【0026】請求項4の発明では、電流検出部として
は、光電流検出器を使用する。しかしながら検出する電
流の範囲が広いので、磁気飽和をする鉄心を使わない、
ファラデー効果を用いた周回積分型の光電流検出器が望
ましい。図2を用いて、絶縁スペーサに内蔵した光電流
検出器を使用した場合の実施例について説明する。絶縁
スペーサは金属製フランジ13とエポキシ樹脂14から
なるスペーサ部15、スペーサ部15を貫通する三相導
体12a、12b、12cから構成される。導体12
a,12b,12cを周回するように鉛ガラスからなる
光電流検出器18a、18b、18cをエポキシ樹脂1
4内部に埋めこみ、設置する。送受光用の光ファイバ2
1が偏光子19a、19b、19cと検光子20a、2
0b、20cを介して光電流検出器18a、18b、1
8cに接続されている。ファラデー効果については、こ
こでは触れない。
According to the invention of claim 4, a photocurrent detector is used as the current detector. However, since the range of current to be detected is wide, an iron core with magnetic saturation is not used,
A circuit-type photocurrent detector using the Faraday effect is desirable. An example in which a photocurrent detector built in an insulating spacer is used will be described with reference to FIG. The insulating spacer is composed of a metal flange 13 and a spacer portion 15 made of epoxy resin 14, and three-phase conductors 12a, 12b and 12c penetrating the spacer portion 15. Conductor 12
The photocurrent detectors 18a, 18b, and 18c made of lead glass so as to go around a, 12b, and 12c are attached to the epoxy resin 1
4 Embedded inside and set up. Optical fiber 2 for transmitting and receiving light
1 is a polarizer 19a, 19b, 19c and an analyzer 20a, 2
0b, 20c through photocurrent detectors 18a, 18b, 1
8c is connected. The Faraday effect will not be discussed here.

【0027】この他にも、光ファイバのファラデー効果
を利用した光電流検出器も適用できる。
Besides, a photocurrent detector utilizing the Faraday effect of an optical fiber can be applied.

【0028】[0028]

【発明の効果】以上述べたように、本発明のガス絶縁開
閉装置では、正確に事故区画を判定でき、GISの事故
の早期復旧のための情報提供が可能になる。
As described above, in the gas-insulated switchgear of the present invention, it is possible to accurately determine the accident zone and provide information for early recovery of a GIS accident.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス絶縁開閉装置の構成の一例を示す
図である。
FIG. 1 is a diagram showing an example of the configuration of a gas-insulated switchgear of the present invention.

【図2】本発明の実施例の電流検出器の実施例を示す図
で、(a)は軸方向から見た図、(b)はそのA−A断
面図である。
2A and 2B are views showing an embodiment of a current detector according to an embodiment of the present invention, FIG. 2A is a view seen from an axial direction, and FIG. 2B is a sectional view taken along line AA.

【図3】ガス絶縁開閉装置の構成の一例を示す図であ
る。
FIG. 3 is a diagram showing an example of a configuration of a gas insulated switchgear.

【図4】本発明に関する従来技術のガス絶縁開閉装置の
一例を示す図である。
FIG. 4 is a diagram showing an example of a conventional gas-insulated switchgear relating to the present invention.

【符号の説明】[Explanation of symbols]

1 絶縁スペーサ 2 電流信号伝送部 3 ガス絶縁開閉装置(GIS) 4 事故区画判定部 7 信号処理回路 1 Insulation Spacer 2 Current Signal Transmission Section 3 Gas Insulated Switchgear (GIS) 4 Accident Zone Judgment Section 7 Signal Processing Circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】各エレメントを収納する容器が複数のガス
区画に分けられたガス絶縁開閉装置において、 各ガス区画を区分する絶縁スペーサに内蔵された三相母
線の電流をそれぞれ検出する電流検出部と、 各絶縁スペーサに流れる電流の大きさを所定の判定レベ
ルと比較することにより事故発生のガス区画を判定する
事故区画判定部と、 を設けたガス絶縁開閉装置。
1. A gas-insulated switchgear in which a container accommodating each element is divided into a plurality of gas compartments, and a current detector for detecting a current of each of three-phase buses built in an insulating spacer partitioning each gas compartment. A gas-insulated switchgear provided with: an accident zone determination unit that determines the gas zone in which an accident has occurred by comparing the magnitude of the current flowing through each insulating spacer with a predetermined determination level.
【請求項2】事故区画判定部の所定の判定レベルとし
て、他の絶縁スペーサに流れている電流から算出し、事
故発生のガス区画を判定する請求項1記載のガス絶縁開
閉装置。
2. The gas-insulated switchgear according to claim 1, wherein the gas division in which the accident has occurred is determined as a predetermined determination level of the accident division determination unit from the current flowing through another insulating spacer.
【請求項3】事故区画判定部において、各絶縁スペーサ
における三相の電流のベクトル和を求めて、零相電流を
演算し、その大きさまたはその時間変化の大きさを、所
定の判定レベルと比較して、事故発生のガス区画を判定
する請求項1または2記載のガス絶縁開閉装置。
3. An accident segment judging section obtains a vector sum of three-phase currents in each insulating spacer and calculates a zero-phase current, and the magnitude thereof or the magnitude of its temporal change is set as a predetermined decision level. The gas-insulated switchgear according to claim 1 or 2, wherein a gas section in which an accident has occurred is determined by comparison.
【請求項4】電流検出部を光電流検出器で構成する請求
項1、2、または3記載のガス絶縁開閉装置。
4. The gas-insulated switchgear according to claim 1, 2 or 3, wherein the current detector comprises a photocurrent detector.
JP6059787A 1994-03-07 1994-03-07 Gas-insulated switchgear Pending JPH07245831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6059787A JPH07245831A (en) 1994-03-07 1994-03-07 Gas-insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6059787A JPH07245831A (en) 1994-03-07 1994-03-07 Gas-insulated switchgear

Publications (1)

Publication Number Publication Date
JPH07245831A true JPH07245831A (en) 1995-09-19

Family

ID=13123356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6059787A Pending JPH07245831A (en) 1994-03-07 1994-03-07 Gas-insulated switchgear

Country Status (1)

Country Link
JP (1) JPH07245831A (en)

Similar Documents

Publication Publication Date Title
US7180300B2 (en) System and method of locating ground fault in electrical power distribution system
KR102104835B1 (en) Gis for 29kv with prevention apparatus for secondary circuit opening of current transformer
KR19990034487A (en) High-resistance ground fault control system with transmission line and its control method
EP0400230B1 (en) System for detecting fault location in substation
EP0415370A1 (en) Power apparatus, power transmission/distribution unit, and tripping method therefor
JPH07245832A (en) Gas-insulated switchgear
JPH07245831A (en) Gas-insulated switchgear
CN105811368B (en) Adaptivity zero line break protection device and system
JP4641262B2 (en) Fault location device and method for gas insulated switchgear
KR101377190B1 (en) Phase identification appratus and method of of leakage and arc on switchgear
JP2728422B2 (en) Abnormal location system for gas insulation equipment
KR19990088010A (en) Bus-bar protection relay equipment
Mukaiyama et al. Application of fault location system in power substations
JPH08149633A (en) Device for detecting ground fault position in gas-insulated switchgear
JPH0560617A (en) Monitoring device of abnormality of electric apparatus
JP3321480B2 (en) Fault location system
JPH0898350A (en) Faulty point orientating equipment of gas insulating switchgear
JP2569638Y2 (en) GIS internal abnormal overheat monitoring device
JP3086720B2 (en) Partial discharge detection system for gas insulated switchgear
JP2883709B2 (en) Internal partial discharge detection method for gas insulated switchgear
JP2513573Y2 (en) Closed type switchgear
JP3086721B2 (en) Partial discharge detection system for gas insulated switchgear
JPH0965527A (en) Fault point locating system
JPH0552467B2 (en)
JP3321479B2 (en) Fault location system