JPH07241550A - Antifouling method of underwater structure - Google Patents

Antifouling method of underwater structure

Info

Publication number
JPH07241550A
JPH07241550A JP6032694A JP6032694A JPH07241550A JP H07241550 A JPH07241550 A JP H07241550A JP 6032694 A JP6032694 A JP 6032694A JP 6032694 A JP6032694 A JP 6032694A JP H07241550 A JPH07241550 A JP H07241550A
Authority
JP
Japan
Prior art keywords
electrode
sce
potential
conductive
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6032694A
Other languages
Japanese (ja)
Other versions
JP3526469B2 (en
Inventor
Tadashi Matsunaga
是 松永
Isakimirou Iwasaki
勇仁郎 岩崎
Kenji Ikeda
憲司 池田
Hiroshi Sugiyama
宏 杉山
Hiroshi Edo
博 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP06032694A priority Critical patent/JP3526469B2/en
Publication of JPH07241550A publication Critical patent/JPH07241550A/en
Application granted granted Critical
Publication of JP3526469B2 publication Critical patent/JP3526469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To effectively prevent fouling of an underwater structure by a simple device without using a chemical substance by applying specific negative potential to a structure containing a conductive material in at least a part thereof in water. CONSTITUTION:When negative voltage is applied to a conductive substrate of a gass substrate 2 being a structure, for example, the conductive resin plate electrode 3 thereof in water containing bacteria, bacteria approaching the plate electrode 3 becomes impossible to adhere to the electrode 3 by electrical repulsion. Since the adhesion of bacteria is the initial stage of fouling of an underwater structure due to adhesion of organisms, the fouling due to the adhesion of organisms can be prevented finally. Negative potential to be applied is set to -0.4-below 0Vvs.SCE. When applied potential becomes 0Vvs.SCE or more, the attraction action of adhesive bacteria is developed contrarily and, in the case of below -0.4Vvs.SCE, pH rises and no pref. result is obtained because adverse effect is exerted on the peripheral environment of the electrode 3 or the electrode 3 itself.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水中における構造物表
面の防汚方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for antifouling a surface of a structure in water.

【0002】[0002]

【従来の技術】蒸留水、海水あるいは水道水等の貧栄養
環境下では、微生物が液体相と固体相との界面に集合し
て増加する。これは水中に存在する希薄な有機物がこう
した界面に吸着・濃縮されているので、微生物がその有
機物を栄養源にするためである。固体表面上で増殖した
微生物は、再び水中へ拡散して水質汚染等を引き起こし
たり、あるいは固体表面上に吸着したままスライム状物
質を分泌して表面を汚したりする。特に、海水中には多
数の微生物が存在し、病原性を示したり、海中構造物に
付着するなどの問題を引き起こしている。また、海中構
造物は膨大な量の海水と常に接触しているので、その表
面では微生物の付着に始まる様々な海洋生物の繁殖が問
題となっている。これらの問題の発生機構は次のとおり
である。まず、付着性のグラム陰性菌が表面に吸着して
スライム状物質を多量に分泌する。続いて、他の微生物
がこのスライム層に集まって増殖し、微生物皮膜を形成
する。更に、この微生物層の上に大型の生物が次々に繁
殖するようになり、最終的には大型生物が表面を覆い尽
くすことになる。
2. Description of the Related Art In an oligotrophic environment such as distilled water, seawater or tap water, microorganisms are aggregated and increase at the interface between a liquid phase and a solid phase. This is because the dilute organic matter existing in water is adsorbed and concentrated on such an interface, so that the microorganisms use the organic matter as a nutrient source. Microorganisms grown on the solid surface diffuse into water again to cause water pollution, or secrete slime-like substances while adsorbed on the solid surface to stain the surface. In particular, a large number of microorganisms are present in seawater, causing problems such as showing pathogenicity and adhering to undersea structures. Further, since the undersea structure is constantly in contact with a huge amount of seawater, the propagation of various marine organisms starting from the attachment of microorganisms becomes a problem on its surface. The mechanism of occurrence of these problems is as follows. First, adherent Gram-negative bacteria adsorb on the surface and secrete a large amount of slime-like substances. Subsequently, other microorganisms collect in the slime layer and proliferate to form a microbial film. Further, large organisms will propagate one after another on this microbial layer, and eventually the large organisms will cover the surface.

【0003】従来、こうした水中構造物表面における微
生物の付着増殖に対する防汚処理としては、例えば、塩
素ガスや次亜塩素酸等の殺菌剤を注入したり、有機スズ
化合物等を表面にコーティングする等のように、化学物
質を使用して処理する方法が行われてきた。しかし、こ
れらの方法では、使用した化学物質が水中に拡散して残
留するので、残留毒性の問題があった。また、水中にお
いて、(1)導電性基板に正電位を印加することによ
り、水中の微生物を前記導電性基板表面に吸着して殺菌
する工程と、(2)前記導電性基板に負電位を印加する
ことにより、前記導電性基板表面に吸着している殺菌さ
れた微生物を脱離する工程とを行うことにより、初期段
階での微生物の付着増殖を制御する方法も知られている
(特開平4−341392号公報)。この方法は、海中
等の微生物の付着の激しい場所でも充分な効果を発揮す
る点で好ましいが、反面、電位を正負交互に印加する装
置(例えば、パルスジェネレーター)が必要であり、更
に、正電位を用いるので、好適に使用することのできる
導電性材料の種類が事実上制限されていた。
Conventionally, as an antifouling treatment against the adhesion and growth of microorganisms on the surface of such an underwater structure, for example, a sterilizing agent such as chlorine gas or hypochlorous acid is injected, or an organic tin compound or the like is coated on the surface. As described above, a method of treating using a chemical substance has been performed. However, these methods have a problem of residual toxicity because the used chemical substances are diffused and remain in water. In water, (1) a step of applying a positive potential to the conductive substrate to adsorb microorganisms in water to the surface of the conductive substrate to sterilize, and (2) applying a negative potential to the conductive substrate. There is also known a method of controlling the adherence and growth of microorganisms in the initial stage by carrying out a step of desorbing sterilized microorganisms adsorbed on the surface of the conductive substrate (Japanese Patent Laid-Open No. Hei 4 (1999) -411). -341392). This method is preferable in that it exerts a sufficient effect even in a place where microorganisms are heavily attached to the sea, but on the other hand, a device for alternately applying positive and negative potentials (for example, a pulse generator) is required. Therefore, the types of conductive materials that can be preferably used are practically limited.

【0004】[0004]

【発明が解決しようとする課題】本発明者は、残留毒性
の原因となる化学物質を使用せず、簡便な装置で、効果
的に、しかも安価な金属材料も使用することのできる生
物汚染防止手段を開発すべく鋭意研究したところ、意外
にも、単に負電位を印加するだけで、初期段階で水中構
造物表面に接近してくる微生物の付着を防止することが
できることを見出した。本発明はこうした知見に基づく
ものである。
DISCLOSURE OF THE INVENTION The inventor of the present invention does not use a chemical substance that causes residual toxicity, uses a simple device, can effectively use an inexpensive metal material, and can prevent biological pollution. As a result of diligent research to develop a means, it was surprisingly found that it is possible to prevent the attachment of microorganisms approaching the surface of an underwater structure at the initial stage by simply applying a negative potential. The present invention is based on these findings.

【0005】[0005]

【課題を解決するための手段】従って、本発明は、水中
において、少なくとも一部に導電性材料を含む構造物
に、−0.4Vvs.SCE以上0Vvs.SCE未満
の負電位を印加することを特徴とする、水中構造物の防
汚方法に関する。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a structure containing -0.4Vvs. SCE or more 0 V vs. The present invention relates to an antifouling method for an underwater structure, which is characterized by applying a negative potential lower than SCE.

【0006】本発明方法によって処理することのできる
構造物は、全体が導電性材料から形成されていてもよい
が、少なくとも水中に浸漬され、微生物による汚染を防
止すべき表面(又は表面の一部分)を負電荷に帯電させ
ることのできる構造であればよく、表面全体若しくは表
面の一部分あるいはそれらの内側に導電性材料からなる
導電性基板を含んでいればよい。これは、本発明方法
が、付着性微生物の表面負電荷と構造物表面の負電荷と
の反発を利用するものであるため、その反発力が付着性
微生物に充分に伝わる程度であれば、表面に非導電性皮
膜が存在していてもよいからである。
The structure which can be treated by the method according to the invention, which may be wholly formed from a conductive material, is at least immersed in water and the surface (or part of the surface) which is to be protected from microbial contamination. It suffices that it has a structure capable of being charged with a negative charge, as long as it includes a conductive substrate made of a conductive material on the entire surface or a part of the surface or inside thereof. This is because the method of the present invention utilizes the repulsion between the surface negative charge of the adherent microorganism and the negative charge of the structure surface, so long as the repulsive force is sufficiently transmitted to the adherent microorganism, the surface This is because a non-conductive film may be present in the.

【0007】導電性基板の形状は特に制限されるもので
はなく、例えば、構造物の表面に設ける導電性皮膜、構
造物の表面又はその内側の一部を構成する導電性プレー
ト、構造物内部に不連続(例えば、網目状、格子状又は
縞状等)に配置して導電性領域を形成するものを挙げる
ことができる。
The shape of the conductive substrate is not particularly limited. For example, a conductive film provided on the surface of the structure, a conductive plate forming the surface of the structure or a part of the inside thereof, or the inside of the structure. The conductive regions may be arranged discontinuously (for example, in a mesh shape, a lattice shape, or a stripe shape).

【0008】導電性材料も特に制限されるものではない
が、前記の導電性基板、例えば水中構造物や船舶等の広
い表面上の導電性表面層を形成することができる良好な
可塑性及び成形性を有することが好ましい。導電性材料
としては、例えば、グラファイト、カーボン、酸化物半
導体、金属又は導電性高分子化合物等を挙げることがで
きる。例えば、In23 −SnO2 、SnO2 −Sb
23 、CdO、CdSnO4 又はZnO等の酸化物半
導体、金、銀、銅、パラジウム、白金、アルミニウム、
クロム、ロジウム、チタン、ステンレススチール又はタ
ングステン等の金属、又はこれら金属の合金、更にポリ
ピロール等の導電性高分子化合物等を挙げることができ
る。更に、これらの導電性材料をバインダーポリマーと
混合してそのまま導電性プレートを成形したり、あるい
は導電性材料含有塗料組成物を用いて水中構造物表面に
導電性皮膜を形成してもよい。
The conductive material is also not particularly limited, but has good plasticity and moldability capable of forming a conductive surface layer on the above-mentioned conductive substrate, for example, a wide surface of an underwater structure or a ship. It is preferable to have Examples of conductive materials include graphite, carbon, oxide semiconductors, metals, and conductive polymer compounds. For example, In 2 O 3 -SnO 2, SnO 2 -Sb
Oxide semiconductor such as 2 O 3 , CdO, CdSnO 4 or ZnO, gold, silver, copper, palladium, platinum, aluminum,
Examples thereof include metals such as chromium, rhodium, titanium, stainless steel and tungsten, alloys of these metals, and conductive polymer compounds such as polypyrrole. Further, these conductive materials may be mixed with a binder polymer to form a conductive plate as it is, or a conductive film may be formed on the surface of an underwater structure using the conductive material-containing coating composition.

【0009】バインダーポリマーとしては、ポリウレタ
ン樹脂、シリコーン樹脂、酢酸ビニル樹脂、塩化ビニル
樹脂とポリウレタン樹脂との混合物、スチレンブタジエ
ンゴム、クロロプレンゴム、エポキシ樹脂等を挙げるこ
とができる。バインダーポリマーと共に導電性高分子
(例えば、ポリアニリン)を添加して抵抗値を低くする
こともできる。
Examples of the binder polymer include polyurethane resin, silicone resin, vinyl acetate resin, a mixture of vinyl chloride resin and polyurethane resin, styrene butadiene rubber, chloroprene rubber, epoxy resin and the like. A conductive polymer (for example, polyaniline) may be added together with the binder polymer to reduce the resistance value.

【0010】本明細書において水中とは、付着性微生物
が存在する水であれば限定されないが、特には、海水、
河川水、湖沼水、灌漑用水、プール水、飲料水(タンク
内)などである。また、構造物とは、前記の水中に永続
的又は一時的に浸漬する部分を有し、水中微生物による
好ましくない汚染の可能性のある任意の構造体を意味
し、例えば、船舶、タンク、排管、漁具等を挙げること
ができる。
In the present specification, the term "water" is not limited as long as it is water in which adherent microorganisms are present.
This includes river water, lake water, irrigation water, pool water, drinking water (in tanks). Further, the structure means any structure having a portion which is permanently or temporarily immersed in the above-mentioned water, and which may be undesirably contaminated by aquatic microorganisms. Examples include pipes and fishing gear.

【0011】本発明方法では、微生物を含む水中におい
て、前記構造物の導電性基板に負電位を印加すると、導
電性基板に接近する微生物が、電気的な反発により付着
できなくなる。この微生物付着は、水中構造物の生物付
着による汚染の初期段階であるため、最終的には生物付
着による汚染を防止することができる。
In the method of the present invention, when a negative potential is applied to the conductive substrate of the structure in water containing microorganisms, microorganisms approaching the conductive substrate cannot attach due to electrical repulsion. Since this microbial adhesion is the initial stage of the biofouling of the aquatic structure, the biofouling can be finally prevented.

【0012】印加する負電位は−0.4Vvs.SCE
以上0Vvs.SCE未満である。印加電位が0Vv
s.SCE以上になると、逆に付着性微生物を吸着する
作用があり、−0.4Vvs.SCE未満になるとpH
が上昇して、電極周辺の環境や電極自体に悪影響を与え
るので好ましくない。更に、負電位を−0.25Vv
s.SCE以下にすると防汚効果が向上するので好まし
い。前記範囲内の電位を、変化させながら若しくは好ま
しくは事実上一定に、そして断続的若しくは好ましくは
連続的に印加することができる。
The negative potential applied is -0.4 Vvs. SCE
0 V vs. It is less than SCE. Applied potential is 0Vv
s. On the other hand, when it is more than SCE, it has an effect of adsorbing adherent microorganisms, and it has an effect of -0.4 Vvs. PH below SCE
Is increased, which adversely affects the environment around the electrode and the electrode itself, which is not preferable. Furthermore, the negative potential is -0.25Vv
s. The SCE or less is preferable because the antifouling effect is improved. Potentials within said range can be applied varyingly or preferably substantially constant, and intermittently or preferably continuously.

【0013】なお、前記の特開平4−341392号公
報の実施例6には、閉鎖系で微生物分散液に負電位を印
加した場合の微生物制御の結果が示されており、負電位
を印加した場合と、電位を印加しない場合と、正電位の
みを印加した場合との制御効果には差異が見られなかっ
たことが示されている。しかし、この結果は被処理水内
の微生物に対する制御効果を示すものであり、水中構造
物表面に印加される負電位の効果については何らの記載
もない。
In Example 6 of the above-mentioned Japanese Patent Laid-Open No. 4-341392, the results of microbial control when a negative potential is applied to the microbial dispersion in a closed system are shown. It is shown that no difference was observed in the control effect between the case and the case where no potential was applied and the case where only a positive potential was applied. However, this result shows the control effect on the microorganisms in the water to be treated, and there is no description about the effect of the negative potential applied to the surface of the underwater structure.

【0014】本発明方法においては、導電性基板を作用
極とし、その導電性基板作用極に対して、適当な対極及
び直流電源(整流器)を用いて、導電性基板に前記範囲
の電位を印加するように制御することが必要である。参
照極を用いて電位を制御しても良い。直流電源(整流
器)としては、目的の電位を導電性基板に印加できるも
のであれば、特に制限はない。また、本発明方法で処理
する構造物の表面に、忌避剤(例えば、有機スズ系、シ
リコン系、又は銅系忌避剤)を含有する皮膜を形成させ
てもよい。
In the method of the present invention, a conductive substrate is used as a working electrode, and a potential in the above range is applied to the conductive substrate by using a suitable counter electrode and a DC power supply (rectifier) to the working substrate. It is necessary to control so that The potential may be controlled using the reference electrode. The DC power supply (rectifier) is not particularly limited as long as it can apply a desired potential to the conductive substrate. In addition, a film containing a repellent (for example, an organotin-based, silicon-based, or copper-based repellent) may be formed on the surface of the structure to be treated by the method of the present invention.

【0015】[0015]

【作用】本発明方法の負電位による防汚効果は、静電気
的な反発を利用するものであるので、導電性基板付近の
生菌数密度を低下させ、且つ多少の生物付着が生じても
静電気的な反発はその生物付着層の外側にまで及ぶた
め、長時間にわたり防汚効果が保持されるものと考えら
れる。
The antifouling effect by the negative potential of the method of the present invention utilizes electrostatic repulsion, so that the viable cell density near the conductive substrate is reduced, and even if some biological attachment occurs, electrostatic It is considered that the antifouling effect is maintained for a long time because the specific repulsion extends to the outside of the biofouling layer.

【0016】[0016]

【実施例】以下、実施例によって本発明を具体的に説明
するが、これらは本発明の範囲を限定するものではな
い。以下の実施例において、防汚効果試験装置として図
1に示す装置を用いた。この装置において、防汚効果試
験槽1にはガラス基板2上に形成された導電性樹脂プレ
ート電極3が配置されており、プレート電極3はポテン
シオスタット4と連絡している。ポテンシオスタット4
は、コントロール槽5に配置された参照極6及び対極7
と各々連絡している。防汚効果試験槽1とコントロール
槽5とは、塩橋8によって連絡しており、防汚効果試験
槽1の底部には攪拌装置9及び攪拌棒10が配置されて
いる。導電性樹脂プレート電極3としては、シリコーン
樹脂にグラファイト(Fluka社)50重量%を添加
した材料を、ガラス基板2上にプレート上(2.6mm
×2.6mm×1.5mm)に形成したものを用い、対
極7には白金、そして参照極6には飽和甘コウ電極(S
CE)を用いた。防汚効果試験槽1に試料水11を入れ
て試験を実施した。
The present invention will be described in detail below with reference to examples, but these do not limit the scope of the present invention. In the following examples, the device shown in FIG. 1 was used as the antifouling effect test device. In this apparatus, a conductive resin plate electrode 3 formed on a glass substrate 2 is arranged in an antifouling effect test tank 1, and the plate electrode 3 communicates with a potentiostat 4. Potentiostat 4
Is a reference electrode 6 and a counter electrode 7 arranged in the control tank 5.
I have contacted each other. The antifouling effect test tank 1 and the control tank 5 are connected by a salt bridge 8, and a stirrer 9 and a stirring rod 10 are arranged at the bottom of the antifouling effect test tank 1. As the conductive resin plate electrode 3, a material obtained by adding 50% by weight of graphite (Fluka company) to silicone resin was applied on the glass substrate 2 on the plate (2.6 mm).
X 2.6 mm x 1.5 mm), the counter electrode 7 is platinum, and the reference electrode 6 is a saturated sweet koh electrode (S
CE) was used. The test was carried out by putting the sample water 11 in the antifouling effect test tank 1.

【0017】実施例1:付与電位が海水に与える影響 図1に示す装置を用いて付与電位が海水に与える影響を
調べた。三浦海岸で採取した海水(pH8.0)50m
lを防汚効果試験槽1に入れ、350rpmで攪拌しな
がらプレート電極3に負電位を30分間室温にて印加
し、電流密度、残留塩素濃度及びpHの変化を測定し
た。測定結果を示す図2から明らかなように、−0.4
V〜0Vvs.SCEの範囲でpH値は約7.5〜8の
範囲内にあり(図2の■)、pH変化は認められなかっ
た。従って、−0.4V〜0Vvs.SCEの範囲では
pH変化による防汚効果は起こらない。また、残留塩素
も検出されなかった。なお、図2には正電位を印加した
場合の結果も併せて示してある。
Example 1: Effect of applied potential on seawater The effect of applied potential on seawater was investigated using the apparatus shown in FIG. 50m of seawater (pH 8.0) collected from Miura Beach
1 was put in the antifouling effect test tank 1, and a negative potential was applied to the plate electrode 3 for 30 minutes at room temperature while stirring at 350 rpm, and changes in current density, residual chlorine concentration and pH were measured. As is clear from FIG. 2 showing the measurement result, −0.4
V to 0 V vs. In the SCE range, the pH value was within the range of about 7.5 to 8 (■ in Fig. 2), and no pH change was observed. Therefore, −0.4 V to 0 V vs. In the SCE range, the antifouling effect due to pH change does not occur. Also, residual chlorine was not detected. Note that FIG. 2 also shows the result when a positive potential is applied.

【0018】実施例2:試験槽内での防汚効果試験 海洋付着細菌ビブリオ・アルギノリチクス(Vibri
o alginolyticus:ATCC 1774
9)を、マリンブロス(Marine broth)2
216(DIFCO Laboratory社)中で2
5℃にて10時間好気的に培養した。培養後の菌体を遠
心集菌(10分間;2000×g)した後、滅菌した海
水でよく洗浄した。続いて、ヘマサイトメーターを用い
て105cells/mlの試料水を調製した。この試
料水150mlを図1の防汚効果試験槽1に入れ、プレ
ート電極3を浸漬し、350rpmで穏やかに攪拌しな
がら以下の電位設定で12時間処理した。電位設定は、
(1)+1.0Vvs.SCEの定電位、(2)−0.
3Vvs.SCEの定電位、(3)+1.0Vvs.S
CE 30min/−0.2Vvs.SCE 10mi
nのパルス電位、(4)電位印加しない、(5)−0.
1Vvs.SCEの定電位、(6)−0.2Vvs.S
CEの定電位、(7)−0.25Vvs.SCEの定電
位、(8)−0.4Vvs.SCEの定電位、の8通り
とした。12時間後、各々の電極表面に付着している菌
体をプロピジウムヨージド(PI;propidium
iodide)、4’,6−ジアミノ−2−フェニル
インドール二塩酸塩(DAPI;4’,6−diami
no−2−phenylindole dihydro
chloride)を用いて染色し、蛍光顕微鏡により
電極3に付着している菌体数及び付着菌の中の生菌数を
計数した。その結果を表1に示す。
Example 2: Antifouling effect test in a test tank Vibrio arginolyticus (Vibri)
o alginolyticus: ATCC 1774
9), and marine broth (Marine broth) 2
2 in 216 (DIFCO Laboratory Co.)
The cells were cultured aerobically at 5 ° C for 10 hours. The cultured cells were collected by centrifugation (10 minutes; 2000 × g) and then thoroughly washed with sterilized seawater. Then, 10 5 cells / ml sample water was prepared using a hemacytometer. 150 ml of this sample water was put in the antifouling effect test tank 1 of FIG. 1, the plate electrode 3 was dipped, and treated at the following potential setting for 12 hours while gently stirring at 350 rpm. The potential setting is
(1) +1.0 Vvs. SCE constant potential, (2) -0.
3V vs. SCE constant potential, (3) +1.0 Vvs. S
CE 30 min / -0.2 Vvs. SCE 10mi
n pulse potential, (4) no potential is applied, (5) -0.
1 V vs. SCE constant potential, (6) -0.2 Vvs. S
CE constant potential, (7) -0.25 V vs. SCE constant potential, (8) -0.4V vs. Eight constant potentials of SCE were used. After 12 hours, the bacterial cells attached to the surface of each electrode were treated with propidium iodide (PI; propidium).
iodide), 4 ', 6-diamino-2-phenylindole dihydrochloride (DAPI; 4', 6-diami)
no-2-phenylindole dihydro
Chloride), and the number of cells adhering to the electrode 3 and the number of viable cells among the adhering cells were counted by a fluorescence microscope. The results are shown in Table 1.

【表1】 電位設定 付着菌数 生菌数 生菌率 (1) 6.6×106 7.3×102 0.01% (2) 8.4×102 7.2×102 85.7% (3) 1.8×106 0 0% (4) 7.7×109 7.1×107 92.2% (5) 6.6×105 5.9×105 89.3% (6) 8.4×105 7.2×105 85.7% (7) 6.7×102 6.1×102 91.0% (8) 7.7×102 7.1×102 92.2% [Table 1] Potential setting Number of adherent bacteria Number of viable cells Viability (1) 6.6 × 10 6 7.3 × 10 2 0.01% (2) 8.4 × 10 2 7.2 × 10 2 85 .7% (3) 1.8 × 10 6 0 0% (4) 7.7 × 10 9 7.1 × 10 7 92.2% (5) 6.6 × 10 5 5.9 × 10 5 89 .3% (6) 8.4 × 10 5 7.2 × 10 5 85.7% (7) 6.7 × 10 2 6.1 × 10 2 91.0% (8) 7.7 × 10 2 7.1 x 10 2 92.2%

【0019】実施例3:海中での防汚効果試験 図3に示すように、炭素板13〔400mm×100m
m×10mm;東邦レーヨン(株)〕、その対極14
〔200mm×150mm;ベスファイトW6101/
東邦レーヨン(株)〕、及び参照極15〔飽和塩化銀電
極,GST304AQ;東亜電波工業(株)〕を塩化ビ
ニル板16(500mm×700mm×10mm)に固
定し、これらにポテンシオスタット17〔HA−15
1;北斗電工(株)〕を接続した。炭素板13、対極1
4及び参照極15を固定した塩化ビニル製支持板16
を、千葉県館山港の海水19(水深約1m)中に沈め、
ポテンシオスタット17から炭素板13に−0.3Vv
s.SCEの電位が印加されるように調整し、1993
年9月3日から1993年12月16日までの約3ヵ月
間に渡って炭素板13への付着物の重量を測定した。比
較例として塩化ビニル板18(500mm×700mm
×10mm)を塩化ビニル板16に固定し、電位を印加
せずに固定して沈め、その重量変化を測定した。その結
果を図4に示す。図4において、〇は負電位を印加した
炭素板13の重量変化を示し、●は電位を印加していな
い塩化ビニル製試験板18の重量変化を示す。
Example 3: Antifouling effect test in sea As shown in FIG. 3, carbon plate 13 [400 mm × 100 m
m × 10 mm; Toho Rayon Co., Ltd.], counter electrode 14
[200 mm x 150 mm; Vesfight W6101 /
Toho Rayon Co., Ltd.] and a reference electrode 15 [saturated silver chloride electrode, GST304AQ; Toa Denpa Kogyo Co., Ltd.] are fixed to a vinyl chloride plate 16 (500 mm × 700 mm × 10 mm), and potentiostat 17 [HA] is fixed to them. -15
1; Hokuto Denko Co., Ltd.] was connected. Carbon plate 13, counter electrode 1
Support plate 16 made of vinyl chloride to which 4 and reference electrode 15 are fixed
Submerged in seawater 19 (depth of about 1 m) at Tateyama Port, Chiba Prefecture,
-0.3Vv from potentiostat 17 to carbon plate 13
s. Adjust so that the potential of SCE is applied, 1993
The weight of the deposit on the carbon plate 13 was measured for about three months from September 3, 2013 to December 16, 1993. As a comparative example, vinyl chloride plate 18 (500 mm x 700 mm
X 10 mm) was fixed on a vinyl chloride plate 16, fixed without applying an electric potential and submerged, and the weight change was measured. The result is shown in FIG. In FIG. 4, ◯ indicates the weight change of the carbon plate 13 to which a negative potential is applied, and ● indicates the weight change of the vinyl chloride test plate 18 to which no potential is applied.

【0020】[0020]

【発明の効果】本発明方法によれば、残留毒性の原因と
なる化学物質を使用せず、簡便な装置で、しかも安価な
金属材料を使用して、効果的に、水中構造物の汚染を防
止することができる。また、本発明方法では負電位を印
加するだけであるので、正負電位を交互に印加する従来
法と異なり、パルスジェネレーターなどの装置を用いる
必要がなく、更に、正電位を印加すると腐食を生じ易い
金属でも導電性材料として使用することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, a chemical substance that causes residual toxicity is not used, a simple device is used, and an inexpensive metal material is used. Can be prevented. Further, in the method of the present invention, since only a negative potential is applied, unlike the conventional method in which positive and negative potentials are alternately applied, it is not necessary to use a device such as a pulse generator, and furthermore, when a positive potential is applied, corrosion easily occurs. Metal can also be used as the conductive material.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で用いる防汚効果試験槽の構造を模式的
に示す説明図である。
FIG. 1 is an explanatory view schematically showing the structure of an antifouling effect test tank used in Examples.

【図2】海水に負電位を印加した場合の効果を示すグラ
フである。
FIG. 2 is a graph showing the effect of applying a negative potential to seawater.

【図3】実施例で用いる防汚効果試験板の構造を模式的
に示す説明図である。
FIG. 3 is an explanatory view schematically showing the structure of an antifouling effect test plate used in Examples.

【図4】海水に浸漬された電極板に負電位を印加した場
合の重量変化を示すグラフである。
FIG. 4 is a graph showing changes in weight when a negative potential is applied to an electrode plate immersed in seawater.

【符号の説明】[Explanation of symbols]

1・・防汚効果試験槽;2・・ガラス基板;3・・導電
性樹脂プレート電極;4,17・・ポテンシオスタッ
ト;5・・コントロール槽;6,15・・参照極;7,
14・・対極;8・・塩橋;9・・攪拌装置;10・・
攪拌棒;11・・試料水;13・・炭素板;16・・塩
化ビニル製支持板;18・・塩化ビニル製試験板;19
・・海水
1 ・ ・ Antifouling effect test tank; 2 ・ ・ Glass substrate; 3 ・ ・ Conductive resin plate electrode; 4,17 ・ ・ Potentiostat; 5 ・ ・ Control tank; 6,15 ・ ・ Reference electrode;
14 ... Counter electrode; 8 ... Salt bridge; 9 ... Stirrer; 10 ...
Stirring bar; 11 ... Sample water; 13 ... Carbon plate; 16 ... Vinyl chloride support plate; 18 ... Vinyl chloride test plate; 19
..Seawater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 憲司 東京都荒川区東尾久7丁目2番35号 旭電 化工業株式会社内 (72)発明者 杉山 宏 東京都荒川区東尾久7丁目2番35号 旭電 化工業株式会社内 (72)発明者 江戸 博 東京都荒川区東尾久7丁目2番35号 旭電 化工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenji Ikeda 7-35 Higashiohisa, Arakawa-ku, Tokyo Within Asahi Denka Co., Ltd. (72) Inventor Hiroshi Sugiyama 7-35 Higashiohisa, Arakawa-ku, Tokyo Asahi Denka Kogyo Co., Ltd. (72) Inventor Hiroshi Edo 7-35 Higashiohisa Arakawa-ku Tokyo Tokyo Asahi Denka Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水中において、少なくとも一部に導電性
材料を含む構造物に、−0.4Vvs.SCE以上0V
vs.SCE未満の負電位を印加することを特徴とす
る、水中構造物の防汚方法。
1. A structure containing a conductive material in at least a part thereof in water is -0.4 Vvs. 0V above SCE
vs. An antifouling method for an underwater structure, which comprises applying a negative potential lower than SCE.
【請求項2】 負電位が、−0.4Vvs.SCE以上
−0.25Vvs.SCE以下である請求項1に記載の
方法。
2. The negative potential is -0.4 Vvs. SCE or more −0.25 Vvs. The method according to claim 1, which has a SCE or less.
JP06032694A 1994-03-03 1994-03-03 Antifouling method for underwater structures Expired - Lifetime JP3526469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06032694A JP3526469B2 (en) 1994-03-03 1994-03-03 Antifouling method for underwater structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06032694A JP3526469B2 (en) 1994-03-03 1994-03-03 Antifouling method for underwater structures

Publications (2)

Publication Number Publication Date
JPH07241550A true JPH07241550A (en) 1995-09-19
JP3526469B2 JP3526469B2 (en) 2004-05-17

Family

ID=13138943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06032694A Expired - Lifetime JP3526469B2 (en) 1994-03-03 1994-03-03 Antifouling method for underwater structures

Country Status (1)

Country Link
JP (1) JP3526469B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114036A (en) * 1997-10-16 1999-04-27 Kenichi Morita Method for disinfecting contact lens using active oxygen and disinfecting device therefor
JP2006205139A (en) * 2005-01-31 2006-08-10 Pentel Corp Method for controlling circulating water
WO2014142176A1 (en) * 2013-03-15 2014-09-18 Jx日鉱日石エネルギー株式会社 Microorganism corrosion prevention method and cathodic corrosion protection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114036A (en) * 1997-10-16 1999-04-27 Kenichi Morita Method for disinfecting contact lens using active oxygen and disinfecting device therefor
JP2006205139A (en) * 2005-01-31 2006-08-10 Pentel Corp Method for controlling circulating water
WO2014142176A1 (en) * 2013-03-15 2014-09-18 Jx日鉱日石エネルギー株式会社 Microorganism corrosion prevention method and cathodic corrosion protection method
JP2014177676A (en) * 2013-03-15 2014-09-25 Jx Nippon Oil & Energy Corp Method of preventing bacterial corrosion and cathode corrosion protection method

Also Published As

Publication number Publication date
JP3526469B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
Nakasono et al. Electrochemical prevention of marine biofouling with a carbon-chloroprene sheet
Matsunaga et al. Prevention of marine biofouling using a conductive paint electrode
Giorgi-Pérez et al. Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy
JP3526469B2 (en) Antifouling method for underwater structures
JP3105024B2 (en) How to control microbes in water
JP3668976B2 (en) Electrochemical control method and antifouling method for aquatic organisms
Lim et al. Preparation of a colored conductive paint electrode for electrochemical inactivation of bacteria
George et al. Mechanism of a MIC probe
JP3888756B2 (en) Electrochemical control method, antifouling method and antifouling device for aquatic organisms
JPH09248554A (en) Electrochemical control method of aquatic organism and antifouling method
Guezennec et al. Relationship between bacterial colonization and cathodic current density associated with mild steel surfaces
JPH11264062A (en) Metallic nitride, thermal-sprayed coating thereof and production of member for electrochemical biological control or contamination prevention
JP3697650B2 (en) Electrochemical control method and antifouling method for aquatic organisms
JP4182636B2 (en) Electrochemical antifouling method and apparatus
JP3491081B2 (en) Electrochemical biological control or antifouling components
Okochi et al. Electrochemical disinfection of marine bacteria using an electro-conductive paint and its application for prevention of biofouling
JPH11244861A (en) Anti-fouling device for underwater structure and electrochemical control method of organism
JP4075263B2 (en) Electrochemical antifouling method and apparatus
JP4385546B2 (en) Electrochemical antifouling method
Schwarze et al. Control of marine bacteria and diatom biofouling by constant and alternating potentials
JP2004116136A (en) Electronic control bacillus anti-fouling method
JP4923375B2 (en) Electrochemical antifouling method
JPH10128337A (en) Member or electrochemically controlling aquatic organism
JP2008126184A (en) Electrode for preventing adhesion of organism
JP2000008338A (en) Antifouling device for underwater structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130227

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term