JPH04153550A - Air liquefied engine - Google Patents

Air liquefied engine

Info

Publication number
JPH04153550A
JPH04153550A JP27709490A JP27709490A JPH04153550A JP H04153550 A JPH04153550 A JP H04153550A JP 27709490 A JP27709490 A JP 27709490A JP 27709490 A JP27709490 A JP 27709490A JP H04153550 A JPH04153550 A JP H04153550A
Authority
JP
Japan
Prior art keywords
air
oxygen
flow path
hydrogen
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27709490A
Other languages
Japanese (ja)
Other versions
JP2882023B2 (en
Inventor
Masato Oguma
正人 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2277094A priority Critical patent/JP2882023B2/en
Publication of JPH04153550A publication Critical patent/JPH04153550A/en
Application granted granted Critical
Publication of JP2882023B2 publication Critical patent/JP2882023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the compression ratio of air and increase thrust by storing the excessive portion of the liquefied oxygen separated by a liquefying separator, into an oxygen tank, introducing the liquefied nitrogen gas into an air precooler, and utilizing the excessive oxygen portion for the thrust in the cosmos space. CONSTITUTION:As for an air liquefied engine equipped with a jet part 11 and a rocket part 12, the liquefied oxygen which is separated from a liquefying separator 5 which performs flight in the air is supplied into the jet part 11, and the excessive portion is stored in an oxygen tank 13. Further, the liquefied nitrogen gas which is separated by the liquefying separator 5 is introduced into an air precooler 10 at an air intake port 1 and supplied into the jet part 11. Accordingly, the excessive oxygen portion stored in the oxygen tank 13 can be utilized for the propulsion in the cosmos space by the rocket part 12. Air is cooled by the liquefied nitrogen gas which is introduced into the air precooler 10, and the compression ratio is improved. Further, the volume of the exhaust gas is increased by the nitrogen supplied into the jet part 11, and the thrust is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は空気液化エンジンに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to air liquefaction engines.

[従来の技術] 近年、宇宙往還機の開発か活発に進められつつあるか、
特に近年では大気中を飛行する間は燃料の燃焼に必要I
;酸素を空気中から取り入れて、宇宙往還機に搭載する
酸化剤の量を節約するようにした空気液化エンノンか研
究されている。
[Conventional technology] In recent years, the development of spacecraft has been actively progressing.
Particularly in recent years, during flight in the atmosphere, the I
Research is being conducted on air liquefaction ennon, which takes oxygen from the air and saves on the amount of oxidizing agent carried on spacecraft.

現在のロケ・ノドは、スペース・ンヤトルも含め、必要
な酸化剤はすべて搭載している。代表的な酸化剤は温度
−183℃の液体酸素であり、その重量は、代表的な燃
料である水素の6倍、スペース・シャトルでは、全重量
の約1/3にも達する。このため人口衛星などのペイロ
ードは、全体の約1〜2%程度の重ごてしかない。
The current Roque Nodo is equipped with all the necessary oxidizers, including the Space Nyatle. A typical oxidizing agent is liquid oxygen at a temperature of -183° C., and its weight is six times that of hydrogen, a typical fuel, and about one-third of the total weight of the space shuttle. For this reason, the payload of artificial satellites only accounts for about 1 to 2% of the total weight.

これに比へ、空気中の酸素を用いる航空機の場合には、
全重量のうち、燃料(この場合はジェット燃料)か約4
0%、ペイロードは10%強まて上る。このことから、
酸化剤搭載量を最小にし、ペイロード率を高めて経済的
な宇宙輸送を実現する上で空気液化エンジンの開発が望
まれている。
In contrast, in the case of aircraft that use atmospheric oxygen,
Of the total weight, fuel (in this case jet fuel) or approx.
0%, and the payload increases by just over 10%. From this,
The development of an air-liquefaction engine is desired to minimize the amount of oxidizer carried and increase the payload rate to realize economical space transportation.

前記空気液化エンジンは、離陸から宇宙に飛びだすまで
すべて一本のエンジンで済ませようとの考え方で、ロケ
ットの形態を基本として考えられたエンジンであり、原
理は、吸入した空気を、−253℃の液体水素を冷媒と
して液化し、これを酸化剤としてロケット燃焼室に高圧
で送り込み、液体水素/液体空気ロケットエンジンとし
て燃焼・噴出させるものである。従って空気取入口と空
気の液化器を除けはロケットと同様の構成となる。
The above-mentioned air liquefaction engine is an engine designed based on the form of a rocket, with the idea that a single engine can be used for everything from takeoff to space flight. Liquid hydrogen is liquefied as a refrigerant, and this is sent as an oxidizer into the rocket combustion chamber at high pressure, where it is combusted and ejected as a liquid hydrogen/liquid air rocket engine. Therefore, the structure is similar to that of a rocket, except for the air intake and air liquefier.

[発明か解決しようとする課題] しかし、上記空気液化エンジンには解決しなけれはなら
ない種々の技術的課題か山積みされている。
[Problems to be Solved by the Invention] However, the above-mentioned air liquefaction engine has a large number of various technical problems that must be solved.

本発明は特に宇宙往還機に搭載する酸化剤の量の節約と
、推進効率の増加を図ることを目的としている。
The present invention is particularly aimed at saving the amount of oxidizing agent carried in a spacecraft and increasing propulsion efficiency.

[課題を解決するための手段] 本発明はジェット部とロケット部とを備えた空気液化エ
ンジンであって、空気取入口と、水素タンクと、該水素
タンクの液体水素を前記空気取入口に配した空気予冷器
を経た後前記ジェット部とロケット部とに切換え可能に
供給する水素流路と、酸素タンクと、該酸素タンクの液
体酸素を前記ジェット部とロケット部とに切換え可能に
供給する酸素流路と、前記空気取入口から取入れた加圧
空気を前記水素流路の液体水素により冷却して液化し液
体酸素と液体窒素に分離する液化分離器と、該液化性M
器にて分離した液体酸素を前記酸素流路に導く酸素供給
流路と、前記液化分離器で分離した液体窒素を前記空気
取入口に配した空気予冷器を経た後前記ジェット部に導
く窒素流路とを備えたことを特徴とする空気液化エンジ
ンにかかるものである。
[Means for Solving the Problems] The present invention is an air liquefaction engine equipped with a jet section and a rocket section, which includes an air intake port, a hydrogen tank, and liquid hydrogen in the hydrogen tank disposed in the air intake port. a hydrogen flow path that selectively supplies liquid oxygen to the jet section and the rocket section after passing through an air precooler; an oxygen tank; a flow path, a liquefaction separator that cools and liquefies pressurized air taken in from the air intake port with liquid hydrogen in the hydrogen flow path and separates it into liquid oxygen and liquid nitrogen;
an oxygen supply flow path that leads liquid oxygen separated by the liquefier to the oxygen flow path; and a nitrogen flow that leads the liquid nitrogen separated by the liquefaction separator to the jet section after passing through an air precooler disposed at the air intake port. The present invention relates to an air liquefaction engine characterized in that the air liquefaction engine is equipped with a duct.

[作   用〕 大気中を飛行する際、液化分離器で分離した液化酸素を
ジェット部に供給すると共に、余剰分を酸素タンクに貯
えておくことにより、ロケット部による宇宙空間の推進
に利用できる。
[Function] When flying in the atmosphere, the liquefied oxygen separated by the liquefaction separator is supplied to the jet section, and the surplus is stored in the oxygen tank, which allows the rocket section to use it for propulsion into space.

又、液化分離器で分離され液化窒素ガスを空気取入口の
空気予冷器に導いて空気の冷却を行うことにより、空気
の圧縮比が高められ、且つ前記窒素かジェット部に供給
されて排出ガスのホリュームか増加することによって推
力か増加する。
In addition, the liquefied nitrogen gas separated by the liquefaction separator is guided to the air precooler at the air intake port to cool the air, thereby increasing the compression ratio of the air and supplying the nitrogen to the jet section to reduce the exhaust gas. Thrust increases by increasing the volume of.

[実 施 例コ 以下、本発明の実施例を図面を参照しつつ説明する。[Implementation example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例であり、飛行体の進行方向前
方に向けて開口させた空気取入口lから取入れた空気2
を空気流路3に有したポンプ4により昇圧して液化分離
器5に導き、且つ水素タンク6からの液体水素H2(−
253℃〕を水素流路7により熱交換器8及びポンプ9
を介して前記液化分離器5に冷媒として導くことにより
冷却、液化し、液体酸素02、液体窒素N2を分離して
取出すようにしている。
FIG. 1 shows an embodiment of the present invention, in which air 2 is taken in from an air intake port 1 opened toward the front in the direction of movement of the aircraft.
The pressure of hydrogen H2 (-
253°C] through the hydrogen flow path 7 to the heat exchanger 8 and pump 9.
It is cooled and liquefied by guiding it as a refrigerant to the liquefaction separator 5 via the liquefaction separator 5, and liquid oxygen 02 and liquid nitrogen N2 are separated and taken out.

前記液化分離器5にて空気の冷却・液化を行った水素H
2は、水素流路7により前記空気取入口1に備えた空気
予冷器10に導かれて取入れる空気の予冷を行い、自身
は昇温された後、ジェット部11及びロケット部12に
切換えて供給されるようになっている。
Hydrogen H obtained by cooling and liquefying the air in the liquefaction separator 5
2 pre-cools the air that is introduced by the hydrogen flow path 7 to the air precooler 10 provided in the air intake port 1, and after the air itself is heated, it is switched to the jet section 11 and the rocket section 12. It is now being supplied.

又、酸素タンク13の液体酸素02を酸素流路14によ
り前記熱交換器8及びポンプ15を介して前記ロケット
部12に導いて昇温を行った後、前記/エツト部II及
びロケット部12に切換えて供給するようにしている。
Further, the liquid oxygen 02 in the oxygen tank 13 is guided to the rocket part 12 through the oxygen flow path 14 via the heat exchanger 8 and the pump 15 to raise its temperature, and then is introduced into the /et part II and the rocket part 12. I am trying to switch the supply.

更に、前記液化分離器5にて分離された液体酸素02は
、酸素供給流路16により前記熱交換器8とポンプ15
との間の酸素流路14に供給するようにしである。
Furthermore, the liquid oxygen 02 separated in the liquefaction separator 5 is transferred to the heat exchanger 8 and the pump 15 through the oxygen supply channel 16.
The oxygen flow path 14 between the two is supplied with oxygen.

又、前記液化性M器5にて分離された液体窒素N2は、
窒素流路17により前記空気取入口1に備えた空気予冷
器18に導かれて取入れる空気の予冷を行い、自身は昇
温された後、前記ジェット部11に供給されるようにな
っている。
Moreover, the liquid nitrogen N2 separated in the liquefiable M vessel 5 is
The nitrogen flow path 17 guides the air to the air precooler 18 provided in the air intake port 1 to pre-cool the air taken in, and after the air itself is heated, it is supplied to the jet section 11. .

上記空気液化エンジンによって大気中を飛行する間は、
水素タンク6の液体水素H2か、水素流路7により熱交
換器8、ポンプ9、液化分離器5、空気予冷器10を介
し、気化された状態でジェット部11に導かれると共に
、空気取入口lから取入れられ空気予冷器10により予
冷された空気2かポンプ4によって加圧された後、前記
液化分離器5に導かれて前記液体水素H2を冷媒とする
冷却によって液化され、更に、液体酸素02と液体窒素
N2に分離され、該分離された液体酸素02か酸素供給
流路16及びポンプ15を存した酸素流路14を介して
前記ジェット部11に供給され、これによりジェット部
11にて燃焼か行われて推力か発生する。尚、地上から
の発進時、燃焼のための酸素02の量か足りない分は、
酸素タック13の液体酸素02を酸素流路14を介して
補給する。
While flying through the atmosphere with the air liquefaction engine,
The liquid hydrogen H2 in the hydrogen tank 6 is guided in a vaporized state to the jet section 11 by the hydrogen flow path 7 via the heat exchanger 8, pump 9, liquefaction separator 5, and air precooler 10, and is also introduced into the jet section 11 through the air intake port. The air 2 taken in from 1 and precooled by the air precooler 10 is pressurized by the pump 4, and then led to the liquefaction separator 5 where it is liquefied by cooling using the liquid hydrogen H2 as a refrigerant. 02 and liquid nitrogen N2, and the separated liquid oxygen 02 is supplied to the jet section 11 through the oxygen flow channel 14 which includes an oxygen supply channel 16 and a pump 15. Combustion occurs and thrust is generated. In addition, when starting from the ground, the amount of oxygen 02 for combustion is insufficient.
Liquid oxygen 02 in the oxygen tack 13 is replenished via the oxygen flow path 14.

前記大気中の飛行時に液化分離器5て作り出される液体
酸素02の量かジェット部11で燃焼に供される酸素0
2の量を少し上回るように各装置の容量等を選定してお
き、その余剰分を酸素供給流路16及び酸素流路14に
備えた熱交換器8を介して前記酸素タンク13に戻すよ
うにする。
The amount of liquid oxygen 02 produced in the liquefied separator 5 during flight in the atmosphere or the amount of oxygen 02 provided for combustion in the jet section 11
The capacity of each device is selected so as to slightly exceed the amount of 2, and the surplus is returned to the oxygen tank 13 via the heat exchanger 8 provided in the oxygen supply flow path 16 and the oxygen flow path 14. Make it.

このとき、酸素タンク13に戻される酸素02は、熱交
換器8での液体水素H2による冷却によって確実に液化
されている。
At this time, the oxygen 02 returned to the oxygen tank 13 is reliably liquefied by being cooled by the liquid hydrogen H2 in the heat exchanger 8.

一方、前記液化分離器5にて液化分離された液体窒素N
2は、窒素流路17により空気取入口lの空気予冷器1
8に導かれて、取入れる空気2の予冷を更に行い、自身
は昇温ガス化されてジェット部11に供給される。
On the other hand, liquid nitrogen N liquefied and separated in the liquefaction separator 5
2 is an air precooler 1 at the air intake port l by a nitrogen flow path 17.
8 , the air 2 to be taken in is further precooled, and the air 2 itself is heated and gasified and supplied to the jet section 11 .

このとき、ジェット部11による推力は、該ジェット部
11から後方に排出される排出ガスのボリュームに大き
く影響されるため、推力を増大させるためには水素H2
及び酸素02の推進剤の供給を増加すれは良いか、その
場合には推進剤の消費量か増加し、又燃焼温度も上昇す
るのてそのための対策を講しる必要かある。
At this time, the thrust by the jet section 11 is greatly influenced by the volume of the exhaust gas discharged backward from the jet section 11, so in order to increase the thrust, hydrogen H2
Is it a good idea to increase the supply of propellant for oxygen 02? In that case, the amount of propellant consumed will increase, and the combustion temperature will also rise, so it is necessary to take measures to prevent this.

これに対し、前記窒素N2をジェット部11に供給する
ことにより、排出ガスの温度を上昇させることなく排出
ガスのボリュームを増加させることかでき、よって窒素
N2を推進剤の一部として利用し、水素H2、酸素02
の消費量を少なくしてしかも推力を高めることができる
On the other hand, by supplying the nitrogen N2 to the jet section 11, the volume of the exhaust gas can be increased without increasing the temperature of the exhaust gas, and therefore, the nitrogen N2 can be used as part of the propellant. Hydrogen H2, Oxygen 02
It is possible to reduce consumption amount and increase thrust.

一方、宇宙空間を飛行する際は、水素タンク6の液体水
素H2及び酸素タンク13の液体酸素02をロケット部
12に供給するように切換えて、ロケット部12により
推力を得るようにする。
On the other hand, when flying in outer space, the liquid hydrogen H2 in the hydrogen tank 6 and the liquid oxygen 02 in the oxygen tank 13 are switched to be supplied to the rocket section 12, so that the rocket section 12 obtains thrust.

尚、本発明の空気液化エンジンは、上述の実施例にのみ
限定されるものではなく、本発明の要旨を逸脱しない範
囲内において種々変更を加え得ることは勿論である。
It should be noted that the air liquefaction engine of the present invention is not limited to the above-described embodiments, and it goes without saying that various changes may be made without departing from the gist of the present invention.

[発明の効果〕 以上説明したように、本発明の空気液化エンノンによれ
は、下記の如き種々の優れた効果を奏し得る。
[Effects of the Invention] As explained above, the air-liquefied enone of the present invention can produce various excellent effects as described below.

(i)  大気中を飛行する際、液化分離器で分離した
液化酸素をジェット部に供給すると共に、余剰分を酸素
タンクに貯えておくことにより、ロケット部による宇宙
空間での推進に利用することかでき、よって宇宙往還機
への液体酸素の搭載量を削減できる。
(i) When flying in the atmosphere, liquefied oxygen separated by a liquefaction separator is supplied to the jet section, and the surplus is stored in an oxygen tank so that it can be used for propulsion in space by the rocket section. Therefore, the amount of liquid oxygen carried on spacecraft can be reduced.

0)液化分離器で分離され液化窒素ガスを空気取入口の
空気予冷器に導いて空気の冷却を行うことにより、空気
の圧縮比を高めることかでき、且つ前記窒素をジェット
部に供給することにより排出ガスのボリュームが増加さ
れて推力か増大される。
0) By guiding the liquefied nitrogen gas separated by the liquefaction separator to the air precooler at the air intake port to cool the air, the compression ratio of the air can be increased, and the nitrogen is supplied to the jet section. This increases the volume of exhaust gas and increases the thrust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すフローチャトである。 1は空気取入口、5は液化分離器、6は水素タンク、7
は水素流路、10は空気予冷器、11はジェット部、1
2はロケット部、13は酸素タンク、14は酸素流路、
16は酸素供給流路、17は窒素流路、18は空気予冷
器を示す。
FIG. 1 is a flowchart showing one embodiment of the present invention. 1 is an air intake port, 5 is a liquefaction separator, 6 is a hydrogen tank, 7
1 is a hydrogen flow path, 10 is an air precooler, 11 is a jet part, 1
2 is a rocket part, 13 is an oxygen tank, 14 is an oxygen flow path,
16 is an oxygen supply flow path, 17 is a nitrogen flow path, and 18 is an air precooler.

Claims (1)

【特許請求の範囲】[Claims] 1)ジェット部とロケット部とを備えた空気液化エンジ
ンであって、空気取入口と、水素タンクと、該水素タン
クの液体水素を前記空気取入口に配した空気予冷器を経
た後前記ジェット部とロケット部とに切換え可能に供給
する水素流路と、酸素タンクと、該酸素タンクの液体酸
素を前記ジェット部とロケット部とに切換え可能に供給
する酸素流路と、前記空気取入口から取入れた加圧空気
を前記水素流路の液体水素により冷却して液化し液体酸
素と液体窒素に分離する液化分離器と、該液化分離器に
て分離した液体酸素を前記酸素流路に導く酸素供給流路
と、前記液化分離器で分離した液体窒素を前記空気取入
口に配した空気予冷器を経た後前記ジェット部に導く窒
素流路とを備えたことを特徴とする空気液化エンジン。
1) An air liquefaction engine comprising a jet section and a rocket section, wherein the air liquefaction engine includes an air intake port, a hydrogen tank, and the liquid hydrogen in the hydrogen tank passes through an air precooler disposed in the air intake port, and then the jet section a hydrogen flow path for switchably supplying liquid oxygen to the jet portion and the rocket portion; an oxygen tank; an oxygen flow path for switchably supplying liquid oxygen from the oxygen tank to the jet portion and the rocket portion; a liquefaction separator that cools and liquefies the pressurized air with liquid hydrogen in the hydrogen flow path and separates it into liquid oxygen and liquid nitrogen; and an oxygen supply that guides the liquid oxygen separated by the liquefaction separator to the oxygen flow path. An air liquefaction engine comprising: a flow path; and a nitrogen flow path that guides the liquid nitrogen separated by the liquefaction separator to the jet section after passing through an air precooler disposed at the air intake port.
JP2277094A 1990-10-16 1990-10-16 Air liquefaction engine Expired - Lifetime JP2882023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2277094A JP2882023B2 (en) 1990-10-16 1990-10-16 Air liquefaction engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2277094A JP2882023B2 (en) 1990-10-16 1990-10-16 Air liquefaction engine

Publications (2)

Publication Number Publication Date
JPH04153550A true JPH04153550A (en) 1992-05-27
JP2882023B2 JP2882023B2 (en) 1999-04-12

Family

ID=17578692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2277094A Expired - Lifetime JP2882023B2 (en) 1990-10-16 1990-10-16 Air liquefaction engine

Country Status (1)

Country Link
JP (1) JP2882023B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766911A1 (en) * 1997-08-04 1999-02-05 Air Liquide Material transfer between liquid and counter-flowing gas for two-stage rocket

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3768254A (en) * 1962-07-09 1973-10-30 Boeing Co Rocket propulsion method and means
JPS63302166A (en) * 1987-06-01 1988-12-09 Natl Aerospace Lab Separated type liquid-air cycle engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3768254A (en) * 1962-07-09 1973-10-30 Boeing Co Rocket propulsion method and means
JPS63302166A (en) * 1987-06-01 1988-12-09 Natl Aerospace Lab Separated type liquid-air cycle engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2766911A1 (en) * 1997-08-04 1999-02-05 Air Liquide Material transfer between liquid and counter-flowing gas for two-stage rocket

Also Published As

Publication number Publication date
JP2882023B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
US10844808B2 (en) Rocket engine systems with an independently regulated cooling system
US4771601A (en) Rocket drive with air intake
US6619031B1 (en) Multi-mode multi-propellant liquid rocket engine
US3040520A (en) Jet power unit for an aircraft
JP6836303B2 (en) Turbojet and turboprop combined engine
US10012177B2 (en) Engine comprising a rocket combustion chamber and a heat exchanger
JP2009041418A (en) Air-breathing engine for space transport and method of improving its accelerating performance
JPH06241119A (en) Multimode engine in which ejector mode using air cooled or liquefied and compressed by turbine, ram-jet mode and super ram-jet mode are integrated
US5025623A (en) Rocket engine
US5129599A (en) Hybrid liquid-vapor propellant feed system for aerospace vehicles
US6227486B1 (en) Propulsion system for earth to orbit vehicle
GB2238080A (en) Propulsion system for an aerospace vehicle
US5135184A (en) Propellant utilization system
GB2240813A (en) Hypersonic and trans atmospheric propulsion
CN112431692B (en) Cooperation air-breathing liquid rocket engine propellant supply system
US2877966A (en) Common oxygen supply for engine and cabin of high altitude aircraft
GB2359876A (en) Method and apparatus for placing satellites in low-earth orbitt
JP2003505641A (en) Propulsion system based on hydrogen peroxide
JPH04153550A (en) Air liquefied engine
JPH0370108B2 (en)
US6973774B1 (en) Hybrid propulsion system
Martin Effects of tripropellant engines on earth-to-orbit vehicles
JPH0680300B2 (en) Oxygen liquefaction cycle engine
JP2000008955A (en) Turbojet engine and compound engine provided therewith
JP2601906B2 (en) Air liquefaction cycle engine