JPH07243727A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH07243727A
JPH07243727A JP3889094A JP3889094A JPH07243727A JP H07243727 A JPH07243727 A JP H07243727A JP 3889094 A JP3889094 A JP 3889094A JP 3889094 A JP3889094 A JP 3889094A JP H07243727 A JPH07243727 A JP H07243727A
Authority
JP
Japan
Prior art keywords
unit
low temperature
refrigeration unit
temperature
temperature refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3889094A
Other languages
Japanese (ja)
Other versions
JP3218842B2 (en
Inventor
Akitoshi Ueno
明敏 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP03889094A priority Critical patent/JP3218842B2/en
Publication of JPH07243727A publication Critical patent/JPH07243727A/en
Application granted granted Critical
Publication of JP3218842B2 publication Critical patent/JP3218842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To always maintain a temperature in a deep freezer constant by operating to cool at least one set of low-temperature freezing unit at the time of defrosting of one set of freezing unit in a refrigerator having two or more sets of low-temperature freezing units. CONSTITUTION:When frosting of an evaporator 23 of a first low-temperature freezing unit 1 is, as the unit 1 is, for example, operated to be cooled and a second low-temperature unit is paused according to an installation position in a deep freezer 4 of the unit, an error of a temperature detector 34, etc., detected by a frost detector 37, the unit 1 starts to be defrosted and a second low-temperature freezing unit 2 starts to cool. That is, a refrigerant liquid supply valve 16 of a high-temperature freezing unit 3 is opened, and a compressor 23 of the unit 2 is operated. In this case, if a blower 25 of the unit 2 is not operated, it is also operated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2組以上の低温冷凍ユ
ニットを用いた冷凍装置に関し、特にデフロスト運転時
に庫内温度の上昇を避ける冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus using two or more sets of low temperature refrigerating units, and more particularly to a refrigerating apparatus which avoids an increase in internal cold storage temperature during defrost operation.

【0002】[0002]

【従来の技術】冷凍庫の蒸発器は、冷凍庫内の温度が低
いため着霜があり、この霜を取るためにデフロスト運転
を行う必要がある。デフロスト運転を行うときは、四路
切換弁を切換えて、高圧、高温の冷媒ガスを蒸発器に送
り、着霜の一部を融解している。
2. Description of the Related Art The evaporator of a freezer has frost formation because the temperature inside the freezer is low, and it is necessary to perform a defrost operation to remove this frost. When performing the defrost operation, the four-way switching valve is switched to send high-pressure, high-temperature refrigerant gas to the evaporator to melt part of the frost.

【0003】大型の冷凍庫では、特開平5−18647
に示すように、二元冷凍冷媒装置が多用され、高温冷凍
ユニット1組と低温冷凍ユニットとを、カスケードコン
デンサによって熱結合して用いる方法が採用されてい
る。この場合高温冷凍ユニットの冷媒の有する熱エネル
ギを利用してデフロスト運転時間を短縮することが行わ
れている。
In a large freezer, Japanese Unexamined Patent Publication No. 5-18647
As shown in (2), the dual refrigeration / refrigeration system is frequently used, and a method is used in which one set of the high temperature refrigeration unit and the low temperature refrigeration unit are thermally coupled by a cascade condenser. In this case, the defrost operation time is shortened by utilizing the heat energy of the refrigerant of the high temperature refrigeration unit.

【0004】[0004]

【発明が解決しようとする課題】低温冷凍ユニットは、
大型のものを1組設けるよりも、小型のものを2組以上
設ける方が、冬期などで冷凍負の少ないとき1組だけを
運転し、他を休止できて効率がよいので、多くの冷凍庫
では2組以上の低温冷凍ユニットを備えている。しかし
運転している低温冷凍ユニットがデフロスト運転に入る
と、冷却が止まり、庫内温度が上昇する。庫内温度が或
る程度上昇すると、これを検知して休止中の低温冷凍ユ
ニットが運転するが、休止時中の低温冷凍ユニットが定
常運転に入るまで時間がかかり、この間に庫内温度が上
昇するなどの問題がある。
The low temperature refrigeration unit is
It is more efficient to provide two or more smaller ones than one large one because it is efficient to operate only one set and freeze the rest when the freezing load is low in winter etc. It is equipped with two or more sets of low temperature refrigeration units. However, when the operating low temperature refrigeration unit enters the defrost operation, cooling stops and the temperature inside the refrigerator rises. When the temperature inside the refrigerator rises to a certain degree, the low temperature refrigeration unit that is at rest detects this and operates, but it takes time until the low temperature refrigeration unit during rest enters into steady operation, during which the temperature inside the refrigerator rises. There is a problem such as doing.

【0005】本発明の目的は、冷凍庫内の温度を常に一
定に保つ冷凍装置を提供することである。
An object of the present invention is to provide a refrigerating apparatus which keeps the temperature inside the freezer always constant.

【0006】[0006]

【課題を解決するための手段】本発明は、圧縮機20、
凝縮器21、膨張弁22、蒸発器23および冷却運転と
デフロスト運転とを切換え可能な2組以上の低温冷凍ユ
ニットから成る冷凍装置において、1組の低温冷凍ユニ
ットがデフロスト運転に入り、かつ、残りの少なくとも
1組の低温冷凍ユニットが運転停止中のとき、運転停止
中の少なくとも1組の低温冷凍ユニットを冷却運転させ
ることを特徴とする冷凍装置である。
SUMMARY OF THE INVENTION The present invention is directed to a compressor 20,
In a refrigerating apparatus including a condenser 21, an expansion valve 22, an evaporator 23, and two or more low temperature refrigeration units capable of switching between cooling operation and defrost operation, one low temperature refrigeration unit enters defrost operation and the rest. When at least one set of low-temperature refrigeration units of 1) is in operation stop, at least one set of low-temperature refrigeration units in operation stop is cooled.

【0007】また本発明は、前記各組の低温冷凍ユニッ
トの凝縮器21が、圧縮機10、凝縮器11、膨張弁1
2、蒸発器13を備えた高温冷凍ユニット3の蒸発器1
3と熱結合するカスケードコンデンサ28で冷却される
ことを特徴とする。
Further, according to the present invention, the condenser 21 of the low temperature refrigeration unit of each set includes a compressor 10, a condenser 11 and an expansion valve 1.
2. Evaporator 1 of high temperature refrigeration unit 3 including evaporator 13
It is characterized in that it is cooled by a cascade condenser 28 that is thermally coupled to the No. 3.

【0008】また本発明は、前記各組の冷凍ユニットの
カスケードコンデンサ28が、高温冷凍ユニット3の冷
媒管と低温冷凍ユニットの冷媒管とにそれぞれ並列に接
続されていることを特徴とする。
Further, the present invention is characterized in that the cascade condensers 28 of the refrigerating units of each set are connected in parallel to the refrigerant pipe of the high temperature refrigerating unit 3 and the refrigerant pipe of the low temperature refrigerating unit, respectively.

【0009】また本発明は、前記各組の低温冷凍ユニッ
トの凝縮器21が送風機29によって凝縮熱を大気に放
散するものであることを特徴とする。
Further, the present invention is characterized in that the condenser 21 of the low temperature refrigeration unit of each set dissipates heat of condensation to the atmosphere by the blower 29.

【0010】また本発明は、各組の低温冷凍ユニットが
各組毎に庫内温度を検出して、各組毎に庫内温度をTH
1に制御すべく運転することを特徴とする。
Further, according to the present invention, the low temperature refrigeration unit of each set detects the temperature inside the refrigerator for each group, and the temperature inside the refrigerator is set to TH for each group.
It is characterized in that it is operated so as to be controlled to 1.

【0011】[0011]

【作用】本発明に従えば、2組以上の低温冷凍ユニット
から成る冷凍装置において、1組の低温冷凍ユニットが
デフロスト運転に入り、かつ、残りの少なくとも1組の
低温冷凍ユニットが運転停止中のとき、運転停止中の少
なくとも1組の低温冷凍ユニットが冷却運転に入る。こ
れによって冷凍庫内が常に一定の温度に保たれる。
According to the present invention, in a refrigerating apparatus comprising two or more low temperature refrigerating units, one low temperature refrigerating unit is in defrost operation, and the remaining at least one low temperature refrigerating unit is not in operation. At this time, at least one set of the low temperature refrigeration unit that is not in operation enters the cooling operation. As a result, the inside of the freezer is always kept at a constant temperature.

【0012】冷凍装置としては、低温冷凍ユニットの凝
縮器21が、高温冷凍ユニット3の蒸発器13とカスケ
ードコンデンサ28によって熱結合する二元冷凍装置で
あっても、低温冷凍ユニットの凝縮器21が送風機29
によって凝縮熱を大気に放散する単元冷凍装置であって
もよい。
Even if the condenser 21 of the low temperature refrigeration unit is a binary refrigeration apparatus in which the condenser 21 of the low temperature refrigeration unit is thermally coupled to the evaporator 13 of the high temperature refrigeration unit 3 by the cascade condenser 28, the condenser 21 of the low temperature refrigeration unit is Blower 29
It may be a unit refrigerating device that dissipates the heat of condensation to the atmosphere.

【0013】またカスケードコンデンサ28は、高温冷
凍ユニット3の冷媒管と低温冷凍ユニットの冷媒管とが
それぞれ並列に接続されている構成であるものが好まし
い。
The cascade condenser 28 preferably has a structure in which the refrigerant tubes of the high temperature refrigeration unit 3 and the refrigerant tubes of the low temperature refrigeration unit are connected in parallel.

【0014】庫内温度をTH1に制御すべく全ての低温
冷凍ユニットを運転し、冬期などで冷凍負荷の少ないと
きは、その中の1組の低温冷凍ユニットたとえば入口近
くにある低温冷凍ユニットのみを運転し、これがデフロ
スト運転に入れば、残りの低温冷凍ユニットの内、少な
くとも1組が冷却運転する。これによって冷凍庫内の全
ての低温冷凍ユニットが運転を停止(デフロスト運転を
含む)することがない。
When all the low temperature refrigerating units are operated to control the temperature inside the refrigerator to TH1, and when the refrigerating load is small in winter etc., only one set of the low temperature refrigerating units, such as the low temperature refrigerating unit near the inlet, is operated. When it is operated and enters the defrost operation, at least one set of the remaining low temperature refrigeration units is cooled. This prevents all low-temperature refrigeration units in the freezer from stopping operation (including defrost operation).

【0015】このように低温冷凍ユニットを運転するこ
とによって、或る低温冷凍ユニットがデフロスト運転に
切換わって、庫内温度が上昇するのを検出して他の低温
冷凍ユニットを冷却運転する従来の冷凍装置と比較し
て、庫内温度を一定にすることができる。
By operating the low-temperature refrigeration unit in this manner, a certain low-temperature refrigeration unit is switched to the defrost operation, and it is detected that the internal temperature rises and the other low-temperature refrigeration units are cooled. Compared with a refrigeration system, the temperature inside the refrigerator can be kept constant.

【0016】[0016]

【実施例】図1は本発明の一実施例の冷媒配管系統図を
示し、図2は機器の配置図を示す。第1の低温冷凍ユニ
ット1、第2の低温冷凍ユニット2など複数の低温冷凍
ユニットは、その蒸発器23が冷凍庫5内に設置され
る。低温冷凍ユニットの構成は、第1の冷凍ユニット1
も第2の冷凍ユニット2も同じであるので以下第1の冷
凍ユニット1について説明する。圧縮機20で圧縮され
た高温(たとえば25℃)の冷媒蒸気は、実線の矢符で
示すように四路切換弁27を通ってカスケードコンデン
サ28に入る。ここでは、低温冷凍ユニット1の凝縮器
21が高温冷凍ユニット3の蒸発器13と熱結合され、
低温冷凍ユニット1の冷媒蒸気はたとえば15℃に冷却
され凝縮する。液化した冷媒液は、逆止弁24を通って
冷凍庫5内に入り膨張弁22で減圧されて蒸発器23に
供給され、冷凍庫5内の送風機25によって送られる空
気をたとえば−45℃に冷却し、冷媒はたとえば−50
℃で気化して四路切換弁27を通って圧縮機20に吸引
される。本実施例は二元冷凍装置であるので、高温冷凍
ユニット3が冷凍庫5外に設けられ、その圧縮機10で
圧縮された高温(たとえば60℃)の冷媒蒸気は送風機
14によって送られる空気に熱を奪われてたとえば45
℃で液化し、膨張弁12で減圧されて第1低温冷凍ユニ
ット1、第2低温冷凍ユニット2などの低温冷凍ユニッ
トのカスケードコンデンサ28に送られる。ここでは高
温冷凍ユニット3の冷媒は、たとえば5℃に加熱されて
気化し、逆に低温冷凍ユニット1の冷媒を15℃に冷却
して液化する。気化された高温冷凍ユニット3の冷媒
は、圧縮機10に吸引される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a refrigerant piping system diagram of an embodiment of the present invention, and FIG. 2 shows a layout of equipment. The evaporator 23 of each of the plurality of low temperature refrigeration units such as the first low temperature refrigeration unit 1 and the second low temperature refrigeration unit 2 is installed in the freezer 5. The configuration of the low temperature refrigeration unit is the first refrigeration unit 1
Since the second refrigeration unit 2 is the same, the first refrigeration unit 1 will be described below. The high-temperature (for example, 25 ° C.) refrigerant vapor compressed by the compressor 20 enters the cascade condenser 28 through the four-way switching valve 27 as indicated by the solid arrow. Here, the condenser 21 of the low temperature refrigeration unit 1 is thermally coupled to the evaporator 13 of the high temperature refrigeration unit 3,
The refrigerant vapor of the low temperature refrigeration unit 1 is cooled to, for example, 15 ° C. and condensed. The liquefied refrigerant liquid enters the freezer 5 through the check valve 24, is decompressed by the expansion valve 22, is supplied to the evaporator 23, and cools the air sent by the blower 25 in the freezer 5 to, for example, −45 ° C. , The refrigerant is, for example, -50
The gas is vaporized at ℃ and is sucked into the compressor 20 through the four-way switching valve 27. Since this embodiment is a binary refrigeration system, the high-temperature refrigeration unit 3 is provided outside the freezer 5, and the high-temperature (for example, 60 ° C.) refrigerant vapor compressed by the compressor 10 heats the air sent by the blower 14. For example 45
It is liquefied at ℃, decompressed by the expansion valve 12, and sent to the cascade condenser 28 of the low temperature refrigeration unit such as the first low temperature refrigeration unit 1 and the second low temperature refrigeration unit 2. Here, the refrigerant of the high temperature refrigeration unit 3 is heated to, for example, 5 ° C. and vaporized, and conversely, the refrigerant of the low temperature refrigeration unit 1 is cooled to 15 ° C. and liquefied. The vaporized refrigerant of the high temperature refrigeration unit 3 is sucked into the compressor 10.

【0017】冷凍庫内の温度は、各低温冷凍ユニットの
冷風出口付近に設けられた温度検出器34で検出され、
これがTH1(たとえば−45℃)になるように制御さ
れる。すなわち−45℃以下になれば圧縮機20を止め
カスケードコンデンサ28へ高温冷凍ユニット3の冷媒
液を送る供給弁15を閉じる。低温冷凍ユニットの送風
機25は、冷凍庫5内の温度を一定にするために運転を
続けてもよいし、送風機25の運転による発熱を防止す
るために止めてもよい。冷凍庫5の大きさと、収納され
ている物品の量とを考えて決める。
The temperature inside the freezer is detected by a temperature detector 34 provided near the cold air outlet of each low temperature refrigeration unit,
This is controlled to be TH1 (for example, −45 ° C.). That is, when the temperature becomes −45 ° C. or lower, the compressor 20 is stopped and the supply valve 15 for sending the refrigerant liquid of the high temperature refrigeration unit 3 to the cascade condenser 28 is closed. The blower 25 of the low-temperature refrigeration unit may be continuously operated to keep the temperature inside the freezer 5 constant, or may be stopped to prevent heat generation due to the operation of the blower 25. It is determined in consideration of the size of the freezer 5 and the amount of articles stored.

【0018】低温冷凍ユニットの冷凍庫5内の設置位
置、温度検出器34の器差などによって、たとえば第1
の冷凍ユニット1が冷却運転をし、第2の低温ユニット
が休止しているとき、第1の低温冷凍ユニット1の蒸発
器23に着霜したことを着霜検出器37で検出したとき
は、第1の低温冷凍ユニット1は、後述のデフロスト運
転に入るととともに第2の低温冷凍ユニット2が冷却運
転に入る。すなわち高温冷凍ユニット3の冷媒液供給弁
16を開き、第2の低温冷凍ユニット2の圧縮機23を
運転する。この場合、第2の低温冷凍ユニット2の送風
機25が運転していなければこれも運転する。
Depending on the installation position of the low temperature refrigeration unit in the freezer 5, the temperature difference of the temperature detector 34, etc., for example, the first
When the refrigerating unit 1 of No. 1 performs the cooling operation and the second low temperature unit is at rest, when it is detected by the frost detector 37 that the evaporator 23 of the first low temperature refrigerating unit 1 has frosted, The first low-temperature refrigeration unit 1 enters the defrosting operation described later, and the second low-temperature refrigeration unit 2 enters the cooling operation. That is, the refrigerant liquid supply valve 16 of the high temperature refrigeration unit 3 is opened and the compressor 23 of the second low temperature refrigeration unit 2 is operated. In this case, if the blower 25 of the second low temperature refrigeration unit 2 is not operating, it is also operating.

【0019】第1の低温冷凍ユニット1がデフロスト運
転を開始すると、高温冷凍ユニット3の冷媒液供給弁1
5が閉じられ、第1冷凍ユニット1の四路切換弁27が
点線の流路を通るように切換えられ、送風機25の運転
が止められる。デフロスト運転時は、圧縮機20で圧縮
された高温(たとえば25℃)の冷媒蒸気は点線の矢符
で示すように四路切換弁27を通って蒸発器23に入
り、着霜の一部を融解して落下させ冷媒蒸気は液化す
る。冷媒液は、感温膨張弁22と並列に設けられた逆止
弁30を通り、抵抗管31によって減圧され、カスケー
ドコンデンサ28の高温冷凍ユニット3の残った冷媒液
によって加熱され気化して、圧縮機20に吸引される。
着霜がなくなったことを着霜検出器37で検出すれば、
第1低温冷凍ユニット1を冷却運転に戻し、第2低温冷
凍ユニット2の運転を止める。
When the first low temperature refrigeration unit 1 starts the defrost operation, the refrigerant liquid supply valve 1 of the high temperature refrigeration unit 3
5 is closed, the four-way switching valve 27 of the first refrigeration unit 1 is switched to pass through the flow path indicated by the dotted line, and the operation of the blower 25 is stopped. During the defrost operation, the high-temperature (for example, 25 ° C.) refrigerant vapor compressed by the compressor 20 enters the evaporator 23 through the four-way switching valve 27 as indicated by the dotted arrow, and part of the frost is formed. The refrigerant vapor is liquefied by melting and dropping. The refrigerant liquid passes through the check valve 30 provided in parallel with the temperature-sensitive expansion valve 22, is decompressed by the resistance pipe 31, is heated by the remaining refrigerant liquid in the high temperature refrigeration unit 3 of the cascade condenser 28, is vaporized, and is compressed. The machine 20 is sucked.
If the frost detector 37 detects that there is no frost,
The first low temperature refrigeration unit 1 is returned to the cooling operation, and the operation of the second low temperature refrigeration unit 2 is stopped.

【0020】図3は、本実施例の制御回路における運転
制御態様を示すフローチャートである。このような制御
回路はマイクロコンピュータなどで実現される。ステッ
プn1で冷却運転が開始され、ステップn2で第1の低
温冷凍ユニット1、第2の低温冷凍ユニット2および高
温冷凍ユニット3が運転され、冷凍庫5内の温度が低下
される。ステップn3で各低温冷凍ユニットの冷風の出
口の温度が各温度検出器34で検出され、たとえば第2
の低温冷凍ユニット2の温度検出器342で検出される
温度T2が第1の低温冷凍ユニット1の温度検出器34
1で検出される温度T1よりも低く、T2が予め設定さ
れた温度TH1よりも低いかどうかが判断され、T2<
TH1が達成されればステップn4へ進み、これが達成
されないときはステップn2に戻る。ステップn4では
T1≧TH1が判断され、T1≧TH1であればステッ
プn6へ進み、T1<TH1であればステップn5に進
み、第1の低温冷凍ユニット1、第2の低温冷凍ユニッ
ト2および高温冷凍ユニット3を停止し、ステップn4
に戻る。ステップn6では第1の低温冷凍ユニット1を
冷却運転し、第2の低温冷凍ユニット2を停止する。次
にステップn7で着霜検出器37で蒸発器23に着霜が
あるかどうかを判断し、着霜があればステップn8に進
み、着霜がなければステップn5に戻る。ステップn8
では、第1の低温冷凍ユニット1をデフロスト運転に切
換え、同時に第2の低温冷凍ユニット2を冷却運転す
る。次にステップn9に進み着霜が検出されなくなった
かどうかを着霜検出器37で判断し、着霜が検出されな
くなれば、ステップn3に戻り、以下のステップを冷却
運転を止めるまで繰返す。着霜が検出されればステップ
n8に戻る。
FIG. 3 is a flow chart showing the operation control mode in the control circuit of this embodiment. Such a control circuit is realized by a microcomputer or the like. The cooling operation is started in step n1, the first low temperature refrigeration unit 1, the second low temperature refrigeration unit 2 and the high temperature refrigeration unit 3 are operated in step n2, and the temperature in the freezer 5 is lowered. In step n3, the temperature of the cold air outlet of each low temperature refrigeration unit is detected by each temperature detector 34, and for example, the second
Temperature T2 detected by the temperature detector 342 of the low temperature refrigeration unit 2 of
It is determined whether the temperature T1 is lower than the temperature T1 detected at 1 and the temperature T2 is lower than a preset temperature TH1.
If TH1 is achieved, the process proceeds to step n4, and if this is not achieved, the process returns to step n2. In step n4, it is determined that T1 ≧ TH1, and if T1 ≧ TH1, the process proceeds to step n6, and if T1 <TH1, the process proceeds to step n5, where the first low temperature refrigeration unit 1, the second low temperature refrigeration unit 2 and the high temperature refrigeration Stop Unit 3, step n4
Return to. In step n6, the first low temperature refrigeration unit 1 is cooled and the second low temperature refrigeration unit 2 is stopped. Next, at step n7, the frost detector 37 determines whether or not there is frost on the evaporator 23. If frost is present, the process proceeds to step n8, and if there is no frost, the process returns to step n5. Step n8
Then, the first low temperature refrigeration unit 1 is switched to the defrost operation, and at the same time, the second low temperature refrigeration unit 2 is cooled. Next, in step n9, it is judged by the frost detector 37 whether or not frost is no longer detected. If frost is no longer detected, the process returns to step n3 and the following steps are repeated until the cooling operation is stopped. If frost formation is detected, the process returns to step n8.

【0021】低温冷凍ユニットの運転台数の減少によっ
て高温冷凍ユニット3の圧縮機10入口の圧力の減少を
圧力検出器35で検出し、バイパス弁36を開いて圧縮
機10の負荷を軽減してもよい。また冷凍運転の初期な
ど高温冷凍ユニット3の能力不足を補うため、カスケー
ドコンデンサ28出口の低温冷凍ユニット1の冷媒液の
温度を温度検出器38で検出してこれが或る温度以下に
なるまで送風機39を運転してもよい。
Even if the pressure detector 35 detects a decrease in the pressure at the inlet of the compressor 10 of the high temperature refrigeration unit 3 due to a decrease in the number of operating low temperature refrigeration units, and the load on the compressor 10 is reduced by opening the bypass valve 36. Good. Further, in order to compensate for the insufficient capacity of the high temperature refrigeration unit 3 at the beginning of the refrigeration operation, the temperature of the refrigerant liquid of the low temperature refrigeration unit 1 at the outlet of the cascade condenser 28 is detected by the temperature detector 38, and the blower 39 is kept until the temperature falls below a certain temperature. You may drive.

【0022】冷凍庫5内の温度を低温冷凍ユニットによ
ってTH1に制御し、冬期など冷凍負荷の少ないときは
冷凍庫5の入口に近い1組の低温冷凍ユニットを運転
し、これに着霜したとき、残りの低温冷凍ユニットのう
ちの1つを必ず冷却運転するようにしてもよい。
The temperature in the freezer 5 is controlled to TH1 by the low temperature freezing unit, and when the refrigerating load is low such as in winter, one set of low temperature freezing unit near the inlet of the freezer 5 is operated, and when it is frosted, it remains. One of the low temperature refrigeration units may be always cooled.

【0023】図4は、本発明の他の実施例の冷媒配管系
統図を示す。本実施例の構成は、単元冷凍装置である
が、低温冷凍ユニットは図1に示す構成に類似し、対応
する部分には同一の参照符を付す。注目すべきは、凝縮
器21が送風機19によって送られる空気によって冷却
され、冷媒蒸気が液化することである。これによって高
温冷凍ユニットは不要となり構成が簡単となるが、凝縮
器21が大気で冷却されるのでその温度が制限され、蒸
発器23の温度、すなわち冷凍庫5内の温度を低くする
ことが難しい。したがって単元冷凍装置は、−15℃程
度の冷凍庫に用いられる。これに対して、前述の二元冷
凍装置は、−45℃程度またはそれ以下の温度の冷凍庫
に用いられる。本実施例の制御回路における運転も、図
3で説明したものと略同じであるが、単元冷凍装置であ
るので高温冷凍ユニットの運転はない。
FIG. 4 shows a refrigerant piping system diagram of another embodiment of the present invention. Although the configuration of the present embodiment is a unit refrigeration system, the low-temperature refrigeration unit is similar to the configuration shown in FIG. 1, and corresponding parts are designated by the same reference numerals. It should be noted that the condenser 21 is cooled by the air sent by the blower 19 and the refrigerant vapor is liquefied. Thereby, the high temperature refrigerating unit is not required and the configuration is simplified, but since the condenser 21 is cooled by the atmosphere, its temperature is limited, and it is difficult to lower the temperature of the evaporator 23, that is, the temperature in the freezer 5. Therefore, the unit refrigeration system is used in a freezer at about -15 ° C. On the other hand, the above-mentioned binary freezer is used for a freezer having a temperature of about -45 ° C or lower. The operation of the control circuit of this embodiment is also substantially the same as that described with reference to FIG. 3, but the high temperature refrigeration unit is not operated because it is a unit refrigeration system.

【0024】カスケードコンデンサ28は、図5に示す
ような高温冷凍ユニット3の冷媒管(蒸発器11)と低
温冷凍ユニットの冷媒管(凝縮器21)とを並列に設け
るものが好ましい。
As the cascade condenser 28, it is preferable that the refrigerant pipe (evaporator 11) of the high temperature refrigeration unit 3 and the refrigerant pipe (condenser 21) of the low temperature refrigeration unit 3 are provided in parallel as shown in FIG.

【0025】[0025]

【発明の効果】以上のように本発明によれば、1組の低
温冷凍ユニットがデフロスト運転中には、必ず残りの少
なくとも1組の低温冷凍ユニットが冷却運転をするの
で、冷凍庫内の温度を常に一定に保つことができる。
As described above, according to the present invention, at least one remaining low temperature refrigerating unit performs the cooling operation during the defrosting operation of one low temperature refrigerating unit. Can be kept constant at all times.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である二元冷凍装置の冷媒配
管系統図である。
FIG. 1 is a refrigerant piping system diagram of a binary refrigeration system that is an embodiment of the present invention.

【図2】機器の配置図である。FIG. 2 is a layout view of devices.

【図3】制御回路における運転制御の態様を示すフロー
チャートである。
FIG. 3 is a flowchart showing an aspect of operation control in a control circuit.

【図4】本発明の他の実施例である単元冷凍装置の冷媒
配管系統図である。
FIG. 4 is a refrigerant piping system diagram of a unit refrigeration system that is another embodiment of the present invention.

【図5】二元冷凍装置に用いるカスケードコンデンサ2
8の一例である。
FIG. 5 is a cascade condenser 2 used in a dual refrigeration system.
8 is an example.

【符号の説明】[Explanation of symbols]

1 第1の低温冷凍ユニット 2 第2の低温冷凍ユニット 3 高温冷凍ユニット 5 冷凍庫 13 高温冷凍ユニットの蒸発器 20 低温冷凍ユニットの圧縮機 21 低温冷凍ユニットの凝縮器 22 低温冷凍ユニットの感熱膨張弁 23 低温冷凍ユニットの蒸発器 27 四路切換弁 28 カスケードコンデンサ 29 低温冷凍ユニットの凝縮用送風機 1 1st low temperature freezing unit 2 2nd low temperature freezing unit 3 high temperature freezing unit 5 freezer 13 high temperature freezing unit evaporator 20 low temperature freezing unit compressor 21 low temperature freezing unit condenser 22 low temperature freezing unit thermal expansion valve 23 Evaporator of low temperature refrigeration unit 27 Four-way switching valve 28 Cascade condenser 29 Blower for condensation of low temperature refrigeration unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機20、凝縮器21、膨張弁22、
蒸発器23および冷却運転とデフロスト運転とを切換え
可能な2組以上の低温冷凍ユニットから成る冷凍装置に
おいて、 1組の低温冷凍ユニットがデフロスト運転に入り、か
つ、残りの少なくとも1組の低温冷凍ユニットが運転停
止中のとき、運転停止中の少なくとも1組の低温冷凍ユ
ニットを冷却運転させることを特徴とする冷凍装置。
1. A compressor 20, a condenser 21, an expansion valve 22,
In a refrigerating device comprising an evaporator 23 and two or more low temperature refrigeration units capable of switching between cooling operation and defrost operation, one low temperature refrigeration unit enters defrost operation and the remaining at least one low temperature refrigeration unit. When the operation is stopped, at least one set of the low temperature refrigeration unit in the stopped operation is cooled and operated.
【請求項2】 前記各組の低温冷凍ユニットの凝縮器2
1が、圧縮機10、凝縮器11、膨張弁12、蒸発器1
3を備えた高温冷凍ユニット3の蒸発器13と熱結合す
るカスケードコンデンサ28で冷却されることを特徴と
する請求項1記載の冷凍装置。
2. The condenser 2 of the low temperature refrigeration unit of each set.
1 is a compressor 10, a condenser 11, an expansion valve 12, and an evaporator 1.
The refrigerating apparatus according to claim 1, wherein the refrigerating apparatus is cooled by a cascade condenser 28 that is thermally coupled to the evaporator 13 of the high temperature refrigerating unit 3 including the cooling condenser 3.
【請求項3】 前記各組の冷凍ユニットのカスケードコ
ンデンサ28が、高温冷凍ユニット3の冷媒管と低温冷
凍ユニットの冷媒管とにそれぞれ並列に接続されている
ことを特徴とする請求項2記載の冷凍装置。
3. The cascade condenser 28 of each refrigeration unit of each set is connected in parallel to the refrigerant pipe of the high temperature refrigeration unit 3 and the refrigerant pipe of the low temperature refrigeration unit, respectively. Refrigeration equipment.
【請求項4】 前記各組の低温冷凍ユニットの凝縮器2
1が送風機29によって凝縮熱を大気に放散するもので
あることを特徴とする請求項1記載の冷凍装置。
4. The condenser 2 of the low temperature refrigeration unit of each set.
The refrigerating apparatus 1 according to claim 1, wherein the blower 29 dissipates the heat of condensation into the atmosphere.
【請求項5】 各組の低温冷凍ユニットが各組毎に庫内
温度を検出して、各組毎に庫内温度をTH1に制御すべ
く運転することを特徴とする請求項1〜4のいずれか1
項に記載の冷凍装置。
5. The low temperature refrigerating unit of each set is operated to detect the internal cold storage temperature for each set and to control the internal cold storage temperature to TH1 for each set. Either one
Refrigerating apparatus according to paragraph.
JP03889094A 1994-03-09 1994-03-09 Refrigeration equipment Expired - Fee Related JP3218842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03889094A JP3218842B2 (en) 1994-03-09 1994-03-09 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03889094A JP3218842B2 (en) 1994-03-09 1994-03-09 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH07243727A true JPH07243727A (en) 1995-09-19
JP3218842B2 JP3218842B2 (en) 2001-10-15

Family

ID=12537812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03889094A Expired - Fee Related JP3218842B2 (en) 1994-03-09 1994-03-09 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3218842B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055809A1 (en) * 1997-06-03 1998-12-10 Daikin Industries, Ltd. Refrigerating plant
JP2013124812A (en) * 2011-12-15 2013-06-24 Toyo Eng Works Ltd Cooling and defrosting system by carbon dioxide refrigerant, and method of operating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055809A1 (en) * 1997-06-03 1998-12-10 Daikin Industries, Ltd. Refrigerating plant
AU730288B2 (en) * 1997-06-03 2001-03-01 Daikin Industries, Ltd. Refrigeration system
US6212898B1 (en) 1997-06-03 2001-04-10 Daikin Industries, Ltd. Refrigeration system
JP2013124812A (en) * 2011-12-15 2013-06-24 Toyo Eng Works Ltd Cooling and defrosting system by carbon dioxide refrigerant, and method of operating the same

Also Published As

Publication number Publication date
JP3218842B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
EP1394481B1 (en) Refrigerator
JP2005249254A (en) Refrigerator-freezer
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP3816872B2 (en) Operation control method of refrigeration system with two evaporators
EP3657098B1 (en) Cooling system
US20070137226A1 (en) Refrigerator and method for controlling the refrigerator
US5916254A (en) Method of circulating refridgerant for defrosting and refrigerator employing the same
JP3136644B2 (en) Off-cycle defrost equipment
JP4622901B2 (en) Air conditioner
US10895411B2 (en) Cooling system
JP2000121232A (en) Refrigerator
JPH07243727A (en) Refrigerator
JP4984770B2 (en) refrigerator
WO2001020235A1 (en) Apparatus and method for evaporator defrosting
JPH10288427A (en) Refrigerating device
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP2604326Y2 (en) Refrigerator cooler
JP3036519B2 (en) Refrigeration equipment
JP2003004346A (en) Cooling equipment
CN112524862A (en) Freezer and freezer operation method
JPH0821664A (en) Refrigerating cycle device
JP2000258020A (en) Freezer/refrigerator
JPH07234041A (en) Cascade refrigerating equipment
KR950006023Y1 (en) Defrost apparatus in refregerator
JPH1038396A (en) Method of controlling freezer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees