JPH07243350A - Combined cycle rocket engine - Google Patents

Combined cycle rocket engine

Info

Publication number
JPH07243350A
JPH07243350A JP5256994A JP5256994A JPH07243350A JP H07243350 A JPH07243350 A JP H07243350A JP 5256994 A JP5256994 A JP 5256994A JP 5256994 A JP5256994 A JP 5256994A JP H07243350 A JPH07243350 A JP H07243350A
Authority
JP
Japan
Prior art keywords
cycle
engine
turbine
combustion chamber
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5256994A
Other languages
Japanese (ja)
Other versions
JP2615413B2 (en
Inventor
Akio Kan
昭夫 冠
Shiyuutoku Katou
周徳 加藤
Yoshio Wakamatsu
義男 若松
Takeshi Karita
丈士 苅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP5256994A priority Critical patent/JP2615413B2/en
Publication of JPH07243350A publication Critical patent/JPH07243350A/en
Application granted granted Critical
Publication of JP2615413B2 publication Critical patent/JP2615413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable both increase in large propulsion force required at launching and specific impulse after rising despite of one engine without changing nozzles and propellants. CONSTITUTION:A combined cycle rocket engine is provided with a circuit for supplying liquid oxygen LOX and liquid hydrogen LH to a main combustion chamber 9 of an engine by a pump 12, a circuit for supplying a part of these propellants to a gas generator 13 for driving a turbine and discharging gas from an auxiliary nozzle 10 after driving the turbine 11 by generation gas, and a circuit for supplying liquid hydrogen which is vaporized after fed to the main combustion chamber and the nozzle by the pump for cooling so as to drive the turbine, to the main combustion chamber. Gas generator cycle and expander cycle are thus changed by valves 1-8 provided in respective circuits so that at first when it is launched, the gas generator cycle is used and after rising, the expander cycle is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はロケットエンジン、特に
液体酸素・液体水素を推進剤とする再使用型ロケットエ
ンジンの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rocket engine, and more particularly to an improvement of a reusable rocket engine using liquid oxygen / liquid hydrogen as a propellant.

【0002】[0002]

【従来の技術】ロケットの打ち上げにおいて、初めは比
推力が多少低くとも推力が大きいことが重要であり、上
昇するにつれて比推力の高いことが重要になる。これ
は、初めは重い機体を重力に打ち勝って速やかに上昇さ
せなければならないが、ついで上昇後は、軽くなった機
体を増速させるためである。
2. Description of the Related Art In launching a rocket, it is important that the thrust is large even if the specific thrust is a little low, and it is important that the thrust is high as the thrust increases. This is because at first, a heavy aircraft must overcome gravity and be quickly raised, but after the ascent, the lightened aircraft is accelerated.

【0003】地上から発射されるブースタ用ロケットエ
ンジンのノズルの膨張面積比(ε)は、通常、地上(大
気圧=1気圧)でノズル流の剥離を生じない出来るだけ
高い値(剥離限界ノズル膨張面積比:εcr)に設定され
る。これは、同一エンジンではノズル膨張面積比(ε)
が大であるほど高い比推力が得られることによる。
The expansion area ratio (ε) of the nozzle of the booster rocket engine fired from the ground is usually as high as possible (separation limit nozzle expansion) on the ground (atmospheric pressure = 1 atm) without separation of the nozzle flow. Area ratio: εcr). This is the nozzle expansion area ratio (ε) for the same engine.
This is because the larger the value is, the higher the specific impulse is obtained.

【0004】図2に燃焼圧力を高めることによって使用
可能なεcrが増加する様子を破線で、また、そのノズル
を使用したときのガス発生器サイクル(以下、GGサイ
クルという)とエキスパンダサイクル(以下、EXサイ
クルという)の比推力を実線で示す。すなわち、破線は
横軸の燃焼圧によって実現できるεcrを、実線GGはそ
の時のGGサイクルにおける比推力を、実線EXはその
ノズルを使用し、燃焼圧3.5MPaとしたときのEX
サイクルの比推力を示す。燃焼圧力(Pc)が高いほど
εcrは大となるが、GGサイクルではPcを高めるとタ
ービン駆動ガス流量増加による損失が増加し、比推力は
増加しにくくなる。EXサイクルでは実現可能な燃焼圧
力は低く(約4MPa以下)、打ち上げ時に必要な大き
な推力が得にくい。従来のロケットエンジンは、その構
造により、GGサイクルを採用するかEXサイクルを採
用するかどちらか一方になるため、推進剤の最も効率的
な使用は難しかった。
In FIG. 2, the broken line shows how usable εcr increases by increasing the combustion pressure, and the gas generator cycle (hereinafter referred to as GG cycle) and expander cycle (hereinafter referred to as GG cycle) when the nozzle is used. , EX cycle) is shown by a solid line. That is, the broken line represents εcr that can be realized by the combustion pressure on the horizontal axis, the solid line GG represents the specific thrust in the GG cycle at that time, and the solid line EX represents the EX when the nozzle is used and the combustion pressure is 3.5 MPa.
Indicates the specific impulse of the cycle. The higher the combustion pressure (Pc) is, the larger εcr becomes. However, in the GG cycle, when Pc is increased, the loss due to the increase in the turbine driving gas flow rate is increased, and the specific thrust is difficult to increase. In the EX cycle, the achievable combustion pressure is low (about 4 MPa or less), and it is difficult to obtain the large thrust required at launch. Since the conventional rocket engine adopts either the GG cycle or the EX cycle depending on its structure, it has been difficult to use the propellant most efficiently.

【0005】[0005]

【発明が解決しようとする課題】本発明は、打ち上げ時
の推力確保と上昇後の比推力の増大を、ノズル膨張面積
比(ε)や推進剤の組合せを変えることなく、1つのエ
ンジンで実現させようとするものである。
SUMMARY OF THE INVENTION The present invention realizes securing thrust at launch and increasing specific thrust after ascent with one engine without changing the nozzle expansion area ratio (ε) and the combination of propellants. It is the one to try.

【0006】[0006]

【課題を解決するための手段】本発明の複合サイクルロ
ケットエンジンは、液体酸素・液体水素を推進剤とする
ブースタ用ロケットエンジンにおいて、推進剤供給サイ
クルとしてガス発生器サイクルとエキスパンダサイクル
の両方を備え、初め(打ち上げ時)はガス発生器サイク
ルを使用し、ついで(上昇後)エキスパンダサイクルを
使用することにより、GGサイクルとEXサイクルの特
徴を活かし、それぞれ単独では実現できない性能を単一
のエンジンで実現することを特徴とする。より具体的に
は、エンジンは液体酸素、液体水素タンクから、これら
推進剤をポンプでエンジンの主燃焼室に供給する回路
と、ポンプからこれら推進剤の一部をタービン駆動用ガ
ス発生器に供給し、発生ガスをタービンを駆動後、補助
ノズルから排出する回路と、ポンプで送出された液体水
素で主燃焼室及びノズルを冷却後、タービンを駆動し、
主燃焼室に供給する回路とを備え、各回路に配設された
バルブにより上記GGサイクルとEXサイクルの切り換
えを行う。
A combined cycle rocket engine of the present invention is a rocket engine for boosters using liquid oxygen / liquid hydrogen as a propellant, and uses both a gas generator cycle and an expander cycle as a propellant supply cycle. In preparation, by using the gas generator cycle at the beginning (at the time of launch) and then using the expander cycle (after the ascent), the characteristics of the GG cycle and the EX cycle can be utilized to achieve a single performance that cannot be achieved individually. It is characterized by being realized by an engine. More specifically, the engine supplies a circuit that supplies these propellants from a liquid oxygen tank and a liquid hydrogen tank to the main combustion chamber of the engine, and a part of these propellants from the pump to the turbine drive gas generator. Then, after driving the turbine with the generated gas, the circuit that discharges the gas from the auxiliary nozzle and the liquid hydrogen sent by the pump cools the main combustion chamber and the nozzle, and then drives the turbine.
A circuit for supplying to the main combustion chamber is provided, and the GG cycle and the EX cycle are switched by a valve provided in each circuit.

【0007】[0007]

【作用】上記のように、打ち上げ時はGGサイクルを使
用し、ついでEXサイクルへの切り換えを行うと、GG
サイクルの高い燃焼圧力によって地上で使用可能になる
高いεcrのノズルを、上昇後にEXサイクルで引き継い
で使用することによって高比推力が得られ、全体として
のエンジン効率の向上をはかることができる。本発明の
複合サイクルロケットエンジンの性能の検討のため、表
1のようなエンジン諸元を仮定する。
As described above, if the GG cycle is used at the time of launch and then the switch to the EX cycle is performed, the GG cycle
A high specific thrust can be obtained by continuing to use the nozzle of high εcr that can be used on the ground due to the high combustion pressure of the cycle after the ascent, so that the engine efficiency as a whole can be improved. For studying the performance of the combined cycle rocket engine of the present invention, the engine specifications as shown in Table 1 are assumed.

【表1】 [Table 1]

【0008】タンク容積を348m3 、構造+ペイロー
ドを40ton 、最大加速度を3Gとし、上記の仮定に基
づくエンジンにおいて、最終高度を一定としてエンジン
サイクルの切り換え時期と燃え切り速度との関係を図3
に示す。ノズル膨張面積比40の場合共に、GGサイク
ルのみで全推進剤を消費する場合(右端点)に比べ、本
発明のモード切り換えを行う複合エンジンの方が燃え切
り速度が大となるような第1モードの推進剤消費割合
(最適モード切り替え時期)が存在することがわかる。
図示の例では、燃え切り速度を一定とすれば、ペイロー
ドの約1ton の増加となる。
In the engine based on the above assumption, the tank volume is 348 m 3 , the structure + payload is 40 tons, and the maximum acceleration is 3G.
Shown in. In both cases where the nozzle expansion area ratio is 40, compared with the case where all the propellant is consumed only in the GG cycle (the right end point), the first mode in which the composite engine performing the mode switching of the present invention has a higher burnout speed. It can be seen that there is a propellant consumption rate (optimum mode switching time) for the mode.
In the illustrated example, if the burnout speed is constant, the payload will increase by about 1 ton.

【0009】[0009]

【実施例】図1に本発明の複合サイクルロケットエンジ
ンの構成の1例を示す。打ち上げ時に使用されるGGサ
イクルにおいては、推進剤としての液体酸素LOX、液
体水素LH2は、ポンプ12で送出され、バルブ2及び
バルブ1,7を経て主燃焼室9に供給される。ポンプ1
2からのLOXとLH2 の一部は、バルブ3、4を経て
タービン駆動用ガス発生器13に供給され、発生ガスは
ポンプ駆動用タービン11を駆動し、バルブ8を経て補
助ノズル10から噴射される。このとき、バルブ5、6
は閉じられている。上記のように、推進剤の消費量が所
定の量に達したとき、EXサイクルに切り換えられる
が、切り換えは、バルブ3、4、8を閉じ、バルブ5、
6を開くことによって行われる。このバルブの切り換え
により、LOXは全量が直接に主燃焼室9に供給され、
一方、LH2は主燃焼室及びノズルを冷却気化し、バル
ブ5を経てタービン11を駆動した後、バルブ6を経て
主燃焼室9に供給されるようになる。このとき、バルブ
7はタービン11への流れのバイパスとなり、タービン
への流量の調節のために使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of the structure of a combined cycle rocket engine of the present invention. In the GG cycle used at the time of launch, liquid oxygen LOX and liquid hydrogen LH 2 as propellants are delivered by the pump 12 and supplied to the main combustion chamber 9 via the valve 2 and the valves 1 and 7. Pump 1
Part of LOX and LH 2 from No. 2 is supplied to the turbine driving gas generator 13 via the valves 3 and 4, and the generated gas drives the pump driving turbine 11 and is injected from the auxiliary nozzle 10 via the valve 8. To be done. At this time, valves 5, 6
Is closed. As described above, when the consumption amount of the propellant reaches a predetermined amount, the EX cycle is switched to, but the switching is performed by closing the valves 3, 4, 8 and the valve 5,
This is done by opening 6. By switching this valve, the entire amount of LOX is directly supplied to the main combustion chamber 9,
On the other hand, LH 2 is supplied to the main combustion chamber 9 through the valve 6 after cooling and vaporizing the main combustion chamber and the nozzle, driving the turbine 11 through the valve 5. At this time, the valve 7 serves as a bypass for the flow to the turbine 11 and is used for adjusting the flow rate to the turbine.

【0010】[0010]

【発明の効果】再使用型ロケットエンジンは、長寿命
で、信頼性の高いことが要求される。本発明の複合サイ
クルエンジンは、打ち上げ性能では二段燃焼サイクルを
使用するエンジンには及ばないものの、システム最高圧
力はGGサイクルと同一で二段燃焼サイクルに比べて低
く、性能はGGサイクル単独より高い。しかも、GGサ
イクル、EXサイクル共に充分に確立された技術となっ
ており、信頼性の高いシステムとすることが出来る。
The reusable rocket engine is required to have a long life and high reliability. Although the combined cycle engine of the present invention has a launch performance that is inferior to an engine using a two-stage combustion cycle, the system maximum pressure is the same as that of the GG cycle and lower than that of the two-stage combustion cycle, and its performance is higher than that of the GG cycle alone. . Moreover, both the GG cycle and the EX cycle are well-established technologies, and a highly reliable system can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合サイクルエンジンの1実施例を示
す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a combined cycle engine of the present invention.

【図2】燃焼サイクルと燃焼圧力による比推力の変化を
示すグラフである。
FIG. 2 is a graph showing a change in specific thrust according to a combustion cycle and combustion pressure.

【図3】エンジンサイクルのモード切り換えと燃え切り
速度の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between engine cycle mode switching and burnout speed.

【符号の説明】[Explanation of symbols]

1,2,3,4,5,6,7,8 バルブ 9
主燃焼室及びノズル 10 補助ノズル 11 ポンプ駆動用タービン
12 ポンプ 13 ガス発生器 LOX 液体酸素
LH2 液体水素
1,2,3,4,5,6,7,8 valve 9
Main combustion chamber and nozzle 10 Auxiliary nozzle 11 Pump drive turbine
12 pump 13 gas generator LOX liquid oxygen
LH 2 liquid hydrogen

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体酸素・液体水素を推進剤とするブー
スタ用ロケットエンジンにおいて、推進剤供給サイクル
としてガス発生器サイクルとエキスパンダサイクルの両
方を備え、初めはガス発生器サイクルを使用し、ついで
エキスパンダサイクルを使用する複合サイクルロケット
エンジン
1. A booster rocket engine using liquid oxygen / liquid hydrogen as a propellant, which is provided with both a gas generator cycle and an expander cycle as a propellant supply cycle, and first uses the gas generator cycle, and then Combined cycle rocket engine using expander cycle
【請求項2】 液体酸素、液体水素タンクから、これら
推進剤をポンプでエンジンの主燃焼室に供給する回路
と、ポンプからこれら推進剤の一部をタービン駆動用ガ
ス発生器に供給し、発生ガスをタービンを駆動後、補助
ノズルから排出する回路と、ポンプで送出された液体水
素で主燃焼室及びノズルを冷却後、タービンを駆動し、
主燃焼室に供給する回路とを備え、各回路に配設された
バルブにより上記ガス発生器サイクルとエキスパンダサ
イクルの切り換えを行う複合サイクルロケットエンジン
2. A circuit for supplying a propellant from a liquid oxygen or liquid hydrogen tank to a main combustion chamber of an engine by a pump, and a part of the propellant supplied from a pump to a gas generator for driving a turbine. After driving the gas to the turbine, the circuit that discharges the gas from the auxiliary nozzle and the liquid hydrogen sent by the pump cools the main combustion chamber and the nozzle, and then drives the turbine.
A combined-cycle rocket engine having a circuit for supplying to the main combustion chamber and switching between the gas generator cycle and the expander cycle by a valve arranged in each circuit.
JP5256994A 1994-02-28 1994-02-28 Combined cycle rocket engine Expired - Lifetime JP2615413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5256994A JP2615413B2 (en) 1994-02-28 1994-02-28 Combined cycle rocket engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5256994A JP2615413B2 (en) 1994-02-28 1994-02-28 Combined cycle rocket engine

Publications (2)

Publication Number Publication Date
JPH07243350A true JPH07243350A (en) 1995-09-19
JP2615413B2 JP2615413B2 (en) 1997-05-28

Family

ID=12918445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5256994A Expired - Lifetime JP2615413B2 (en) 1994-02-28 1994-02-28 Combined cycle rocket engine

Country Status (1)

Country Link
JP (1) JP2615413B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317700A (en) * 2001-04-24 2002-10-31 Natl Space Development Agency Of Japan Thruster device
JP2009540190A (en) * 2006-07-07 2009-11-19 シー アンド スペース インコーポレイテッド Methane engine for rocket propulsion
CN102095584A (en) * 2010-12-06 2011-06-15 北京航空航天大学 Hydrogen-rich /oxygen-rich gas combustion tester and test method
US20120210714A1 (en) * 2011-02-18 2012-08-23 Chris Gudmundson Hydrogen based combined steam cycle apparatus
JP2016500789A (en) * 2012-11-06 2016-01-14 スネクマ Method and apparatus for supplying rocket engine
CN111720239A (en) * 2019-07-03 2020-09-29 西安航天动力研究所 Liquid rocket power system capable of starting liquid rockets for multiple times with variable-depth pushing
CN111963340A (en) * 2020-08-04 2020-11-20 西安航天动力研究所 Multi-starting system of pneumatic supercharging device of liquid rocket engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317700A (en) * 2001-04-24 2002-10-31 Natl Space Development Agency Of Japan Thruster device
JP2009540190A (en) * 2006-07-07 2009-11-19 シー アンド スペース インコーポレイテッド Methane engine for rocket propulsion
JP4824814B2 (en) * 2006-07-07 2011-11-30 シー アンド スペース インコーポレイテッド Methane engine for rocket propulsion
CN102095584A (en) * 2010-12-06 2011-06-15 北京航空航天大学 Hydrogen-rich /oxygen-rich gas combustion tester and test method
US20120210714A1 (en) * 2011-02-18 2012-08-23 Chris Gudmundson Hydrogen based combined steam cycle apparatus
US8671687B2 (en) * 2011-02-18 2014-03-18 Chris Gudmundson Hydrogen based combined steam cycle apparatus
JP2016500789A (en) * 2012-11-06 2016-01-14 スネクマ Method and apparatus for supplying rocket engine
US10072610B2 (en) 2012-11-06 2018-09-11 Arianegroup Sas Method and a device for feeding a rocket engine
CN111720239A (en) * 2019-07-03 2020-09-29 西安航天动力研究所 Liquid rocket power system capable of starting liquid rockets for multiple times with variable-depth pushing
CN111720239B (en) * 2019-07-03 2021-05-25 西安航天动力研究所 Liquid rocket power system capable of starting liquid rockets for multiple times with variable-depth pushing
CN111963340A (en) * 2020-08-04 2020-11-20 西安航天动力研究所 Multi-starting system of pneumatic supercharging device of liquid rocket engine
CN111963340B (en) * 2020-08-04 2021-10-19 西安航天动力研究所 Multi-starting system of pneumatic supercharging device of liquid rocket engine

Also Published As

Publication number Publication date
JP2615413B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
US20180238272A1 (en) Tri-propellant rocket engine for space launch applications
RU2158839C2 (en) Liquid-propellant rocket reheat engine
JPS62288352A (en) Rocket propulsion device capable of sucking air
US8430361B2 (en) Method and device enabling a rocket engine pump to be driven by an internal combustion engine
CN1021470C (en) Propellant of rocket-engine plants
US11982249B1 (en) Integrated vehicle fluids
US5551230A (en) Heat induced high pressure lox pump rocket engine cycle
KR102161997B1 (en) Engine
EP1811163A2 (en) Gas augmented rocket engine
CN111720239B (en) Liquid rocket power system capable of starting liquid rockets for multiple times with variable-depth pushing
US10717550B1 (en) Integrated vehicle fluids
US3788069A (en) Liquid fueled rocket engine of the main current type having separate control nozzles operated from turbine exhaust gases branched off from the rocket process
JPH07243350A (en) Combined cycle rocket engine
EP1669587B1 (en) Propulsion system
US5873241A (en) Rocket engine auxiliary power system
RU2385274C1 (en) Multi-stage carrier rocket, method to launch it and three-component rocket engine
US5214910A (en) Dual mode accessory power unit
Calabro LOx/HTPB/AlH3 hybrid propulsion for launch vehicle boosters
RU2748344C1 (en) Multistage rocket and method for separating waste parts
JP2003054499A (en) Pressurized fuel tank
GB2147052A (en) Additional propellant for rocket
JPH04153550A (en) Air liquefied engine
RU2055004C1 (en) System for maneuvering of airship in vertical plane
JP2889501B2 (en) Driving method and driving device for flying object actuator
Limerick Dual mixture ratio H2/O2 engine for single stage to orbit application

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970128

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term