JPH07245806A - Motor torque controller for electric car - Google Patents

Motor torque controller for electric car

Info

Publication number
JPH07245806A
JPH07245806A JP6031221A JP3122194A JPH07245806A JP H07245806 A JPH07245806 A JP H07245806A JP 6031221 A JP6031221 A JP 6031221A JP 3122194 A JP3122194 A JP 3122194A JP H07245806 A JPH07245806 A JP H07245806A
Authority
JP
Japan
Prior art keywords
resistance
motor
driving force
command value
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6031221A
Other languages
Japanese (ja)
Other versions
JP3564163B2 (en
Inventor
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP03122194A priority Critical patent/JP3564163B2/en
Publication of JPH07245806A publication Critical patent/JPH07245806A/en
Application granted granted Critical
Publication of JP3564163B2 publication Critical patent/JP3564163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To compensat for a drop in motor drive torque due to a voltage drop of a battery without using a complicated control system. CONSTITUTION:A torque command value processing unit 20 determines a torque command value TO of a traveling AC motor 5 wanted by a driver based on the opening of an accelerator, and a virtual driving force computing unit 27 determines a virtual driving force F output from tires by the torque command value TO. On the other hand, a traveling resistance computing unit 26 determines a traveling resistance R by adding a grade resistance mg.sin thetaduring constant speed traveling and a rolling resistance k1 to an air resistance k2V<2>. And an accelerator command compensator 29 increases and compensates the torque command value TO in response to the percentage of decrease relative to the virtual driving force F of the traveling resistance R for the virtual driving force F and outputs a motor drive torque T for a motor drive circuit 30 driving the traveling AC motor 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バッテリの放電により
電圧が低下しても一定のアクセル開度に対して常に一定
のトルクが得られる電気自動車のモータトルク制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor torque control device for an electric vehicle, which can always obtain a constant torque with respect to a constant accelerator opening even if the voltage drops due to battery discharge.

【0002】[0002]

【従来の技術】一般に、電気自動車においては、走行用
モータの制御に、例えば、特開昭62−217805号
公報に示されるように、走行用交流モータの目標速度と
実際のモータ回転速度とを比較して、目標トルクを設定
し走行用交流モータをトルク制御するようなクローズド
ループ式の制御が多く採用されている。
2. Description of the Related Art Generally, in an electric vehicle, a target speed of an AC motor for traveling and an actual motor rotation speed are used for controlling the motor for traveling as disclosed in, for example, Japanese Patent Laid-Open No. 217805/1987. In comparison, closed-loop control that sets a target torque and torque-controls a traveling AC motor is often used.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述のような
クローズドループ式制御を採用する電気自動車では、オ
ープンループ式制御を採用する電気自動車に比べて複雑
な制御系を必要とし、システム全体のコストの高騰を招
くばかりでなく、耐久性、信頼性の低下を招く。
However, the electric vehicle that employs the closed-loop control as described above requires a more complicated control system than the electric vehicle that employs the open-loop control, and the cost of the entire system is low. Not only will the price rise, but the durability and reliability will decline.

【0004】一方、周知のように、直流モータおよび交
流モータでは供給電圧が低下した場合、モータ出力も低
下する。
On the other hand, as is well known, in the DC motor and the AC motor, when the supply voltage decreases, the motor output also decreases.

【0005】すなわち、図6に示すように、電気自動車
のバッテリ端子電圧(V)は満充電時の電圧VO に較
べ、放電末期の電圧V’はΔVの分だけ低下してしまう
ため、バッテリからコンバータ等のコントローラを介し
直流モータに、あるいは、バッテリからインバータ等の
コントローラを介し交流モータに電力が供給される電気
自動車では、一定のモータ駆動トルクを得るために、放
電末期では満充電時に較べてアクセルペダルをより多く
踏込まなければならず、電圧低下によりアクセルフィー
リングが損われ、運転者に違和感を与えてしまうという
問題がある。
That is, as shown in FIG. 6, the battery terminal voltage (V) of the electric vehicle is lower than the voltage VO at the time of full charge, and the voltage V'at the end of discharge is reduced by ΔV. In an electric vehicle in which electric power is supplied to a DC motor via a controller such as a converter or to an AC motor from a battery via a controller such as an inverter, in order to obtain a constant motor drive torque, in the final stage of discharge, compared to when fully charged. There is a problem in that the accelerator pedal must be depressed more and the voltage drop lowers the accelerator feeling, giving the driver a feeling of strangeness.

【0006】本発明は、上記事情に鑑みてなされたもの
で、複雑な制御系を要することなく、簡単なシステム
で、バッテリ電圧が低下しても一定のアクセル開度で常
に一定のモータ駆動トルクを得ることができ、耐久性、
信頼性の向上が図れ、しかもシステム全体の低コスト化
を実現することのできる電気自動車のモータトルク制御
装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and is a simple system that does not require a complicated control system and always has a constant motor drive torque at a constant accelerator opening even if the battery voltage decreases. Can get the durability,
It is an object of the present invention to provide a motor torque control device for an electric vehicle that can improve reliability and realize cost reduction of the entire system.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明による電気自動車のモータトルク制御装置は、車
体に設けた勾配検出手段からの検出値に基づいて道路勾
配を設定する道路勾配演算部と、車速検出手段で検出し
た車速に基づいて車輛の空気抵抗を設定する空気抵抗演
算部と、少なくとも上記道路勾配と上記空気抵抗とに基
づいて走行抵抗を設定する走行抵抗演算部と、アクセル
開度に応じて与えられるトルク指令値を車輛の固有値で
補正して仮想駆動力を設定する仮想駆動力演算部と、上
記仮想駆動力と上記走行抵抗とを比較しこの走行抵抗の
上記仮想駆動力に対するの減少割合に応じて上記トルク
指令値を増加補正してモータ駆動トルクを設定するアク
セル指令値補正部と、このモータ駆動トルクに応じて走
行用モータへ出力するモータ駆動回路とを備えることを
特徴とする。
In order to achieve the above object, a motor torque control device for an electric vehicle according to the present invention is a road gradient calculating section for setting a road gradient based on a detected value from a gradient detecting means provided on a vehicle body. An air resistance calculation unit that sets the air resistance of the vehicle based on the vehicle speed detected by the vehicle speed detection means; a running resistance calculation unit that sets the running resistance based on at least the road gradient and the air resistance; The virtual driving force calculation unit that sets the virtual driving force by correcting the torque command value given according to the degree with the eigenvalue of the vehicle and the virtual driving force and the running resistance are compared, and the virtual driving force of the running resistance is compared. An accelerator command value correction unit that sets the motor drive torque by increasing and correcting the torque command value according to the decreasing rate of Characterized in that it comprises a that the motor drive circuit.

【0008】[0008]

【作 用】本発明では電気自動車の走行抵抗を道路勾配
と空気抵抗とから算出し、一方、運転者が要求する駆動
力である仮想駆動力を、アクセル開度に応じて与えられ
るトルク指令をモータ回転数、減速比、タイヤ半径など
の車輛の固有値で補正して求める。そして、上記仮想駆
動力に対して上記走行抵抗が小さい場合は、その減少割
合に応じて上記アクセル開度に応じて与えられるトルク
指令値を増加補正する。その結果、バッテリ電圧が低下
しても常に走行抵抗と仮想駆動力とがほぼ等しくなり、
あらゆる走行条件下で一定のアクセル開度に対して一定
のモータ駆動トルクを得ることができる。
[Operation] In the present invention, the running resistance of the electric vehicle is calculated from the road gradient and the air resistance, while the virtual driving force, which is the driving force required by the driver, is given a torque command given in accordance with the accelerator opening. It is calculated by correcting with the vehicle's eigenvalues such as motor speed, reduction ratio, and tire radius. When the traveling resistance is small with respect to the virtual driving force, the torque command value given according to the accelerator opening is increased and corrected according to the decreasing rate. As a result, even if the battery voltage drops, the running resistance and the virtual driving force are almost equal,
It is possible to obtain a constant motor drive torque for a constant accelerator opening under all running conditions.

【0009】[0009]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1〜図5は本発明の一実施例を示し、図
1はモータ制御回路のブロック図、図2は電気自動車の
制御系の概略図、図3は前後加速度センサの断面図、図
4は電気自動車にかかる加速抵抗と登坂抵抗との説明
図、図5は放電深度とアクセル開度との関係を示す特性
図である。
1 to 5 show an embodiment of the present invention, FIG. 1 is a block diagram of a motor control circuit, FIG. 2 is a schematic diagram of a control system of an electric vehicle, and FIG. 3 is a sectional view of a longitudinal acceleration sensor. FIG. 4 is an explanatory diagram of acceleration resistance and uphill resistance applied to the electric vehicle, and FIG. 5 is a characteristic diagram showing the relationship between the depth of discharge and the accelerator opening.

【0011】図2の符号1は電気自動車で、この電気自
動車1の前輪軸2にデファレンシャルギヤ3、減速機4
を介して走行用モータとして走行用交流モータ5が連設
されている。また、この電気自動車1には、運転席の床
面に設けたアクセルペダル6に連設して、このアクセル
ペダル6のアクセル開度を検出するアクセルセンサ7
と、スピードメータ(図示せず)等からの信号で車速V
を検出する車速センサ8が配設され、また、上記走行用
交流モータ5には、モータ回転数Nを検出する回転数セ
ンサ12が併設されている。一方、この電気自動車1の
後部にはバッテリ9が搭載されている。
Reference numeral 1 in FIG. 2 is an electric vehicle. The front wheel shaft 2 of the electric vehicle 1 has a differential gear 3 and a speed reducer 4.
A traveling AC motor 5 is connected in series as a traveling motor via the. Further, in the electric vehicle 1, an accelerator sensor 7 that is connected to an accelerator pedal 6 provided on the floor surface of the driver's seat and detects an accelerator opening degree of the accelerator pedal 6 is provided.
And a signal from a speedometer (not shown) etc.
A vehicle speed sensor 8 for detecting the motor speed is provided, and a rotational speed sensor 12 for detecting the motor rotational speed N is attached to the traveling AC motor 5. On the other hand, a battery 9 is mounted on the rear part of the electric vehicle 1.

【0012】さらに、この電気自動車1のホイールベー
スのほぼ中間で、且つトレッドのほぼ中間の位置に、勾
配検出手段の一例である前後加速度センサ10が配設さ
れている。
Further, a longitudinal acceleration sensor 10, which is an example of a gradient detecting means, is provided at a position substantially in the middle of the wheel base of the electric vehicle 1 and substantially in the middle of the tread.

【0013】図3に示すように、この実施例で採用する
前後加速度センサ10はカンチレバー方式であり、この
カンチレバー10aの先端に重錘10bが固設されてお
り、水平状態の車体に対してこの重錘10bが鉛直方向
へ指向するように配設するとともに、車体前後方向の加
速度Gを感知できる方向に配設されている。
As shown in FIG. 3, the longitudinal acceleration sensor 10 used in this embodiment is of a cantilever type, and a weight 10b is fixedly attached to the tip of the cantilever 10a. The weight 10b is arranged so as to be oriented in the vertical direction, and is arranged in a direction in which the acceleration G in the vehicle front-rear direction can be sensed.

【0014】ところで、電気自動車の走行抵抗Rは、 R=mg・sinθ(登坂抵抗)+mg・a(加速抵抗) +k1 (転がり抵抗)+K2 V2 (空気抵抗)…(1) ここで、m:車輛の総質量、g:重力加速度、sin
θ:道路勾配、a:無次元(図4参照)、k1 :タイヤ
によって決定される定数、k2 :車体の形状によって決
定される定数、V:車速であるため、加速度aがa=0
のとき、すなわち定速走行時の走行抵抗Rは、 R=mg・sinθ+k1 +K2 V2 …(1)’ となる。従って、(1)’式では、道路勾配sinθと
車速Vを検出すれば走行抵抗Rが求められることにな
る。
By the way, the running resistance R of the electric vehicle is R = mg · sin θ (hill climbing resistance) + mg · a (acceleration resistance) + k1 (rolling resistance) + K2 V 2 (air resistance) (1) where m: Total mass of vehicle, g: acceleration of gravity, sin
θ: road gradient, a: dimensionless (see FIG. 4), k1: constant determined by the tire, k2: constant determined by the shape of the vehicle body, V: vehicle speed, so the acceleration a is a = 0
At that time, that is, the running resistance R during running at a constant speed is R = mg · sin θ + k1 + K2 V 2 (1) ′. Therefore, in the equation (1) ′, the traveling resistance R is obtained by detecting the road gradient sin θ and the vehicle speed V.

【0015】一方、上記前後加速度センサ10では、重
錘10bに働く加速抵抗mw ・g・aと、登坂抵抗mw
・g・sinθとの合成成分Aをカンチレバー10aの
歪として感知し、端子10c,10dから電気信号出力
として出力する。
On the other hand, in the longitudinal acceleration sensor 10, the acceleration resistance mw.multidot.g.multidot.a acting on the weight 10b and the climbing resistance mw.
The composite component A with g · sin θ is sensed as a strain of the cantilever 10a, and is output as an electric signal output from the terminals 10c and 10d.

【0016】この合成加速度成分Aは、 A[m/s2 ] =(sinθ+a)・g …(2) である。The resultant acceleration component A is A [m / s 2 ] = (sin θ + a) g (2)

【0017】なお、この前後加速度センサ10内にはオ
イル10eが封入されており、このオイル10eにより
上記カンチレバー10aに対する瞬間的な外力、及びそ
の後の振動を減衰することができる。
An oil 10e is enclosed in the longitudinal acceleration sensor 10, and the oil 10e can damp a momentary external force applied to the cantilever 10a and the subsequent vibration.

【0018】また、上記電気自動車1にはモータ制御回
路11が配設されている。このモータ制御回路11は、
図1に示すように、アクセルセンサ7で検出したアクセ
ル開度に対応するトルク指令値TO を設定するトルク指
令値演算部20と、上記前後加速度センサ10から出力
される上記合成成分Aの信号に混入している車体の振動
成分を除去するローパスフィルタ21と、車速センサ8
からの車速Vの信号を微分(ΔV/Δt)して前後方向
の加速度agを算出する前後加速度演算部22と、この
前後加速度演算部22での演算結果に基づいて加速度a
の有無を判別する加速度有無判別部23と、上記車速V
に基づいて車体にかかる空気抵抗を求める空気抵抗演算
部24と、加速度agがa=0のとき、すなわち定速走
行時の上記前後加速度センサ10から出力される上記合
成成分Aに基づいて道路勾配sinθを割出す道路勾配
演算部25と、変数である上記道路勾配sinθと空気
抵抗k2 V2 から加速度agがa=0のときの走行抵抗
Rを演算する走行抵抗演算部26と、上記トルク指令値
TO と回転数センサ12で検出したモータ回転数N等か
ら求めた車輛固有の値kT とに基づいてアクセル開度に
対応する仮想駆動力Fを算出する仮想駆動力演算部27
と、この仮想駆動力Fと走行抵抗Rとの比較値F/Rを
求める負荷比較部28と、上記トルク指令値TO を上記
比較値F/Rを補正係数として一時記憶するF/R記憶
部28aと、上記トルク指令値TO を上記比較値F/R
を補正係数として上記F/R記憶部28aに一時記憶さ
せると共にこの補正係数により補正してモータ駆動トル
クTを演算するトルク指令補正部29と、このモータ駆
動トルクTに対応する所定周波数の交流電流を走行用交
流モータ5に出力するモータ駆動回路30とで構成され
ている。
Further, the electric vehicle 1 is provided with a motor control circuit 11. This motor control circuit 11
As shown in FIG. 1, a torque command value calculation unit 20 that sets a torque command value TO corresponding to the accelerator opening detected by the accelerator sensor 7 and a signal of the composite component A output from the longitudinal acceleration sensor 10 are used. The low-pass filter 21 that removes the mixed vibration component of the vehicle body and the vehicle speed sensor 8
The longitudinal acceleration calculation unit 22 that calculates the longitudinal acceleration ag by differentiating (ΔV / Δt) the vehicle speed V signal from the vehicle, and the acceleration a based on the calculation result of the longitudinal acceleration calculation unit 22.
Acceleration presence / absence determining unit 23 for determining presence / absence of the vehicle, and the vehicle speed V
The air resistance calculating unit 24 for obtaining the air resistance applied to the vehicle body based on the above, and the road gradient based on the combined component A output from the longitudinal acceleration sensor 10 when the acceleration ag is a = 0, that is, during constant speed running. A road gradient calculating unit 25 for calculating sin θ, a running resistance calculating unit 26 for calculating a running resistance R when the acceleration ag is a = 0 from the road gradient sin θ and the air resistance k 2 V 2 which are variables, and the torque command. A virtual driving force calculation unit 27 for calculating a virtual driving force F corresponding to the accelerator opening based on the value TO and the vehicle-specific value kT obtained from the motor rotational speed N detected by the rotational speed sensor 12 and the like.
And a load comparison unit 28 for obtaining a comparison value F / R between the virtual driving force F and the running resistance R, and an F / R storage unit for temporarily storing the torque command value TO as the comparison value F / R as a correction coefficient. 28a and the torque command value T0 to the comparison value F / R
Is temporarily stored in the F / R storage unit 28a as a correction coefficient, and the motor drive torque T is calculated by correcting the F / R storage unit 28a, and an AC current having a predetermined frequency corresponding to the motor drive torque T. Is output to the AC motor 5 for traveling.

【0019】次に、上記構成によるモータ制御回路11
のモータ駆動トルク制御について説明する。
Next, the motor control circuit 11 having the above configuration.
The motor drive torque control will be described.

【0020】アクセルペダル6を踏むと、アクセルセン
サ7からアクセル開度に対応する信号がトルク指令値演
算部20へ出力され、このトルク指令値演算部20で上
記アクセルペダル6のアクセル開度に対応する、すなわ
ち運転者の所望するトルク指令値TO を演算する。そし
て、このトルク指令値TO をトルク指令補正部29及び
仮想駆動力演算部27へ出力する。
When the accelerator pedal 6 is stepped on, a signal corresponding to the accelerator opening is output from the accelerator sensor 7 to the torque command value calculating section 20. The torque command value calculating section 20 corresponds to the accelerator opening of the accelerator pedal 6. That is, the torque command value To desired by the driver is calculated. Then, the torque command value TO is output to the torque command correction unit 29 and the virtual driving force calculation unit 27.

【0021】一方、車速センサ8からの車速Vを検出す
る信号は前後加速度演算部22と空気抵抗演算部24へ
出力される。
On the other hand, the signal for detecting the vehicle speed V from the vehicle speed sensor 8 is output to the longitudinal acceleration calculator 22 and the air resistance calculator 24.

【0022】前後加速度演算部22では、上記車速Vを
微分して前後加速度ag(a・g=ΔV/Δt[m/s2 ]
)を演算し、加速度有無判別部23で、前後加速度演
算部22で演算した結果に基づいて、現運転状態が過渡
運転状態かどうかを判断する。そして、加速度agがa
=0のときは、非過渡運転状態、すなわち定速走行と判
断する。
In the longitudinal acceleration calculation unit 22, the vehicle speed V is differentiated to differentiate the longitudinal acceleration ag (ag = ΔV / Δt [m / s 2 ].
) Is calculated, and the acceleration presence / absence determining unit 23 determines whether the current operating state is the transient operating state based on the result calculated by the longitudinal acceleration calculating unit 22. Then, the acceleration ag is a
When = 0, it is determined that the vehicle is in a non-transient operation state, that is, the vehicle runs at a constant speed.

【0023】また、上記空気抵抗演算部24では、上記
車速Vの2乗と車体の形状によって決定される定数k2
との積から空気抵抗k2 V2 を演算する。
Further, in the air resistance calculating section 24, a constant k2 determined by the square of the vehicle speed V and the shape of the vehicle body.
It calculates the air resistance k2 V 2 from the product of the.

【0024】また、前後加速度センサ10から出力され
た登坂抵抗mw ・g・sinθと加速抵抗mw ・g・a
との合成成分Aの信号は、ローパスフィルタ21により
車体の振動成分が除去された後、道路勾配演算部25へ
出力される。この道路勾配演算部25では、前述の加速
度有無判別部23の判別結果を受け、加速度aがa=0
のとき、道路勾配sinθを演算する。
The uphill resistance mw.g.sin.theta. And the acceleration resistance mw.g.a output from the longitudinal acceleration sensor 10 are also provided.
The signal of the combined component A of and is output to the road gradient calculation unit 25 after the vibration component of the vehicle body is removed by the low-pass filter 21. In the road gradient calculation unit 25, the acceleration a is a = 0 in response to the determination result of the acceleration presence / absence determination unit 23 described above.
At this time, the road gradient sin θ is calculated.

【0025】すなわち、上記前後加速度センサ8で検出
する合成成分Aは、前記(2)式に示す通りであり、加
速度agがa=0のときの道路勾配sinθは、 sinθ=A/g …(3) で求めることができる。なお、バッテリ電圧は放電深度
に応じて徐々に低下するため、定速走行時にのみモータ
駆動トルク補正演算制御を行って、F/R記憶部28a
に記憶してある補正係数F/Rを更新しても実質的に影
響はない。
That is, the composite component A detected by the longitudinal acceleration sensor 8 is as shown in the equation (2), and the road gradient sin θ when the acceleration ag is a = 0, sin θ = A / g ( It can be found in 3). Since the battery voltage gradually decreases according to the depth of discharge, the motor drive torque correction calculation control is performed only during constant-speed traveling, and the F / R storage unit 28a is operated.
Even if the correction coefficient F / R stored in is updated, there is substantially no effect.

【0026】そして、走行抵抗演算部26で、上記道路
勾配演算部25、上記空気抵抗演算部24の演算結果を
受けて、走行抵抗Rを前記(1)’式から演算する。
Then, the running resistance calculating unit 26 receives the calculation results of the road gradient calculating unit 25 and the air resistance calculating unit 24, and calculates the running resistance R from the equation (1) '.

【0027】一方、仮想駆動力演算部27では、上記ト
ルク指令値演算部20で演算したトルク指令値TO とモ
ータ回転数Nとを取入れ、このトルク指令値TO を、上
記モータ回転数Nと予め設定されているデファレンシャ
ルギヤ3の終減速比、タイヤ半径等で決定される車輛の
固有値KT で補正して、アクセル踏込み量に対応するタ
イヤからの仮想駆動力F(F=KT ・TO )を演算す
る。
On the other hand, the virtual driving force calculation unit 27 takes in the torque command value TO calculated by the torque command value calculation unit 20 and the motor rotation speed N, and uses this torque command value TO in advance as the motor rotation speed N. Compute the virtual driving force F (F = KT · TO) from the tire corresponding to the accelerator depression amount by correcting with the vehicle's eigenvalue KT determined by the set final reduction ratio of the differential gear 3, the tire radius, etc. To do.

【0028】そして、負荷比較部28で、運転者の所望
する仮想駆動力Fと上記走行抵抗Rとの比較値F/Rを
求める。
Then, the load comparison unit 28 obtains a comparison value F / R between the virtual driving force F desired by the driver and the traveling resistance R.

【0029】定速走行では、電気自動車1に働く走行抵
抗Rとタイヤから出力される実際の駆動力FO とは逆方
向の同じ力で釣り合っている。従って、運転者の所望す
るアクセル踏込み量に対応したトルク指令値TO 通りの
モータ駆動トルクによって得られる実際の上記駆動力F
O が上記走行用交流モータ5からタイヤに伝達されてい
れば、FO =F=|R|となる。しかし、バッテリ9の
電圧が低下すれば、その分だけ出力が低下するので上記
仮想駆動力Fに対して実際の駆動力FO は、F>FO と
なる。この実際の駆動力FO は、FO =|R|であるた
め、アクセルペダル一定では、上記仮想駆動力Fと走行
抵抗Rとは経時的に、F>|R|の不等関係になる。
During constant speed running, the running resistance R acting on the electric vehicle 1 and the actual driving force FO output from the tire are balanced by the same force in the opposite direction. Therefore, the actual driving force F obtained by the motor driving torque according to the torque command value TO corresponding to the accelerator depression amount desired by the driver.
If O is transmitted from the traveling AC motor 5 to the tire, F0 = F = | R |. However, if the voltage of the battery 9 decreases, the output decreases correspondingly, so that the actual driving force F 0 becomes F> F 0 with respect to the virtual driving force F. Since the actual driving force F0 is F0 = | R |, the virtual driving force F and the running resistance R have an inequality F> | R | with time when the accelerator pedal is constant.

【0030】トルク指令補正部29では、このような上
記バッテリ9の電圧低下によるトルクの低下を補償する
ため、運転者の所望する上記トルク指令値TO を上記比
較値F/Rを補正係数として増加補正して、モータ駆動
トルクT(T=TO ・F/R)を算出し、モータ駆動回
路30へ出力することで、定速走行時のタイヤに伝達さ
れる実際の駆動力FO (=−R)と運転者の所望するト
ルク指令値TO に対応して出力する仮想駆動力Fとが等
しくなるように制御する。
In the torque command correction unit 29, in order to compensate for the decrease in torque due to the voltage decrease of the battery 9 as described above, the torque command value TO desired by the driver is increased using the comparison value F / R as a correction coefficient. By correcting and calculating the motor drive torque T (T = TO.F / R) and outputting it to the motor drive circuit 30, the actual drive force F0 (= -R) transmitted to the tire during constant speed running is calculated. ) And the virtual driving force F output corresponding to the torque command value TO desired by the driver are controlled to be equal.

【0031】そして、モータ駆動回路30では、上記モ
ータ駆動トルクTO に対応する周波数に基づき、スイッ
チング制御してバッテリ9の電流を所定周波数の三相交
流に変換して走行用交流モータ5へ供給する。
In the motor drive circuit 30, switching control is performed based on the frequency corresponding to the motor drive torque TO to convert the current of the battery 9 into a three-phase AC of a predetermined frequency and supply the AC motor 5 for traveling. .

【0032】その結果、アクセル踏込み量に対応したト
ルク指令値TO がバッテリ9の電圧低下に対応して増加
補正され、実線で示すように、バッテリ9の電圧低下に
拘りなく、一定のアクセル開度で常に一定のトルクを得
ることができ、同図に破線で示すようなバッテリ電圧低
下に伴いアクセル開度を相対的に大きくしなければなら
なかった従来のものに比し、極めて良好なアクセルフィ
ーリングを得ることができる。
As a result, the torque command value TO corresponding to the accelerator depression amount is increased and corrected in accordance with the voltage decrease of the battery 9, and as shown by the solid line, the accelerator opening is constant regardless of the voltage decrease of the battery 9. It is possible to obtain a constant torque at all times, which is extremely good compared to the conventional one in which the accelerator opening had to be relatively increased due to the battery voltage drop as shown by the broken line in the figure. You can get the ring.

【0033】なお、本発明は上記実施例に限るものでは
なく、例えば、空気抵抗や仮想駆動力を演算ではなく、
マップ検索により設定するようにしても良い。
The present invention is not limited to the above embodiment, and for example, the air resistance and the virtual driving force are not calculated,
You may make it set by map search.

【0034】[0034]

【発明の効果】以上、説明したように本発明によれば、
道路勾配と車輛の空気抵抗とに基づいて設定した走行抵
抗と、アクセル開度に応じて与えられる運転者が所望す
るトルク指令値を車輛の固有値で補正して設定する仮想
駆動力とを比較して、この走行抵抗の上記仮想駆動力に
対するの減少割合に応じて上記トルク指令値を増加補正
してモータ駆動トルクを設定するようにしたので、バッ
テリ電圧が低下しても、常に一定のアクセル開度に対し
て一定のモータ駆動トルクが得られるため、良好なアク
セルフィーリングを得ることができる。
As described above, according to the present invention,
The running resistance set based on the road gradient and the air resistance of the vehicle is compared with a virtual driving force that is set by correcting the torque command value desired by the driver according to the accelerator opening with the unique value of the vehicle. The motor drive torque is set by increasing and correcting the torque command value according to the rate of decrease of the running resistance with respect to the virtual driving force.Therefore, even if the battery voltage drops, the accelerator opening is always constant. Since a constant motor drive torque is obtained with respect to the degree, a good accelerator feeling can be obtained.

【0035】また、従来のようにトルク補正のための速
度フィードバック、電流フィードバック、及びバッテリ
電圧低下補正のための電圧フィードバック等複雑なフィ
ードバック制御系が一切不要であるため、システムが簡
単になり、耐久性、信頼性が向上するばかりでなく、シ
ステム全体の低コスト化を実現することができる。
Further, since a complicated feedback control system such as speed feedback for current correction, current feedback, voltage feedback for battery voltage reduction correction, etc., which is required in the prior art, is not required at all, the system becomes simple and durable. Reliability and reliability are improved, and cost reduction of the entire system can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】モータ制御回路のブロック図FIG. 1 is a block diagram of a motor control circuit

【図2】電気自動車の制御系の概略図FIG. 2 is a schematic diagram of a control system of an electric vehicle.

【図3】前後加速度センサの断面図FIG. 3 is a sectional view of the longitudinal acceleration sensor.

【図4】電気自動車にかかる加速抵抗と登坂抵抗との説
明図
FIG. 4 is an explanatory diagram of acceleration resistance and uphill resistance applied to an electric vehicle.

【図5】放電深度とアクセル開度との関係を示す特性図FIG. 5 is a characteristic diagram showing the relationship between the depth of discharge and the accelerator opening.

【図6】バッテリの放電特性を示す説明図FIG. 6 is an explanatory diagram showing discharge characteristics of a battery.

【符号の説明】[Explanation of symbols]

5…走行用駆動モータ 10…勾配検出手段 24…空気抵抗演算部 25…道路勾配演算部 26…走行抵抗演算部 27…加速駆動力演算部 29…アクセル指令補正部 30…モータ駆動回路 F…仮想駆動力 k2 V2 …空気抵抗 R…走行抵抗 sinθ…道路勾配 T…モータ駆動トルク TO …トルク指令値 V…車速5 ... Driving motor 10 ... Gradient detection means 24 ... Air resistance calculator 25 ... Road gradient calculator 26 ... Running resistance calculator 27 ... Acceleration driving force calculator 29 ... Accelerator command correction part 30 ... Motor drive circuit F ... Virtual driving force k2 V 2 ... air resistance R ... running resistance sin [theta ... road gradient T ... motor driving torque TO ... torque command value V ... vehicle speed

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車体に設けた勾配検出手段(10)から
の検出値に基づいて道路勾配(sinθ)を設定する道
路勾配演算部(25)と、 車速検出手段で検出した車速(V)に基づいて車輛の空
気抵抗(k2 V2 )を設定する空気抵抗演算部(24)
と、 少なくとも上記道路勾配(sinθ)と上記空気抵抗
(k2 V2 )とに基づいて走行抵抗(R)を設定する走
行抵抗演算部(26)と、 アクセル開度に応じて与えられるトルク指令値(To )
を車輛の固有値で補正して仮想駆動力(F)を設定する
仮想駆動力演算部(27)と、 上記仮想駆動力(F)と上記走行抵抗(R)とを比較し
この走行抵抗(R)の上記仮想駆動力(F)に対するの
減少割合に応じて上記トルク指令値(To )を増加補正
してモータ駆動トルク(T)を設定するアクセル指令値
補正部(29)と、 このモータ駆動トルク(T)に応じて走行用モータ
(5)へ出力するモータ駆動回路(30)とを備えるこ
とを特徴とする電気自動車のモータトルク制御装置。
1. A road gradient calculating section (25) for setting a road gradient (sin θ) based on a detection value from a gradient detecting means (10) provided on a vehicle body, and a vehicle speed (V) detected by the vehicle speed detecting means. air resistance calculating unit that sets a vehicle air resistance (k2 V 2) on the basis of (24)
And a running resistance calculation unit (26) that sets a running resistance (R) based on at least the road gradient (sin θ) and the air resistance (k 2 V 2 ), and a torque command value given according to the accelerator opening degree. (To)
Is compared with the eigenvalue of the vehicle to set the virtual driving force (F), and the virtual driving force (F) and the running resistance (R) are compared and the running resistance (R) is compared. ), The accelerator command value correction unit (29) that sets the motor drive torque (T) by increasing the torque command value (To) according to the decreasing rate of the virtual drive force (F), and A motor torque control device for an electric vehicle, comprising: a motor drive circuit (30) for outputting to a traveling motor (5) according to torque (T).
JP03122194A 1994-03-01 1994-03-01 Motor torque control device for electric vehicles Expired - Fee Related JP3564163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03122194A JP3564163B2 (en) 1994-03-01 1994-03-01 Motor torque control device for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03122194A JP3564163B2 (en) 1994-03-01 1994-03-01 Motor torque control device for electric vehicles

Publications (2)

Publication Number Publication Date
JPH07245806A true JPH07245806A (en) 1995-09-19
JP3564163B2 JP3564163B2 (en) 2004-09-08

Family

ID=12325382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03122194A Expired - Fee Related JP3564163B2 (en) 1994-03-01 1994-03-01 Motor torque control device for electric vehicles

Country Status (1)

Country Link
JP (1) JP3564163B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843194A1 (en) * 2002-07-31 2004-02-06 Soc Technologie Michelin Stm METHOD AND DEVICE FOR DETERMINING AN EFFORT EXERCISED ON A WHEEL BY THE GROUND
ITTO20100904A1 (en) * 2010-11-12 2012-05-13 Pierino Campagnolo VEHICLE SPEED ADJUSTMENT SYSTEM.
CN113511211A (en) * 2021-05-31 2021-10-19 重庆长安汽车股份有限公司 Torsional vibration control method based on electric driving system of electric vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843194A1 (en) * 2002-07-31 2004-02-06 Soc Technologie Michelin Stm METHOD AND DEVICE FOR DETERMINING AN EFFORT EXERCISED ON A WHEEL BY THE GROUND
US7055917B2 (en) 2002-07-31 2006-06-06 Michelin Recherche Et Technique S.A. Method and device for determining a force exercised by the ground on a wheel
ITTO20100904A1 (en) * 2010-11-12 2012-05-13 Pierino Campagnolo VEHICLE SPEED ADJUSTMENT SYSTEM.
CN113511211A (en) * 2021-05-31 2021-10-19 重庆长安汽车股份有限公司 Torsional vibration control method based on electric driving system of electric vehicle
CN113511211B (en) * 2021-05-31 2022-09-06 重庆长安汽车股份有限公司 Torsional vibration control method based on electric driving system of electric vehicle

Also Published As

Publication number Publication date
JP3564163B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
US8078348B2 (en) Electric vehicle and regeneration control method for electric vehicle
JP3200885B2 (en) Battery-compatible electric vehicle controller
US7091678B2 (en) Device and method for controlling prime mover
JP3019478B2 (en) Chassis dynamometer controller for four-wheel drive vehicle
JP3096476B2 (en) Drive unit for motor vehicle
US4779202A (en) Propulsion control using longitudinal acceleration and steering angle to determine slip threshold
US5568024A (en) Drive control system and method for battery car
JPH05328542A (en) Driving force control method for electric vehicle
JP3578019B2 (en) Hybrid vehicle
WO2008038713A1 (en) Travel controller for vehicle
JPH07111707A (en) Brake power controller for electric automobile
JP2007006681A (en) Traction controller for vehicle
JPH0549106A (en) Motor controller
JP7176360B2 (en) electric vehicle
US11685264B2 (en) Control device
JPH118912A (en) Motor torque controller for electric vehicle
JPH09327102A (en) Running control apparatus for electric vehicle
JPH07245806A (en) Motor torque controller for electric car
JPH1023615A (en) Controller for driving of electric vehicle
JPH04145806A (en) Electric motor vehicle
JPH11125129A (en) Vehicle
JPH10108304A (en) Hybrid vehicle controller
JPH1178818A (en) Brake controller for vehicle
JPH1175304A (en) Motor torque controller of electric vehicle
JPH07177609A (en) Motor speed controller for electric automobile

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees