JPH07242940A - Production of low yield ratio high tensile strength steel by rapid tempering - Google Patents

Production of low yield ratio high tensile strength steel by rapid tempering

Info

Publication number
JPH07242940A
JPH07242940A JP3615294A JP3615294A JPH07242940A JP H07242940 A JPH07242940 A JP H07242940A JP 3615294 A JP3615294 A JP 3615294A JP 3615294 A JP3615294 A JP 3615294A JP H07242940 A JPH07242940 A JP H07242940A
Authority
JP
Japan
Prior art keywords
less
steel
temperature
cooled
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3615294A
Other languages
Japanese (ja)
Inventor
Rikio Chijiiwa
力雄 千々岩
Hiroshi Tamehiro
博 為広
Seiji Isoda
征司 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3615294A priority Critical patent/JPH07242940A/en
Publication of JPH07242940A publication Critical patent/JPH07242940A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a low yield ratio high tensile strength steel having high toughness by short time tempering treatment by subjecting a steel having a specified compsn. contg. no precipitation hardening elements such as Mb and V and added with equivalent amounts of Mn, Mo, B or the like to rapid heating and executing tempering without holding it. CONSTITUTION:A steel having a compsn. contg., by weight, 0.06 to 0.20% C, <=1.0% Si, 1.0 to 1.8 Mn, <=0.020% P, <=0.010% S, <=0.05% Al, <=0.5% Mo, <=0.03% B, <=0.02% Ti and <=0.006% N and furthermore contg. one or more kinds among <=1% Ni and each <=0.5% Cu and Cr, and the balance Fe is used. This steel is rolled, is thereafter air-cooled and is water-cooled from a two phase region of austenite and ferrite of 720 to 780 deg.C to an ordinary temp. to forme its microstructure into a mixed one of ferrite+(martensite-bainite). In this steel plate, scales are removed away. After that, it is heated to 800 to 1000 deg.C, is charged to a heat treating furnace and is heated at >=0.3 deg.C/sec temp. rising rate. Immediately after the surface temp. reaches a prescribed temp. of the A1 point -200 deg.C or above to the A1 point +50 deg.C or below, it is discharged to the outside of the furnace and is cooled to an ordinary temp. by air cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は工業的に可能で、高能率
な焼戻し処理により靭性が良好な低降伏比の高張力鋼板
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength steel sheet having a low yield ratio, which is industrially feasible and has good toughness by a highly efficient tempering treatment.

【0002】[0002]

【従来の技術】従来、引張強度が580N/mm2 以上の
高張力鋼の殆どは焼入れ、焼戻し処理により製造されて
いた。このような製造法では、高い強度は得られるが、
同時に降伏強度も高く、降伏比が高くなる欠点を有して
いた。また、製造コストが高く、製造に要する時間も長
いため、生産性が悪い等の問題点を含んでいた。このた
め、従来の熱処理法を補う方法として、圧延直後に水冷
するいわゆるDQ法が使用されはじめている。DQ法の
中でも、低降伏比の高張力鋼を狙った製造法として、例
えば特開平3−264993号公報等に技術の記載があ
る。
2. Description of the Related Art Conventionally, most high-strength steels having a tensile strength of 580 N / mm 2 or more have been manufactured by quenching and tempering. Although high strength can be obtained by such a manufacturing method,
At the same time, the yield strength was high, and the yield ratio was high. Further, since the manufacturing cost is high and the time required for manufacturing is long, there are problems such as poor productivity. For this reason, the so-called DQ method in which water cooling is performed immediately after rolling has begun to be used as a method for supplementing the conventional heat treatment method. Among the DQ methods, as a manufacturing method aiming at a high-strength steel having a low yield ratio, a technique is described in, for example, JP-A-3-264993.

【0003】しかしながら、このような技術では、降伏
比は低めに改善されるが、靭性が必ずしも良好でなかっ
た。また、焼戻し工程が従来の方法であるため、生産性
が悪く、製造コストの増加は避けられなかった(従来の
焼戻し処理は550〜680℃程度に保持された熱処理
炉に鋼板を装入して、鋼板の温度が所定の温度に達して
から20〜40分程度保持して、その後、空冷する方法
で、昇温と保持をあわせた時間が長くなっていた)。
However, with such a technique, the yield ratio is improved to a low level, but the toughness is not always good. In addition, since the tempering process is a conventional method, the productivity is poor and an increase in manufacturing cost is unavoidable (the conventional tempering process involves charging a steel sheet into a heat treatment furnace maintained at about 550 to 680 ° C). After the temperature of the steel sheet reaches a predetermined temperature, it is held for about 20 to 40 minutes and then air-cooled, which takes a long time to combine heating and holding).

【0004】[0004]

【発明が解決しようとする課題】本発明は工業的に可能
な高能率な焼戻し処理により靭性が良好な低降伏比の高
張力鋼板の製造技術を提供するものである。本発明によ
り製造した鋼は靭性が良好で、低降伏比の高張力を兼ね
備えており、大型の建築物等への適用が可能である。
DISCLOSURE OF THE INVENTION The present invention provides a technique for producing a high-strength steel sheet having a low yield ratio and good toughness by a highly efficient tempering treatment which is industrially possible. The steel produced according to the present invention has good toughness and high tensile strength with a low yield ratio, and can be applied to large buildings and the like.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は次の通り
である。 (1)重量比で、C:0.06〜0.20%、Si:
1.0%以下、Mn:1.0〜1.8%、P:0.02
0%以下、S:0.010%以下、Al:0.05%以
下、Mo:0.5%以下、B:0.003%以下、T
i:0.02%以下、N:0.006%以下、及びN
i:1%以下、Cu:0.5%以下、Cr:0.5%以
下の一種または二種以上、残部がFe及び不可避的不純
物からなる鋼を圧延後空冷し、鋼板の表面温度が720
〜780℃のオーステナイト、フェライトの二相域から
常温まで水冷し、ミクロ組織をフェライト+(マルテン
サイト、ベイナイト)の混合組織とした鋼板を、鋼板の
スケールを排除した後、鋼板を800〜1000℃に加
熱した熱処理炉に装入し、0.3℃/秒以上の昇温速度
で加熱して、表面温度がA1 点−200℃以上、A1
+50℃以下の所定の温度に到達した後、ただちに炉外
へ出し、空冷で常温まで冷却を行うことを特徴とする急
速焼戻しによる低降伏比高張力鋼の製造法。
The gist of the present invention is as follows. (1) C: 0.06 to 0.20% by weight ratio, Si:
1.0% or less, Mn: 1.0 to 1.8%, P: 0.02
0% or less, S: 0.010% or less, Al: 0.05% or less, Mo: 0.5% or less, B: 0.003% or less, T
i: 0.02% or less, N: 0.006% or less, and N
i: 1% or less, Cu: 0.5% or less, Cr: 0.5% or less, one or two or more, and the balance consisting of Fe and inevitable impurities is rolled and air-cooled, and the surface temperature of the steel sheet is 720.
After removing the scale of the steel sheet from the two-phase region of austenite and ferrite of ~ 780 ° C to room temperature by water cooling and making the microstructure a mixed structure of ferrite + (martensite, bainite), the steel sheet is 800 to 1000 ° C. It was charged into a heat treatment furnace heated to 0 ° C. and heated at a temperature rising rate of 0.3 ° C./second or more, and the surface temperature reached a predetermined temperature of A 1 point −200 ° C. or more and A 1 point + 50 ° C. or less. After that, it is immediately taken out of the furnace and cooled to normal temperature by air cooling, which is a method for producing high tensile strength steel with low yield ratio by rapid tempering.

【0006】(2)重量比で、C:0.06〜0.20
%、Si:1.0%以下、Mn:1.0〜1.8%、
P:0.020%以下、S:0.010%以下、Al:
0.05%以下、Mo:0.5%以下、B:0.003
%以下、Ti:0.02%以下、N:0.006%以
下、及びNi:1%以下、Cu:0.5%以下、Cr:
0.5%以下の一種または二種以上、残部がFe及び不
可避的不純物からなる鋼を圧延後常温まで空冷または水
冷し、再加熱で鋼板表面温度が720〜780℃のオー
ステナイト、フェライトの二相域まで加熱し、その後、
常温まで水冷し、ミクロ組織をフェライト+(マルテン
サイト、ベイナイト)の混合組織とした鋼板を、鋼板の
スケールを排除した後、鋼板を800〜1000℃に加
熱した熱処理炉に装入し、0.3℃/秒以上の昇温速度
で加熱して、表面温度がA1 点−200℃以上、A1
+50℃以下の所定の温度に到達した後、ただちに炉外
へ出し、空冷で常温まで冷却を行うことを特徴とする急
速焼戻しによる低降伏比高張力鋼の製造法。
(2) C: 0.06 to 0.20 in weight ratio
%, Si: 1.0% or less, Mn: 1.0 to 1.8%,
P: 0.020% or less, S: 0.010% or less, Al:
0.05% or less, Mo: 0.5% or less, B: 0.003
% Or less, Ti: 0.02% or less, N: 0.006% or less, and Ni: 1% or less, Cu: 0.5% or less, Cr:
Two phases of austenite and steel with a steel plate surface temperature of 720 to 780 ° C. by recooling after cooling air-cooled or water-cooled to room temperature after rolling steel containing 0.5% or less of one or more and the balance of Fe and inevitable impurities. Heat to the area and then
A steel sheet having a microstructure of a mixed structure of ferrite + (martensite and bainite) was cooled to room temperature, the scale of the steel sheet was removed, and then the steel sheet was charged into a heat treatment furnace heated to 800 to 1000 ° C. After heating at a temperature rising rate of 3 ° C / sec or more, the surface temperature reaches a predetermined temperature of A 1 point -200 ° C or more and A 1 point + 50 ° C or less, and then immediately takes it out of the furnace and cools it by air to room temperature. A method for producing high-strength steel with low yield ratio by rapid tempering, which is characterized by cooling.

【0007】本発明の基本となる考え方を以下に述べ
る。低降伏比の高張力鋼はミクロ組織を柔らかい相と硬
化した相の二相共存とすることが有効とされている。こ
のような鋼の製造法として、再加熱で、オーステナイト
/フェライトの二相共存域まで加熱し、その後、水冷す
る方法や圧延後の二相共存域から水冷する方法である。
二相共存域では、フェライト相に固溶できる炭素(C)
量は0.02%程度であるため、オーステナイト相への
Cの拡散が起こり、Cの濃化したオーステナイト相とC
量が極めて少ないフェライト相に分離される。この状態
から水冷することによりフェライトとマルテンサイト
(含ベイナイト)の二相混合組織が得られる。これらの
ミクロ組織中には、変態により導入される転位も存在し
て、強度が増加する。
The basic idea of the present invention will be described below. It is said that it is effective for a high-strength steel with a low yield ratio to have a microstructure in which two phases, a soft phase and a hardened phase, coexist. As a method for producing such a steel, there is a method of reheating, heating to an austenite / ferrite two-phase coexistence region, followed by water cooling, or a method of water cooling from the two-phase coexistence region after rolling.
In the two-phase coexistence region, carbon (C) that can form a solid solution with the ferrite phase
Since the amount is about 0.02%, the diffusion of C into the austenite phase occurs, and the C-enriched austenite phase and C
The ferrite phase is separated into an extremely small amount. By water cooling from this state, a two-phase mixed structure of ferrite and martensite (including bainite) can be obtained. In these microstructures, dislocations introduced by transformation also exist, and the strength increases.

【0008】一般的に降伏強度は柔らかいフェライト相
の強度に依存し、引張強度は硬化したマルテンサイト相
の強度に依存することが知られている。このため、上記
に示した製造法で製造された鋼板は降伏強度が低く、引
張強度が高い、いわゆる低降伏比の高張力としての特性
を有する。また、焼戻し工程で生じる主な冶金現象は、
焼戻しの短時間側からマルテンサイト中の固溶炭素原
子がセメンタイトとして排出し、セメンタイトの粗大化
がはじまる。変態時に生じたミクロ組織中の多数の転
位が減少し、消滅する。ベイナイト中のセメンタイト
が粗大化する。固溶炭素原子がFe以外の金属元素と
炭化物として析出する等の現象が進行する。これらの現
象は焼戻し温度が高いほど、焼戻し時間が長いほど速
く、焼戻し温度が低いほど、焼戻し時間が短いほど進行
が遅れる。
It is generally known that the yield strength depends on the strength of the soft ferrite phase, and the tensile strength depends on the strength of the hardened martensite phase. For this reason, the steel sheet manufactured by the above-described manufacturing method has low yield strength and high tensile strength, that is, high tensile strength with a so-called low yield ratio. In addition, the main metallurgical phenomena that occur in the tempering process are
From the short side of tempering, solid solution carbon atoms in martensite are discharged as cementite, and coarsening of cementite begins. Many dislocations in the microstructure generated during transformation are reduced and disappear. Cementite in bainite becomes coarse. A phenomenon in which solid solution carbon atoms are precipitated as a metal element other than Fe as a carbide proceeds. These phenomena are faster as the tempering temperature is higher and the tempering time is longer, and progress is delayed as the tempering temperature is lower and the tempering time is shorter.

【0009】従来の焼戻し法では、所定の温度に保持し
た熱処理炉に鋼板を装入して、鋼板の温度が所定の温度
に達して20〜40分保持するため、鋼板は高温にさら
される時間が長く、上述した〜のすべての冶金現象
が起きる。このため、,の冶金現象で述べたセメン
タイトの粗大化や強度に寄与する転位も減少して強度が
低下し、同時に靭性も劣化する。
In the conventional tempering method, a steel sheet is placed in a heat treatment furnace kept at a predetermined temperature and held for 20 to 40 minutes after the temperature of the steel sheet reaches a predetermined temperature. Is long, and all of the metallurgical phenomena mentioned above occur. For this reason, the coarsening of cementite and dislocations that contribute to the strength described in the metallurgy phenomenon are also reduced, and the strength is reduced, and at the same time, the toughness is also deteriorated.

【0010】すなわち、二相域からの焼入れで高強度化
しても、焼戻しで急激な強度低下をきたし、靭性も劣化
する傾向である。従って、従来の焼戻し法は過剰な焼戻
し条件となり、強度や靭性が損なわれていた。本発明者
らの研究によれば、過剰な炭素の固溶状態をなくし、且
つセメンタイトの粗大化を抑制する方法により、従来の
方法では到達できなかった良好な靭性で、低降伏比高張
力を得ることができることを見いだした。すなわち、急
速加熱で所定の温度まで昇温し、保持をとらずに焼戻す
方法である。このような方法の一つは大径パイプの誘導
加熱法としてすでに使用されているが、厚鋼板の場合、
実際に製造される厚鋼板の厚みや幅の種類が極めて多い
ため、工業的な実用化はコストや温度精度の問題から無
理な課題と考えられていた。
That is, even if the strength is increased by quenching from the two-phase region, tempering causes a rapid decrease in strength and the toughness tends to deteriorate. Therefore, the conventional tempering method results in excessive tempering conditions, resulting in impaired strength and toughness. According to the research conducted by the present inventors, a method of eliminating a solid solution state of excess carbon and suppressing coarsening of cementite has good toughness that cannot be achieved by the conventional method, and a low yield ratio and a high tensile strength are obtained. I found that I could get it. In other words, it is a method in which the temperature is raised to a predetermined temperature by rapid heating and tempered without holding. One of these methods is already used as an induction heating method for large diameter pipes, but in the case of thick steel plates,
Since the thickness and width of the thick steel plates that are actually manufactured are extremely large, industrial commercialization was considered to be an unreasonable problem due to cost and temperature accuracy problems.

【0011】本発明者らは、二相域からの焼入れ後の最
適な焼戻し法について検討し、以下の方法が最も適して
いることを見いだした。すなわち、圧延後の二相域、及
び圧延後、常温まで冷却後に再加熱で二相域まで加熱
し、焼入れてミクロ組織をフェライト+(マルテンサイ
ト、ベイナイト)の混合組織とした鋼板を、鋼板の表面
のスケールを排除した後、鋼板を800〜1000℃に
加熱した熱処理炉に装入し、0.3℃/秒以上の昇温速
度で加熱して、表面温度A1 点−200℃以上、A1
+50℃以下の所定の温度に到達した後、ただちに炉外
へ出し、常温まで空冷を行うことを特徴とする焼戻し方
法である。
The present inventors have examined the optimum tempering method after quenching from the two-phase region and found that the following method is most suitable. That is, the two-phase region after rolling, and after rolling, after cooling to room temperature, it is heated to the two-phase region by reheating and quenched, and a steel plate having a microstructure of a mixed structure of ferrite + (martensite, bainite) After removing the scale on the surface, the steel sheet was placed in a heat treatment furnace heated to 800 to 1000 ° C., heated at a temperature rising rate of 0.3 ° C./sec or more, and the surface temperature A 1 point −200 ° C. or more, A tempering method is characterized in that after reaching a predetermined temperature of A 1 point + 50 ° C. or lower, it is immediately taken out of the furnace and air-cooled to room temperature.

【0012】まず、熱処理炉で鋼板を0.3℃/秒の昇
温速度の急速加熱をする場合、鋼板の温度は鋼板表裏面
のスケールの影響が大きく、特に本発明のように所定の
温度で保持しない方法では、板内のスケールの付着状態
により鋼板の到達温度が大きく左右される。このため、
同一熱処理鋼板内での材質変動が大きくなり、実用には
適さない。
First, when a steel sheet is rapidly heated in a heat treatment furnace at a temperature rising rate of 0.3 ° C./sec, the temperature of the steel sheet is greatly influenced by the scales on the front and back surfaces of the steel sheet, and particularly at a predetermined temperature as in the present invention. In the method not held by, the ultimate temperature of the steel plate largely depends on the adhered state of the scale in the plate. For this reason,
Material variation in the same heat-treated steel sheet is large, which is not suitable for practical use.

【0013】また、熱処理炉の温度を焼戻し温度(A1
点−200℃以上、A1 点+50℃以下)より大幅に高
い800〜1000℃に保持する理由は、800℃未満
では昇温速度が遅く(昇温速度は熱処理炉の保持温度が
高いほど速くなる)、結果として高温にさらされる時間
が長くなり、セメンタイトの粗大化や転位が喪失するた
め、強度や靭性が劣化し、初期の目的を達しない。ま
た、1000℃超では、板厚中心温度と表面温度の差や
鋼板の端との温度差が100℃を超え、鋼板部位で強度
や靭性が大きく変化するためである。
Further, the temperature of the heat treatment furnace is set to the tempering temperature (A 1
The reason why the temperature is maintained at 800 to 1000 ° C, which is significantly higher than the point -200 ° C or higher and the A 1 point + 50 ° C or lower), is that the heating rate is slower than 800 ° C (the heating rate increases as the holding temperature of the heat treatment furnace increases). As a result, the time of exposure to high temperature becomes long, coarsening of cementite and loss of dislocations occur, so that the strength and toughness deteriorate, and the initial purpose is not achieved. Also, if it exceeds 1000 ° C, the difference between the center temperature of the plate thickness and the surface temperature or the temperature difference between the end of the steel plate exceeds 100 ° C, and the strength and toughness change greatly at the steel plate portion.

【0014】さらに、鋼板表面の温度(到達温度:焼戻
し温度)をA1 点−200℃〜A1点+50℃以下の範
囲とする理由はA1 点−200℃未満の温度では、過剰
な炭素の固溶状態がなくならないで、靭性が回復しない
ためであり、A1 点+50℃超の温度では、セメンタイ
トの粗大化が顕著となり、強度が低下するだけでなく、
靭性も劣化するためである。次に、所定の温度に達した
後、保持をしないでただちに炉外へ出して空冷する理由
は、上述の理由と同じで、昇温速度を速くしても、保持
をすることにより急激にセメンタイトが粗大化するため
である。
Further, the reason for setting the temperature of the steel sheet surface (achieved temperature: tempering temperature) within the range of A 1 point −200 ° C. to A 1 point + 50 ° C. or less is that excessive carbon is present at a temperature lower than A 1 point −200 ° C. This is because the solid solution state of does not disappear and the toughness does not recover. At a temperature of A 1 point + 50 ° C. or higher, cementite coarsening becomes remarkable and not only the strength decreases, but also
This is because the toughness also deteriorates. Next, after reaching the predetermined temperature, the reason why the air is immediately taken out of the furnace without holding it and air-cooling is the same as the above-mentioned reason. Because of the coarsening.

【0015】本発明法によれば、生産性の点からも大き
なメリットが生じる。本発明法での焼戻し処理に要する
時間は従来法に対し格段に短くなる。すなわち、処理時
間は板厚により異なるが、従来法の1/3〜1/5程度
の時間で処理ができるため経済的に大きなメリットであ
る。本発明鋼は従来にない短時間の焼戻し処理で、極め
て良好な材質の鋼板の製造を可能とするものであるが、
製造法と共に鋼成分が重要であり、以下これについて述
べる。
According to the method of the present invention, there is a great merit in terms of productivity. The time required for tempering in the method of the present invention is significantly shorter than that in the conventional method. That is, although the processing time varies depending on the plate thickness, the processing time is about 1/3 to 1/5 of that of the conventional method, which is a great economical advantage. The steel of the present invention is capable of producing a steel sheet of an extremely good material by a tempering treatment for a short time which has not been conventionally,
The steel composition is important together with the manufacturing method, which will be described below.

【0016】鋼の個々の成分規制範囲について述べる前
に、前述した本発明の急速焼戻し処理に適した成分系の
考え方を述べる。急速焼戻しを前提とした場合、これに
適する成分系は(A)鋼成分に析出硬化元素を添加しな
い。(B)焼入れ時にミクロ組織がマルテンサイト化し
易い成分系とする。の2点の条件を満たすことが重要で
ある。(A)については、前述したように焼戻し時に起
きる冶金現象のうち、本発明の熱処理法では,の現
象が殆ど起きない。このため、析出硬化が不十分とな
り、NbやV及び0.5%超のCu等の元素を添加して
も、その効果は期待できないためである。
Before describing the individual component control ranges of steel, the concept of the component system suitable for the rapid tempering treatment of the present invention described above will be described. On the premise of rapid tempering, a component system suitable for this is that the precipitation hardening element is not added to the (A) steel component. (B) The component system is such that the microstructure easily martensites during quenching. It is important to satisfy the following two conditions. Regarding (A), of the metallurgical phenomena occurring during tempering as described above, the phenomenon of (1) hardly occurs in the heat treatment method of the present invention. For this reason, the precipitation hardening becomes insufficient, and the effect cannot be expected even if Nb, V, and elements such as Cu in excess of 0.5% are added.

【0017】(B)については、焼入れ時に生成するマ
ルテンサイトは急速加熱の焼戻し処理で十分に分解され
微細なセメンタイトとなり、靭性が改善される。しか
し、マルテンサイト化し難い成分系では、焼入れ時に島
状マルテンサイトを含んだベイナイトが生成する。この
島状マルテンサイトは急速焼戻し時に分解され難く、靭
性の改善が不十分となる。すなわち、本発明の特徴は焼
入れ時に粗大なベイナイト(含島状マルテンサイト)の
生成を抑え、急速焼戻しでマルテンサイトを分解し、強
度や靭性に効果のあるセメンタイトの粗大化や転位の減
少を少なくして、強度や靭性を向上させるものである。
With regard to (B), the martensite formed during quenching is sufficiently decomposed into a fine cementite by the tempering treatment of rapid heating, and the toughness is improved. However, in the component system in which it is difficult to form martensite, bainite containing island-shaped martensite is formed during quenching. This island-shaped martensite is difficult to decompose during rapid tempering, and the improvement in toughness is insufficient. That is, the feature of the present invention is to suppress the formation of coarse bainite (including island-shaped martensite) during quenching, decompose martensite by rapid tempering, and reduce the coarsening of cementite and the reduction of dislocations that are effective in strength and toughness. Then, the strength and toughness are improved.

【0018】次に、個々の合金元素の制限範囲について
述べる。Cは強度を確保するため重要な元素であり、
0.06%未満では十分な強度が得られないため、下限
を0.06%とした。また0.2%を超えると溶接性を
劣化させるので上限を0.2%とした。Siは脱酸上、
鋼に含まれる元素であるが、多く添加すると溶接性が劣
化するため、上限を1%とした。
Next, the limit range of each alloy element will be described. C is an important element for securing strength,
If less than 0.06%, sufficient strength cannot be obtained, so the lower limit was made 0.06%. Further, if over 0.2%, the weldability deteriorates, so the upper limit was made 0.2%. Si is deoxidized,
Although it is an element contained in steel, the weldability deteriorates if a large amount is added, so the upper limit was made 1%.

【0019】Mnは強度、靭性を確保するため不可欠な
元素であり、1.0%以上の添加が有効である。しかし
ながら、2.0%以上では溶接性を害するため上限を
2.0%とした。
Mn is an essential element for securing strength and toughness, and addition of 1.0% or more is effective. However, if 2.0% or more, the weldability is impaired, so the upper limit was made 2.0%.

【0020】本発明鋼において不純物であるP,Sをそ
れぞれ0.020%、0.010%以下とした。理由は
母材靭性や溶接性を劣化させないためである。Alは一
般に脱酸上、鋼に含まれる元素であるが、0.05%を
超えるとスラブ鋳造時の表面割れがでやすくなるため上
限を0.05%とした。MoはMnとともに、本発明鋼
では重要な元素であるが、0.5%を超えて添加しても
強度向上効果は少なく、溶接性も害するため、0.5%
を上限とした。
In the steel of the present invention, impurities P and S are set to 0.020% and 0.010% or less, respectively. The reason is that the base material toughness and weldability are not deteriorated. Al is generally an element contained in steel for deoxidation, but if it exceeds 0.05%, surface cracking tends to occur during slab casting, so the upper limit was made 0.05%. Mo, together with Mn, is an important element in the steel of the present invention, but if added in excess of 0.5%, the effect of improving strength is small and the weldability is impaired.
Was set as the upper limit.

【0021】Bは焼入れ時に、オーステナイトからフェ
ライトへの変態を抑制し、焼入れ性を向上させる効果が
ある。しかしながら、過度の添加はかえって焼入れ性を
低下させるため、上限を0.003%とした。TiはT
iNを生成して、スラブ加熱時のオーステナイト粒の粗
大化を抑制したり、Nを固定してBの効果を発揮させる
等の効果がある。しかしながら、過度の添加はTiCを
生成して靭性を著しく阻害するため、上限を0.02%
とした。Nは多すぎるとBの焼入れ性向上効果を失い、
スラブ鋳造時の表面割れがでやすくなるため、上限を
0.006%とした。
B has the effect of suppressing the transformation of austenite to ferrite during quenching and improving the hardenability. However, excessive addition rather reduces the hardenability, so the upper limit was made 0.003%. Ti is T
There are effects such that iN is generated to suppress coarsening of austenite grains during slab heating, and N is fixed to exert the effect of B. However, excessive addition forms TiC and significantly impairs toughness, so the upper limit is 0.02%.
And If N is too much, the hardenability improving effect of B is lost,
The upper limit was made 0.006% because surface cracks are likely to occur during slab casting.

【0022】次に、Ni,Crを添加する理由を述べ
る。これらの元素の添加はいずれも鋼の焼入れ性を向上
させ、強度や靭性を確保するため重要な元素であるが、
過度の添加は鋼の靭性や溶接性、溶接部の靭性を害する
ため、それぞれの上限をNi:1%以下、Cr:0.5
%以下とした。また、Cuの0.5%以下の添加はNi
やCrと同様に、焼入れ性を向上させ、強度や靭性を確
保するため重要であるが、0.5%超では、通常、Cu
クラスターを生成して強度を向上させるが、本発明の製
造法では析出硬化が起きず、これ以上の添加は効果がな
い。このため、上限を0.5%とした。
Next, the reason for adding Ni and Cr will be described. Addition of these elements is an important element for improving the hardenability of steel and ensuring strength and toughness.
Since excessive addition impairs the toughness and weldability of steel and the toughness of the welded part, the upper limits of each are Ni: 1% or less, Cr: 0.5
% Or less. Moreover, addition of 0.5% or less of Cu is Ni
Like Cr and Cr, it is important for improving hardenability and ensuring strength and toughness, but if it exceeds 0.5%, Cu is usually used.
Although clusters are formed to improve the strength, precipitation hardening does not occur in the production method of the present invention, and further addition is not effective. Therefore, the upper limit is set to 0.5%.

【0023】[0023]

【実施例】表1に発明鋼と比較鋼の化学成分及び鋼板の
製造条件、母材の機械的特性を示す。また、図1に発明
鋼と比較鋼の強度(TS)と靭性(vTrs)、降伏比
(YR)の関係を示す。
EXAMPLE Table 1 shows the chemical composition of the invention steel and the comparative steel, the manufacturing conditions of the steel sheet, and the mechanical properties of the base material. Further, FIG. 1 shows the relationship between the strength (TS), the toughness (vTrs), and the yield ratio (YR) of the invention steel and the comparative steel.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表1,図1に示すように発明鋼は低い降伏
比(YR≦85%)、高強度(TS≧650N/mm2
で、良好な靭性(vTrs≦−50℃)を示し、強度特
性と靭性のバランスが良好である。これに対し、比較鋼
11では、焼入れ焼戻し法は発明鋼と同じであるが、鋼
成分のMnが高すぎるため、強度は良好であるが、降伏
比が高く、靭性もあまり良くない。比較鋼12では、焼
入れ焼戻し法は発明鋼と同じであるが、Mnが低すぎる
ため降伏比や強度は良好であるが、靭性が不十分であ
る。比較鋼13では、焼入れ焼戻し法は発明鋼と同じで
あるが、Cが低すぎるため、降伏比や靭性は良好である
が、強度が不十分である。
As shown in Table 1 and FIG. 1, the invention steels have low yield ratio (YR ≦ 85%) and high strength (TS ≧ 650 N / mm 2 ).
Shows good toughness (vTrs ≦ −50 ° C.) and has a good balance between strength characteristics and toughness. On the other hand, in Comparative Steel 11, the quenching and tempering method is the same as that of the invention steel, but the strength is good because the Mn of the steel component is too high, but the yield ratio is high and the toughness is not so good. In Comparative Steel 12, the quenching and tempering method is the same as in the invention steel, but the yield ratio and strength are good because Mn is too low, but the toughness is insufficient. In Comparative Steel 13, the quenching and tempering method is the same as that of the invention steel, but since C is too low, the yield ratio and toughness are good, but the strength is insufficient.

【0027】比較鋼14では、焼入れ焼戻し法は発明鋼
と同じであるが、Cが高すぎるため、靭性が不十分であ
る。比較鋼15では、焼入れ焼戻し法は発明鋼と同じで
あるが、強度向上のためNbやVが相当量添加されてい
るが、その効果が少なく、強度が不十分である。比較鋼
16〜18では、鋼成分は発明鋼と同じであるが、製造
法が発明鋼と異なるため、いずれも降伏比が高く不十分
である。
In Comparative Steel 14, the quenching and tempering method is the same as that of the invention steel, but the toughness is insufficient because the C content is too high. In Comparative Steel 15, the quenching and tempering method is the same as that of the invention steel, but Nb and V are added in a considerable amount to improve the strength, but the effect is small and the strength is insufficient. In Comparative Steels 16 to 18, the steel composition is the same as that of the invention steels, but the production method is different from that of the invention steels, and thus all of them have a high yield ratio and are insufficient.

【0028】[0028]

【発明の効果】本発明は工業的に可能な高能率な焼戻し
処理により低降伏比の高張力鋼板の製造技術を提供する
ものである。本発明により製造した鋼は低降伏比高張力
と高靭性を兼ね備えており、大型の溶接構造物等への適
用が可能である。
INDUSTRIAL APPLICABILITY The present invention provides a technique for producing a high-strength steel sheet having a low yield ratio by a highly efficient tempering treatment which is industrially possible. The steel produced by the present invention has both a low yield ratio, high tensile strength and high toughness, and can be applied to large welded structures and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明鋼と比較鋼の強度、降伏比、靭性の関係
を示す図表。
FIG. 1 is a chart showing the relationship between strength, yield ratio, and toughness of the present invention steel and comparative steel.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 C :0.06〜0.20%、 Si:1.0%以下、 Mn:1.0〜1.8%、 P :0.020%以下、 S :0.010%以下、 Al:0.05%以下、 Mo:0.5%以下、 B :0.03%以下、 Ti:0.02%以下、 N :0.006%以下、 更に、Ni:1%以下、Cu:0.5%以下、Cr:
0.5%以下の一種または二種以上、 残部がFe及び不可避的不純物からなる鋼を圧延後空冷
し、鋼板の表面温度が720〜780℃のオーステナイ
ト、フェライトの二相域から常温まで水冷し、ミクロ組
織をフェライト+(マルテンサイト、ベイナイト)の混
合組織とした鋼板を、鋼板のスケールを排除した後、鋼
板を800〜1000℃に加熱した熱処理炉に装入し、
0.3℃/秒以上の昇温速度で加熱して、表面温度がA
1 点−200℃以上、A1 点+50℃以下の所定の温度
に到達した後、ただちに炉外へ出し、空冷で常温まで冷
却を行うことを特徴とする急速焼戻しによる低降伏比高
張力鋼の製造法。
1. By weight ratio, C: 0.06-0.20%, Si: 1.0% or less, Mn: 1.0-1.8%, P: 0.020% or less, S: 0. 0.010% or less, Al: 0.05% or less, Mo: 0.5% or less, B: 0.03% or less, Ti: 0.02% or less, N: 0.006% or less, and further, Ni: 1 % Or less, Cu: 0.5% or less, Cr:
0.5% or less of one or two or more, the balance consisting of Fe and inevitable impurities is rolled and air-cooled, and then water-cooled from the two-phase region of austenite and ferrite whose surface temperature is 720 to 780 ° C to room temperature. , A steel sheet having a microstructure of a mixed structure of ferrite + (martensite, bainite), after removing the scale of the steel sheet, was placed in a heat treatment furnace in which the steel sheet was heated to 800 to 1000 ° C,
The surface temperature is A when heated at a heating rate of 0.3 ° C / sec or more.
After reaching a predetermined temperature of 1 point -200 ° C or higher and A 1 point + 50 ° C or lower, it is immediately taken out of the furnace and cooled to normal temperature by air cooling. Manufacturing method.
【請求項2】 請求項1記載の鋼を圧延後常温まで空冷
または水冷し、再加熱で鋼板表面温度が720〜780
℃のオーステナイト、フェライトの二相域まで加熱し、
その後常温まで水冷し、ミクロ組織をフェライト+(マ
ルテンサイト、ベイナイト)の混合組織とした鋼板を、
鋼板のスケールを排除した後、鋼板を800〜1000
℃に加熱した熱処理炉に装入し、0.3℃/秒以上の昇
温速度で加熱して、表面温度がA1 点−200℃以上、
1 点+50℃以下の所定の温度に到達した後、ただち
に炉外へ出し、空冷で常温まで冷却を行うことを特徴と
する急速焼戻しによる低降伏比高張力鋼板の製造法。
2. The steel according to claim 1, after being rolled, air-cooled or water-cooled to room temperature and reheated so that the steel sheet surface temperature is 720 to 780.
Austenite at ℃, heated to the two-phase region of ferrite,
Then, water-cooling to room temperature, a steel sheet having a microstructure of a mixed structure of ferrite + (martensite, bainite),
After removing the scale of the steel plate, the steel plate is 800-1000
It is charged in a heat treatment furnace heated to ℃, heated at a temperature rising rate of 0.3 ℃ / sec or more, surface temperature A 1 point-200 ℃ or more,
A method for producing a high-strength steel sheet with a low yield ratio by rapid tempering, which comprises: immediately after reaching a predetermined temperature of 1 point + 50 ° C. or lower, immediately taking out of the furnace and cooling to normal temperature by air cooling.
JP3615294A 1994-03-07 1994-03-07 Production of low yield ratio high tensile strength steel by rapid tempering Withdrawn JPH07242940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3615294A JPH07242940A (en) 1994-03-07 1994-03-07 Production of low yield ratio high tensile strength steel by rapid tempering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3615294A JPH07242940A (en) 1994-03-07 1994-03-07 Production of low yield ratio high tensile strength steel by rapid tempering

Publications (1)

Publication Number Publication Date
JPH07242940A true JPH07242940A (en) 1995-09-19

Family

ID=12461817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3615294A Withdrawn JPH07242940A (en) 1994-03-07 1994-03-07 Production of low yield ratio high tensile strength steel by rapid tempering

Country Status (1)

Country Link
JP (1) JPH07242940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529934B1 (en) 1998-05-06 2003-03-04 Kabushiki Kaisha Toshiba Information processing system and method for same
US11089440B1 (en) 2020-03-02 2021-08-10 International Business Machines Corporation Management of geographically and temporarily distributed services
CN113999964A (en) * 2021-10-26 2022-02-01 河南中原特钢装备制造有限公司 Heat treatment process of large-size 2Cr13 hollow pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529934B1 (en) 1998-05-06 2003-03-04 Kabushiki Kaisha Toshiba Information processing system and method for same
US7016934B2 (en) 1998-05-06 2006-03-21 Kabushiki Kaisha Toshiba Cooperate processing units using stored cooperation problem solving knowledge and receive information to perform problem solving
US11089440B1 (en) 2020-03-02 2021-08-10 International Business Machines Corporation Management of geographically and temporarily distributed services
CN113999964A (en) * 2021-10-26 2022-02-01 河南中原特钢装备制造有限公司 Heat treatment process of large-size 2Cr13 hollow pipe

Similar Documents

Publication Publication Date Title
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
JP2023065520A (en) Steel sheet excellent in toughness, ductility and strength and manufacturing method thereof
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH04358023A (en) Production of high strength steel
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JPH07242940A (en) Production of low yield ratio high tensile strength steel by rapid tempering
JPH07126797A (en) Manufacture of thick steel plate excellent in low temperature toughness
JPH07118739A (en) Production of low yield ratio high tensile strength steel plate by rapid tempering
JP3848397B2 (en) Manufacturing method of high-efficiency and highly uniform tough steel plate
JP3274028B2 (en) Manufacturing method of non-heat treated high strength high toughness hot forged parts
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JPH06271929A (en) Production of high tensile strength steel sheet by rapid tempering
JPH0774380B2 (en) Manufacturing method of high strength steel
JP3692565B2 (en) Method for producing B-added high-strength steel
JPH0813030A (en) Production of steel plate for metal saw base plate
JPH05255743A (en) Production of high tensile strength steel plate by rapid tempering
JPH08143969A (en) Production of cold rolled steel sheet excellent in workability
JPH093595A (en) Low yield ratio thick steel plate excellent in toughness and its production
JPH11323480A (en) Steel sheet with fine grained structure, and its production
JPH07242943A (en) Production of high tensile strength steel by rapid tempering
JPH06271928A (en) Production of high tensile strength steel sheet by rapid tempering
JPH0790371A (en) Production of high strength steel free from material anisotropy
JPH05255742A (en) Production of steel plate having low yield ratio and high tensile strength by rapid tempering

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508