JPH07240223A - Fuel cell power generating device - Google Patents

Fuel cell power generating device

Info

Publication number
JPH07240223A
JPH07240223A JP6028700A JP2870094A JPH07240223A JP H07240223 A JPH07240223 A JP H07240223A JP 6028700 A JP6028700 A JP 6028700A JP 2870094 A JP2870094 A JP 2870094A JP H07240223 A JPH07240223 A JP H07240223A
Authority
JP
Japan
Prior art keywords
temperature
gas
cooling water
water
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6028700A
Other languages
Japanese (ja)
Other versions
JP3362947B2 (en
Inventor
Norihisa Kamiya
規寿 神家
Akio Inaya
章雄 稲家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP02870094A priority Critical patent/JP3362947B2/en
Publication of JPH07240223A publication Critical patent/JPH07240223A/en
Application granted granted Critical
Publication of JP3362947B2 publication Critical patent/JP3362947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To recover excessive heat of a reforming apparatus at high temperature and lower the cost of the device and the energy consumption while the apparatus being preliminary driven by adjusting the quantity of cooling water which flows in a heat exchange means for cooling-water heating. CONSTITUTION:An air preheating heat exchanger 27 is installed for preheating combustion air supplied from an air supplying route 26 by combustion exhaust gas discharged from a reforming device 2 through a combustion exhaust gas route 16C. A cooling-water heating heat exchange means 28 is also installed to heat cooling water by the combustion exhaust gas supplied to the heat exchanger 27 from the device 2. Furthermore, a flow rate adjusting valve V8 to adjust the flow rate of the cooling water which flows in the means 28 is set in a branch flow route 29. When the device 2 is at higher temperature than a proper temperature, the flow rate of the cooling water which flows in the heat exchanger 27 is increased to lower the temperature of combustion exhaust gas and lower the temperature of the device 2 and when the device 2 is at proper temperature or lower, the flow rate of the cooling water is lessened to heighten the temperature of the combustion exhaust gas and heighten the temperature of the device 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原燃料ガスを水素ガス
を主成分とする改質ガスに改質する改質装置の加熱用バ
ーナに対して、燃焼用空気を供給する空気供給路が設け
られ、前記改質装置からの燃焼排ガスにて前記空気供給
路を通して供給される燃焼用空気を予熱する空気予熱用
の熱交換手段が設けられ、気水分離器と水冷作用部とに
亘り冷却水を循環させる冷却水循環路が設けられ、排熱
回収装置に水蒸気を供給するように、前記気水分離器と
排熱回収装置とを接続する排熱回収路が設けられた燃料
電池発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an air supply passage for supplying combustion air to a heating burner of a reformer for reforming raw fuel gas into reformed gas containing hydrogen gas as a main component. Provided is a heat exchange means for preheating air for preheating the combustion air supplied through the air supply passage with the combustion exhaust gas from the reformer, and cooling is performed between the steam separator and the water cooling action section. A fuel cell power generator having a cooling water circulation path for circulating water and an exhaust heat recovery path for connecting the steam-water separator and the exhaust heat recovery apparatus so as to supply steam to the exhaust heat recovery apparatus .

【0002】[0002]

【従来の技術】かかる燃料電池発電装置は、燃料電池発
電部にて発生した熱エネルギーや、変成装置が装備され
る場合にはその変成装置によって生じる熱エネルギー
を、排熱回収装置によって回収させて、高温の熱エネル
ギーとして有効利用できるようにしたものである。ちな
みに、前記改質装置は、約700°Cに加熱したニッケ
ル、ルテニウム等の改質触媒を用いて、原燃料ガス(C
4 )と水蒸気とを改質反応させるものであって、良好
な改質反応の実行と過熱による損傷を回避するために、
適正温度範囲に維持させる必要がある。前記燃料電池発
電部に供給される燃料ガスは、上述の如く、原燃料ガス
を改質装置によって、水素ガスを主成分とする改質ガス
に改質されて生成される。そして、燃料電池発電部が燃
料ガス中の一酸化炭素ガスによって損傷する虞がある場
合には、前記変成装置にて、改質ガス中の一酸化炭素ガ
スを変水蒸気と反応させて二酸化炭素ガスに変成するこ
とも行われる。尚、改質ガス中の一酸化炭素ガスを水蒸
気と反応させて二酸化炭素ガスに変成する変成反応は、
発熱反応であるため、冷却により適正な温度範囲(例え
ば、300°C程度)に維持するようにしている。
2. Description of the Related Art In such a fuel cell power generator, the exhaust heat recovery device recovers the thermal energy generated in the fuel cell power generator and the thermal energy generated by the converter if the converter is equipped. The high temperature heat energy can be effectively used. By the way, the reformer uses a reforming catalyst such as nickel or ruthenium heated to about 700 ° C.
H 4 ) and steam for a reforming reaction, in order to perform a good reforming reaction and avoid damage due to overheating,
It is necessary to maintain the temperature within the proper temperature range. As described above, the fuel gas supplied to the fuel cell power generation unit is generated by reforming the raw fuel gas into the reformed gas containing hydrogen gas as the main component by the reformer. When the fuel cell power generation unit is likely to be damaged by the carbon monoxide gas in the fuel gas, the carbon monoxide gas in the reformed gas is reacted with the modified steam in the shift converter to generate carbon dioxide gas. It is also transformed into. The metamorphic reaction in which carbon monoxide gas in the reformed gas is reacted with steam to convert it into carbon dioxide gas is
Since it is an exothermic reaction, it is kept in an appropriate temperature range (for example, about 300 ° C.) by cooling.

【0003】ところで、前記改質装置の温度を適正温度
範囲に維持させるに、従来では、図4に示すように、空
気供給路26に、空気予熱用の熱交換手段27を迂回す
るバイパス路26Aを接続すると共に、そのバイパス路
26Aを開閉するバイパス弁26Bを設けて、温度が高
くなった場合には、バイパス路26Aを通過させて燃焼
用空気を供給し、必要に応じてさらに、ガスバーナ2A
に燃焼用空気を送風する燃焼用空気送風用のファン16
Aによる空気供給量の増加により、温度低下を図るよう
になっていた。ちなみに、温度が低くなった場合には、
加熱用バーナ2Aに対する燃焼用空気の供給量を減少さ
せて、温度上昇を図ることになる。図4において、15
は、燃料電池発電部6の燃料ガス排出部6Cと加熱用バ
ーナ2Aとを接続するバーナ用排ガス路であって、燃料
ガス排出部6Cに排出される排燃料ガスを改質装置2の
加熱用バーナ2Aに燃焼用ガスとして供給するようにな
っている。16Bは、起動運転時にガスバーナ2Aに燃
焼用ガスを供給するための起動用の燃焼用ガス路、16
Cは、改質装置2からの燃焼排ガスを導く燃焼排ガス路
である。30は、空気予熱用の熱交換手段27を通過後
の燃焼排ガスの残熱を回収する残熱回収用熱交換器であ
って、一般に給湯のために水を加熱するのに使用される
ことが多い。T2は、改質装置2の温度を検出する温度
検出手段としての温度センサ、Cは、その温度センサS
の検出情報に基づいて、バイパス弁26B及び燃焼用空
気送風用のファン16Aの回転数の調整を実行して、上
述の如く改質装置2の温度調整を行う制御手段としての
制御装置である。
By the way, in order to maintain the temperature of the reformer within an appropriate temperature range, conventionally, as shown in FIG. 4, a bypass passage 26A bypassing the heat exchanging means 27 for air preheating is provided in the air supply passage 26. And a bypass valve 26B for opening and closing the bypass passage 26A are provided, and when the temperature becomes high, the combustion air is supplied through the bypass passage 26A and, if necessary, the gas burner 2A
A fan 16 for blowing combustion air that blows combustion air to
Due to the increase in the air supply amount due to A, the temperature has been reduced. By the way, if the temperature drops,
The amount of combustion air supplied to the heating burner 2A is reduced to increase the temperature. In FIG. 4, 15
Is a burner exhaust gas passage that connects the fuel gas discharge section 6C of the fuel cell power generation section 6 and the heating burner 2A, and the exhaust fuel gas discharged to the fuel gas discharge section 6C is used for heating the reformer 2. It is adapted to be supplied to the burner 2A as combustion gas. 16B is a combustion gas passage for start-up for supplying the combustion gas to the gas burner 2A during start-up operation, 16B
C is a combustion exhaust gas passage that guides combustion exhaust gas from the reformer 2. Reference numeral 30 denotes a residual heat recovery heat exchanger that recovers the residual heat of the combustion exhaust gas that has passed through the heat exchange means 27 for preheating the air, and is generally used to heat water for hot water supply. Many. T2 is a temperature sensor as temperature detecting means for detecting the temperature of the reformer 2, and C is the temperature sensor S.
The control device serves as a control unit that adjusts the rotational speeds of the bypass valve 26B and the combustion air blowing fan 16A on the basis of the detection information of 1 to adjust the temperature of the reforming device 2 as described above.

【0004】又、かかる燃料電池発電装置の起動運転の
際には、図3に示すように、加熱用バーナ2Aを燃焼さ
せて改質装置2を加熱し、気水分離器3を電気ヒータ3
Aにて加熱し、又、変装装置4が備えられる場合にはそ
れを電気ヒータ4Aにて加熱する、予備加熱を実行する
ことが行われている。
Further, during the start-up operation of such a fuel cell power generator, as shown in FIG. 3, the heating burner 2A is burned to heat the reforming device 2, and the steam separator 3 is connected to the electric heater 3.
Preheating is performed by heating at A, and when the disguise device 4 is provided, it is heated by the electric heater 4A.

【0005】[0005]

【発明が解決しようとする課題】従来では、改質装置の
温度を低下させる場合における余分な熱量、つまり改質
装置の余剰熱は、燃焼排ガスの残熱を回収する残熱回収
用熱交換器にて回収されることになるが、残熱回収用熱
交換器は、本来低温の残熱回収として用いられるもので
あり、燃料電池発電装置の運転効率から見ると、熱利用
価値の高い高温で熱回収されることが望まれるものであ
り、改善の余地があった。又、燃料電池発電装置の起動
運転の際において、従来では、気水分離器を電気ヒータ
又は付属のボイラーにて加熱して運転に必要な蒸気を発
生させているが、短時間で充分な蒸気量を発生させるた
めには、大容量の電気ヒータやボイラーにて加熱する必
要があり、装置の高騰化を招く原因となるばかりでな
く、予備運転のために要するエネルギーの消費量が多い
不利もあり、この点からも改善の余地があった。
Conventionally, the surplus heat of the reformer, that is, the surplus heat of the reformer when the temperature of the reformer is lowered, is a heat exchanger for residual heat recovery for recovering the residual heat of combustion exhaust gas. However, the heat exchanger for residual heat recovery is originally used for low temperature residual heat recovery. It was hoped that heat could be recovered, and there was room for improvement. In addition, during the startup operation of the fuel cell power generator, conventionally, the steam separator is heated by an electric heater or an attached boiler to generate steam necessary for operation. In order to generate the amount, it is necessary to heat with a large-capacity electric heater or boiler, which not only causes a rise in the cost of the equipment, but also has the disadvantage that a large amount of energy is consumed for the preliminary operation. There is room for improvement in this respect as well.

【0006】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、改質装置の余剰熱を利用価値の
高い高温で回収できるようにし、且つ、適正に予備運転
できながらも装置の低廉化や消費エネルギーの低下を図
る点にある。
The present invention has been made in view of the above circumstances, and an object thereof is to make it possible to recover surplus heat of a reformer at a high temperature, which has a high utility value, and to appropriately perform preliminary operation. The point is to reduce the cost and energy consumption.

【0007】[0007]

【課題を解決するための手段】本発明における燃料電池
発電装置は、原燃料ガスを水素ガスを主成分とする改質
ガスに改質する改質装置の加熱用バーナに対して、燃焼
用空気を供給する空気供給路が設けられ、前記改質装置
からの燃焼排ガスにて前記空気供給路を通して供給され
る燃焼用空気を予熱する空気予熱用の熱交換手段が設け
られ、気水分離器と水冷作用部とに亘り冷却水を循環さ
せる冷却水循環路が設けられ、排熱回収装置に水蒸気を
供給するように、前記気水分離器と排熱回収装置とを接
続する排熱回収路が設けられたものであって、第1特徴
構成は、前記改質装置から前記空気予熱用の熱交換手段
に供給される燃焼排ガスにて前記冷却水を加熱する冷却
水加熱用の熱交換手段が設けられ、その冷却水加熱用の
熱交換手段を通流させる冷却水量を調整する水量調整手
段が設けられている点にある。第2特徴構成は、上記第
1特徴構成の実施における好適な構成を特定するもので
あって、前記改質装置の温度を検出する温度検出手段が
設けられ、前記改質装置の温度を設定適正温度に維持さ
せるように、前記温度検出手段の検出情報に基づいて水
量調整手段を自動調整する制御手段が設けられている点
にある。第3特徴構成は、上記第2特徴構成の実施にお
いて好適な構成を特定するものであって、前記制御手段
は、運転開始が指令されるに伴って、設定量の冷却水を
前記冷却水加熱用の熱交換手段に通流させるように前記
水量調整手段を自動調整する起動運転制御を実行し、そ
の起動運転の終了に伴って、前記改質装置の温度を設定
適正温度に維持させるように、前記温度検出手段の検出
情報に基づいて水量調整手段を自動調整する通常運転制
御を実行するように構成されている定常運転モードと起
動運転モードとを指令するモード指令手段が設けられ、
前記制御手段が、前記定常運転モードが指令されるに伴
って、前記改質装置の温度を設定適正温度に維持させる
ように、前記温度検出手段の検出情報に基づいて水量調
整手段を自動調整する制御作動を実行し、前記起動運転
モードが指令されるに伴って、設定量の冷却水を前記冷
却水加熱用の熱交換手段に通流させるように前記水量調
整手段を自動調整する制御作動を実行するように構成さ
れている点にある。第4特徴構成は、上記第1、第2及
び第3特徴構成の実施において好適な構成を特定するも
のであって、前記改質装置にて生成されて燃料電池発電
部に供給される改質ガス中の一酸化炭素ガスを水蒸気と
反応させて二酸化炭素ガスに変成する変成装置が設けら
れ、前記水冷作用部として、前記燃料電池発電部に対す
る発電部用の水冷作用部と、前記変成装置に対する変成
装置用の水冷作用部とが設けられている点にある。
A fuel cell power generator according to the present invention uses a combustion air for a heating burner of a reformer for reforming a raw fuel gas into a reformed gas containing hydrogen gas as a main component. And an air preheat heat exchange means for preheating the combustion air supplied through the air supply passage with the combustion exhaust gas from the reformer. A cooling water circulation path for circulating cooling water across the water cooling action section is provided, and an exhaust heat recovery path that connects the steam separator and the exhaust heat recovery apparatus is provided so as to supply steam to the exhaust heat recovery apparatus. In the first characteristic configuration, a heat exchange means for heating cooling water for heating the cooling water with combustion exhaust gas supplied from the reformer to the heat exchange means for air preheating is provided. Flow through the heat exchange means for heating the cooling water. Water amount adjusting means for adjusting the amount of cooling water in that is provided for. The second characteristic configuration specifies a preferable configuration in the implementation of the first characteristic configuration, is provided with temperature detection means for detecting the temperature of the reforming device, and the temperature of the reforming device is appropriately set. There is a control means for automatically adjusting the water amount adjusting means based on the detection information of the temperature detecting means so as to maintain the temperature. The third characteristic configuration specifies a preferable configuration in the implementation of the second characteristic configuration, and the control means heats the set amount of cooling water with the cooling water heating in response to a command to start operation. The start-up operation control for automatically adjusting the water amount adjusting means so as to allow the water to flow through the heat exchange means, and with the end of the start-up operation, maintain the temperature of the reformer at the set proper temperature. A mode command means for commanding a normal operation mode and a startup operation mode configured to execute a normal operation control for automatically adjusting the water amount adjusting means based on the detection information of the temperature detecting means,
The control means automatically adjusts the water amount adjusting means based on the detection information of the temperature detecting means so as to maintain the temperature of the reforming device at the set proper temperature as the steady operation mode is commanded. A control operation for automatically adjusting the water amount adjusting means so as to cause a set amount of cooling water to flow through the heat exchanging means for heating the cooling water in response to the start operation mode being commanded. In that it is configured to run. The fourth characteristic configuration specifies a preferable configuration in the implementation of the first, second and third characteristic configurations, and is a reformer generated by the reformer and supplied to the fuel cell power generation unit. A shift device for reacting carbon monoxide gas in the gas with water vapor to transform it into carbon dioxide gas is provided, and as the water cooling action part, a water cooling action part for a power generation part for the fuel cell power generation part, and for the shift device And a water cooling working part for the transformer.

【0008】[0008]

【作用】第1の特徴構成による作用は次の通りである。
冷却水加熱用の熱交換手段を通流させる冷却水量を調整
することにより、改質装置の温度を適正温度に調整する
ことができる。つまり、改質装置の温度が適正温度より
高い場合には、熱交換手段に通流させる冷却水量を増加
させることにより、燃焼排ガスの温度が低下し、その低
下した燃焼排ガスが空気余熱用の熱交換手段に供給され
る結果、余熱される燃焼用空気の温度が低下して、改質
装置の温度の低下を図ることができる。そして、改質装
置の温度が適正温度より高い場合には、熱交換手段に通
流させる冷却水量を減少させることにより、燃焼排ガス
の温度が上昇し、その上昇した燃焼排ガスが空気余熱用
の熱交換手段に供給される結果、余熱される燃焼用空気
の温度が上昇して、改質装置の温度の上昇を図ることが
できる。
The operation according to the first characteristic configuration is as follows.
By adjusting the amount of cooling water flowing through the heat exchange means for heating the cooling water, the temperature of the reformer can be adjusted to an appropriate temperature. That is, when the temperature of the reformer is higher than the proper temperature, the temperature of the combustion exhaust gas is lowered by increasing the amount of cooling water flowing through the heat exchange means, and the lowered combustion exhaust gas is heated by the heat for air residual heat. As a result of being supplied to the exchanging means, the temperature of the combustion air that is preheated is lowered, and the temperature of the reformer can be lowered. Then, when the temperature of the reformer is higher than the appropriate temperature, the temperature of the combustion exhaust gas rises by decreasing the amount of cooling water flowing through the heat exchange means, and the increased combustion exhaust gas heats the air for residual heat of air. As a result of being supplied to the exchange means, the temperature of the combustion air that is left over is raised, and the temperature of the reformer can be raised.

【0009】又、起動運転に際して、冷却水を燃焼排ガ
スにて加熱させて昇温させることができるから、気水分
離器内の冷却水を加熱する電気ヒータ等の加熱手段の加
熱作用と合わせて冷却水を加熱させることができる。第
2の特徴構成による作用は次の通りである。冷却水加熱
用の熱交換手段を通流させる冷却水量が、改質装置の温
度情報に基づいて、改質装置の温度を適正温度に維持さ
せるように自動調整される。
Further, since the cooling water can be heated by the combustion exhaust gas to raise the temperature during the start-up operation, the heating operation of the heating means such as an electric heater for heating the cooling water in the steam separator is combined with the heating operation. The cooling water can be heated. The operation of the second characteristic configuration is as follows. The amount of cooling water flowing through the heat exchange means for heating the cooling water is automatically adjusted based on the temperature information of the reforming device so as to maintain the temperature of the reforming device at an appropriate temperature.

【0010】第3特徴構成による作用は次の通りであ
る。運転開始の指令に伴って、設定量の冷却水を冷却水
加熱用の熱交換手段に通流させる起動運転と、改質装置
の温度を設定温度に維持するように冷却水加熱用の熱交
換手段に通流させる冷却水量を自動調整する通常運転と
が自動的に実行される。第4特徴構成による作用は次の
通りである。発熱反応する変成装置が備えられている場
合には、燃料電池発電部と変成装置とに水冷作用部を設
けることにより、排熱回収装置の排熱回収量を増加させ
ることができる。
The operation of the third characteristic structure is as follows. A start-up operation in which a set amount of cooling water flows through a heat exchange means for heating the cooling water in response to an operation start command, and a heat exchange for heating the cooling water so that the temperature of the reformer is maintained at the set temperature. The normal operation of automatically adjusting the amount of cooling water flowing through the means is automatically executed. The operation of the fourth characteristic configuration is as follows. When a shift device that reacts exothermically is provided, the amount of exhaust heat recovered by the exhaust heat recovery device can be increased by providing a water cooling action part in the fuel cell power generation part and the shift device.

【0011】[0011]

【発明の効果】第1特徴構成によれば、改質装置の余剰
熱を冷却水に回収して、回収装置の余剰熱を利用価値の
高い状態で回収できると共に、燃料電池発電装置の起動
運転に際して、改質装置からの燃焼排ガスの熱エネルギ
ーをも利用して冷却水を加熱することが可能となって、
装置の低廉化や起動運転の消費エネルギーの低下を図る
ことができるのである。
According to the first characteristic configuration, the surplus heat of the reformer can be recovered in the cooling water, and the surplus heat of the recovery device can be recovered in a highly useful state, and the start-up operation of the fuel cell power generator can be performed. At that time, it becomes possible to heat the cooling water by using the thermal energy of the combustion exhaust gas from the reformer,
It is possible to reduce the cost of the device and reduce the energy consumption of the startup operation.

【0012】第2特徴構成によれば、冷却水加熱用の熱
交換手段を通流させる冷却水量が、改質装置の温度情報
に基づいて、改質装置の温度を適正温度に維持させるよ
うに自動調整されるから、定常運転状態における改質装
置の温調を自動的に行わせることができる。
According to the second characteristic configuration, the amount of cooling water flowing through the heat exchanging means for heating the cooling water maintains the temperature of the reformer at an appropriate temperature based on the temperature information of the reformer. Since the temperature is automatically adjusted, the temperature control of the reformer in the steady operation state can be automatically performed.

【0013】第3特徴構成によれば、起動運転及びそれ
に引き続く通常運転を、上記第1特徴構成による効果を
得ながら、自動的に行わせることができる。
According to the third characteristic configuration, the starting operation and the subsequent normal operation can be automatically performed while obtaining the effect of the first characteristic configuration.

【0014】第4特徴構成によれば、変成装置が備えら
れている場合において、排熱回収装置の排熱回収量の増
加を図れるものとなる。
According to the fourth characteristic configuration, when the shift converter is provided, the amount of exhaust heat recovered by the exhaust heat recovery device can be increased.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。先ず、燃料電池発電装置の全体構成について、図
1に基づいて説明する。燃料電池発電装置は、天然ガス
(CH4 )等の炭化水素系の原燃料ガスを脱硫する脱硫
装置1、脱硫装置1にて脱硫された原燃料ガスを水蒸気
と改質反応させて水素ガスを主成分とする改質ガスを生
成する改質装置2、改質装置2に水蒸気を供給する気水
分離器3、改質装置2にて生成された改質ガス中の一酸
化炭素ガスを水蒸気と反応させて二酸化炭素ガスに変成
する変成装置4、変成装置4にて変成処理された後供給
される改質ガスを燃料ガスとして、その燃料ガスをファ
ン5から供給される空気中の酸素と反応させて発電する
燃料電池発電部6、及び、燃料電池発電装置の各種制御
を司る制御手段としての制御装置C(図2参照)、等に
より構成されている。
Embodiments of the present invention will be described below with reference to the drawings. First, the overall configuration of the fuel cell power generator will be described with reference to FIG. A fuel cell power generation device includes a desulfurization device 1 for desulfurizing a hydrocarbon-based raw fuel gas such as natural gas (CH 4 ), and a raw fuel gas desulfurized by the desulfurization device 1 is subjected to a reforming reaction with steam to produce hydrogen gas. The reformer 2 that generates the reformed gas as the main component, the steam separator 3 that supplies steam to the reformer 2, and the carbon monoxide gas in the reformed gas that is generated by the reformer 2 is steamed. And a reforming gas which is converted into carbon dioxide gas by the reaction with the reforming gas supplied by the reforming device 4 after being subjected to the conversion treatment by using the reforming gas as oxygen gas in the air supplied from the fan 5. The fuel cell power generation unit 6 that reacts to generate electric power, the control device C (see FIG. 2) as a control unit that controls various controls of the fuel cell power generation device, and the like.

【0016】原燃料ガスを供給する原燃料ガス路7が脱
硫装置1に接続されて、原燃料ガスが脱硫処理されるよ
うになっている。脱硫装置1とエジェクタ8とが脱硫原
燃料ガス路9にて接続されて、脱硫装置1にて脱硫され
た原燃料ガスがエジェクタ8に供給されるようになって
いる。気水分離器3の気相部とエジェクタ8とが水蒸気
路10にて接続されて、気水分離装置3からの水蒸気が
エジェクタ8に噴出供給されるようになっている。エジ
ェクタ8と改質装置2とが被改質ガス路11にて接続さ
れて、エジェクタ8にて混合された原燃料ガスと水蒸気
とが改質装置2に供給されるようになっている。改質装
置2と変成装置4とが改質ガス路12にて接続されて、
改質装置2にて生成された改質ガスが変成装置4に供給
されるようになっている。
A raw fuel gas passage 7 for supplying the raw fuel gas is connected to the desulfurization apparatus 1 so that the raw fuel gas is desulfurized. The desulfurization device 1 and the ejector 8 are connected by a desulfurization raw fuel gas passage 9, and the raw fuel gas desulfurized by the desulfurization device 1 is supplied to the ejector 8. The vapor phase portion of the steam separator 3 and the ejector 8 are connected by a steam passage 10 so that steam from the steam separator 3 is jetted and supplied to the ejector 8. The ejector 8 and the reforming device 2 are connected to each other through the reformed gas passage 11, and the raw fuel gas and the steam mixed by the ejector 8 are supplied to the reforming device 2. The reformer 2 and the shift converter 4 are connected by the reformed gas passage 12,
The reformed gas generated by the reformer 2 is supplied to the shift converter 4.

【0017】前記脱硫装置1は、約200°Cに加熱し
た脱硫触媒を用いて、原燃料ガス中の硫黄分と後述する
脱硫用ガス路17から供給される燃料ガス中の水素ガス
とを下記の反応式で反応させて硫化水素とし、その硫化
水素を酸化亜鉛等に吸着させるように構成されている。 H2 +S→H2
The desulfurization apparatus 1 uses a desulfurization catalyst heated to about 200 ° C. to show the sulfur content in the raw fuel gas and the hydrogen gas in the fuel gas supplied from the desulfurization gas passage 17 described below. The reaction formula is used to produce hydrogen sulfide, and the hydrogen sulfide is adsorbed on zinc oxide or the like. H 2 + S → H 2 S

【0018】前記改質装置2は、約700°Cに加熱し
たニッケル、ルテニウム等の改質触媒を用いて、原燃料
ガス(CH4 )と水蒸気とを下記の反応式にて改質反応
させるように構成されている。 CH4 +H2 O→CO+3H2
The reformer 2 uses a reforming catalyst such as nickel or ruthenium heated to about 700 ° C. to reform the raw fuel gas (CH 4 ) and steam according to the following reaction formula. Is configured. CH 4 + H 2 O → CO + 3H 2

【0019】前記変成装置4は、約350°C程度の温
度に維持した酸化鉄、銅系等の変成触媒を用いて、改質
ガス中の一酸化炭素ガスと水蒸気とを下記の反応式にて
変成反応させるように構成されている。 CO+H2 O→CO2 +H2 尚、変成装置4における変成反応は発熱反応であるの
で、後述の如く冷却水を通流させて冷却するとともに、
変成触媒を約350°C程度の温度に維持するようにし
てある。
The shift converter 4 uses a shift catalyst such as iron oxide or copper which is maintained at a temperature of about 350 ° C. to convert carbon monoxide gas and steam in the reformed gas into the following reaction formula. It is configured to cause a metamorphic reaction. CO + H 2 O → CO 2 + H 2 Since the shift reaction in the shift converter 4 is an exothermic reaction, cooling water is passed through to cool it as described later.
The shift catalyst is maintained at a temperature of about 350 ° C.

【0020】図中の1Aは、起動運転時に脱硫装置1を
脱硫反応が可能な温度に加熱するための起動用の電気ヒ
ータ、4Aは、起動運転時に変成装置4を変成反応が可
能な温度に加熱するための起動用の加熱手段としての電
気ヒータ、2Aは、改質装置2を改質反応が可能な温度
に加熱するためのガスバーナ、3Aは、起動運転時に気
水分離器3の水を加熱して水蒸気を発生させる電気ヒー
タである。
Reference numeral 1A in the figure denotes an electric heater for start-up for heating the desulfurization apparatus 1 to a temperature at which a desulfurization reaction can be performed during start-up operation, and 4A denotes a temperature at which the shift conversion apparatus 4 can be subjected to a shift reaction during start-up operation. An electric heater as a heating means for starting for heating, 2A is a gas burner for heating the reforming device 2 to a temperature at which a reforming reaction is possible, and 3A is water for the steam separator 3 at the time of starting operation. It is an electric heater that heats to generate steam.

【0021】燃料電池発電部6は、図示しないが、燐酸
電解質層の一方の面に燃料極を付設し且つ他方の面に酸
素極を付設して構成したセルの多数を積層状に並設して
構成されている。図中の6Aは、前記セル夫々の前記燃
料極に燃料ガスを供給するように設けた燃料ガス供給部
であり、6Bは、前記セル夫々の前記酸素極に酸素含有
ガスとしての空気を供給するように設けた空気供給部で
あり、6Cは、前記セル夫々の前記燃料極から燃料ガス
が排出されるように設けた燃料ガス排出部であり、6D
は、前記セル夫々の前記酸素極から空気が排出されるよ
うに設けた空気排出部である。
Although not shown in the figure, the fuel cell power generation unit 6 has a stack of a number of cells each having a fuel electrode attached to one surface of the phosphoric acid electrolyte layer and an oxygen electrode attached to the other surface. Is configured. Reference numeral 6A in the drawing denotes a fuel gas supply unit provided so as to supply a fuel gas to the fuel electrode of each cell, and 6B supplies air as an oxygen-containing gas to the oxygen electrode of each cell. 6C is a fuel gas discharge portion provided so that the fuel gas is discharged from the fuel electrode of each of the cells.
Is an air discharge part provided so that air is discharged from the oxygen electrode of each of the cells.

【0022】変成装置4と燃料ガス供給部6Aとが燃料
ガス路13にて接続されて、変成装置4において改質ガ
ス中の一酸化炭素ガスを水蒸気と反応させて二酸化炭素
ガスに変成した改質ガスが、燃料ガスとして燃料電池発
電部6の燃料ガス供給部6Aに供給されるようになって
いる。前述の空気送風用のファン5と空気供給部6Bと
が空気路14にて接続されて、ファン5からの空気が空
気供給部6Bに供給されるようになっている。
The shift device 4 and the fuel gas supply unit 6A are connected by the fuel gas passage 13, and in the shift device 4, the carbon monoxide gas in the reformed gas is reacted with steam to transform it into carbon dioxide gas. The quality gas is supplied to the fuel gas supply unit 6A of the fuel cell power generation unit 6 as the fuel gas. The air blowing fan 5 and the air supply unit 6B described above are connected to each other through the air passage 14, and the air from the fan 5 is supplied to the air supply unit 6B.

【0023】又、燃料ガス排出部6Cとガスバーナ2A
とがバーナ用排ガス路15にて接続されて、燃料ガス排
出部6Cに排出される排燃料ガスを改質装置2の加熱用
バーナとしてのガスバーナ2Aに燃焼用ガスとして供給
するようになっている。図中の16Aは、空気供給路2
6を通してガスバーナ2Aに燃焼用空気を送風する燃焼
用空気送風用のファン、16Bは、起動運転時にガスバ
ーナ2Aに燃焼用ガスを供給するための起動用の燃焼用
ガス路、16Cは、燃焼排ガスを導く燃焼排ガス路であ
る。
Further, the fuel gas discharge section 6C and the gas burner 2A
Are connected to each other through the burner exhaust gas passage 15, and the exhaust fuel gas discharged to the fuel gas discharge portion 6C is supplied to the gas burner 2A serving as the heating burner of the reformer 2 as combustion gas. . 16A in the figure is the air supply path 2
A combustion air blowing fan that blows combustion air to the gas burner 2A through 6; a start combustion gas passage 16B for supplying combustion gas to the gas burner 2A during start-up operation; and 16C a combustion exhaust gas. This is the combustion exhaust gas path that leads.

【0024】又、燃料ガス路13を通流する燃料ガスの
一部を脱硫用ガスとして原燃料ガス供給路7に供給する
ように、燃料ガス路13と原燃料ガス供給路7とが前述
の脱硫用ガス路17にて接続されている。
Further, the fuel gas passage 13 and the raw fuel gas supply passage 7 are provided so that a part of the fuel gas flowing through the fuel gas passage 13 is supplied to the raw fuel gas supply passage 7 as a desulfurizing gas. They are connected by a desulfurization gas passage 17.

【0025】燃料電池発電装置の運転停止中に、脱硫装
置1、エジェクタ8、改質装置2、変成装置4及び燃料
電池発電部6等に窒素ガスを充填するように、原燃料ガ
ス路7にパージ用窒素ガス路18が接続されている。
The raw fuel gas passage 7 is filled with nitrogen gas so that the desulfurizer 1, the ejector 8, the reformer 2, the shift converter 4, the fuel cell power generator 6 and the like are filled with nitrogen gas while the fuel cell power generator is stopped. A purging nitrogen gas passage 18 is connected.

【0026】原燃料ガス路7には脱硫装置1への原燃料
ガスの供給量を調整する原燃料ガス調整弁V1が、水蒸
気路6にはエジェクタ8への水蒸気の供給量を調整する
水蒸気調整弁V2が、パージ用窒素ガス路18にはパー
ジ用の窒素ガス供給量を調整する窒素ガス調整弁V3
が、燃焼用ガス路16Bにはガスバーナ2Aへの燃焼用
ガスの供給を断続する燃焼用ガス用開閉弁V4が夫々介
装されている。
A raw fuel gas adjusting valve V1 for adjusting the supply amount of the raw fuel gas to the desulfurization device 1 is provided in the raw fuel gas passage 7, and a steam adjustment for adjusting the supply amount of the steam to the ejector 8 is provided in the steam passage 6. A valve V2 is a nitrogen gas adjusting valve V3 for adjusting the amount of nitrogen gas for purging in the purging nitrogen gas passage 18.
However, the combustion gas passage 16B is provided with a combustion gas on-off valve V4 for intermittently supplying the combustion gas to the gas burner 2A.

【0027】気水分離器3からの水蒸気を排熱回収装置
Hに供給するように、気水分離器3と排熱回収装置Hと
が排熱回収用水蒸気路24にて接続されている。尚、そ
の排熱回収用水蒸気路24には、排熱回収装置Hへの水
蒸気の供給を断続する排熱回収用開閉弁V6が介装され
ている。
The steam / water separator 3 and the exhaust heat recovery apparatus H are connected by a steam path 24 for recovery of exhaust heat so that the steam from the steam / water separator 3 is supplied to the exhaust heat recovery apparatus H. An exhaust heat recovery on-off valve V6 that connects and disconnects the supply of steam to the exhaust heat recovery device H is interposed in the exhaust heat recovery steam passage 24.

【0028】冷却水の通流により燃料電池発電部6を冷
却する水冷作用部Mとしての蛇行状の冷却管19、及
び、冷却水の通流により変成装置4を冷却する水冷作用
部Mとしての蛇行状の冷却管20が設けられ、冷却管1
9及び冷却管20と気水分離器3とが、循環ポンプ21
を介装した冷却水循環路22及び23(以下これらをS
と総称して記載する場合もある)にて接続されて、燃料
電池発電部6の冷却管19及び変成装置4の冷却管20
に冷却水が循環供給されるようになっている。
A meandering cooling pipe 19 as a water cooling action section M for cooling the fuel cell power generation section 6 by flowing cooling water, and a water cooling action section M for cooling the shift converter 4 by flowing cooling water. A meandering cooling pipe 20 is provided, and the cooling pipe 1
9 and the cooling pipe 20 and the steam separator 3 form a circulation pump 21.
Cooling water circulation paths 22 and 23 (hereinafter referred to as S
May be collectively referred to as “), and the cooling pipe 19 of the fuel cell power generation unit 6 and the cooling pipe 20 of the shift conversion device 4 are connected.
The cooling water is circulated and supplied.

【0029】変成装置4に対する冷却水循環路23に
は、冷却管20への冷却水の供給を断続する冷却水用開
閉弁V5が介装されている。
A cooling water opening / closing valve V5 for connecting and disconnecting the cooling water to the cooling pipe 20 is provided in the cooling water circulation path 23 for the shift converter 4.

【0030】従って、気水分離器3は、冷却管19及び
20の夫々に循環供給した冷却水から水蒸気を分離する
ように構成され、前述のごとく、その水蒸気の一部が水
蒸気路10にてエジェクタ8を通じて改質装置2に改質
反応用として供給され、そして、残りが、排熱回収用水
蒸気路24にて排熱回収装置Hに供給するようになって
いる。
Therefore, the steam separator 3 is configured to separate the steam from the cooling water circulated and supplied to the cooling pipes 19 and 20, respectively, and as described above, a part of the steam is passed through the steam passage 10. It is supplied to the reformer 2 through the ejector 8 for the reforming reaction, and the rest is supplied to the exhaust heat recovery device H through the exhaust heat recovery steam passage 24.

【0031】図2に示すように、前記改質装置2から前
述の燃焼排ガス路26通して排出される燃焼排ガスにて
前述の空気供給路26を通して供給される燃焼用空気を
予熱する空気予熱用の熱交換手段27が設けられてい
る。尚、この空気予熱用の熱交換手段27は、前述のバ
ーナ用排ガス路15を通して改質装置2に供給される燃
料電池発電部6からの排燃料ガスを加熱するようになっ
ている。
As shown in FIG. 2, for the air preheating for preheating the combustion air supplied through the air supply passage 26 with the combustion exhaust gas discharged from the reformer 2 through the combustion exhaust gas passage 26. The heat exchange means 27 is provided. The heat exchanging means 27 for air preheating heats the exhaust fuel gas from the fuel cell power generation section 6 supplied to the reformer 2 through the burner exhaust gas passage 15 described above.

【0032】また、改質装置2から気予熱用の熱交換手
段27に供給される燃焼排ガスにて冷却水を加熱する冷
却水加熱用の熱交換手段28が設けられている。つま
り、冷却水循環路Sから分岐された分岐流路29が、冷
却水加熱用の熱交換手段28を通過して気水分離器3に
戻るように設けられている。この分岐流路29の分岐点
は、気水分離器3と、燃料電池発電部6及び変成装置4
との間の循環路部分になっており、そして、その循環路
部分には、冷却水の通流を断続する開閉弁V7が設けら
れている。
Further, there is provided a heat exchange means 28 for heating the cooling water which heats the cooling water with the combustion exhaust gas supplied from the reformer 2 to the heat exchange means 27 for preheating the air. That is, the branch flow path 29 branched from the cooling water circulation path S is provided so as to pass through the heat exchanging means 28 for heating the cooling water and return to the steam separator 3. The branch point of the branch flow path 29 includes the steam separator 3, the fuel cell power generation unit 6 and the shift converter 4.
An open / close valve V7 for connecting and disconnecting the flow of the cooling water is provided in the circulation path portion between and.

【0033】さらに、冷却水加熱用の熱交換手段28を
通流させる冷却水量を調整する水量調整手段としての流
量調整弁V8が、前記分岐流路29に設けられている。
Further, a flow rate adjusting valve V8 as a water amount adjusting means for adjusting the amount of cooling water flowing through the heat exchange means 28 for heating the cooling water is provided in the branch passage 29.

【0034】次に、制御装置Cの制御作動について、図
3をも参照しながら説明する。運転操作部Uから、燃料
電池発電装置の運転開始が指令されると、先ず、起動運
転制御が実行される。
Next, the control operation of the controller C will be described with reference to FIG. When the driving operation unit U issues an instruction to start driving the fuel cell power generator, first, the start-up driving control is executed.

【0035】起動運転制御では、電気ヒータ1A、3A
及び4Aを作動させるとともに、燃焼用空気送風用のフ
ァン16Aを作動させ且つ燃焼用ガス用開閉弁V4を開
成してガスバーナ2Aを燃焼させて、脱硫装置1、改質
装置2及び変成装置4夫々を夫々の反応が可能な温度に
加熱するとともに、気水分離器3に水蒸気を発生させ
る。さらには、開閉弁V7を閉成してポンプ21を作動
させ、且つ、冷却水が設定量通流する状態に流量調整弁
V8の開度を調整して、冷却水を改質装置2からの燃焼
排ガスにても加熱する。尚、脱硫装置1、改質装置2及
び変成装置4夫々には夫々の温度を検出する温度検出手
段としての温度センサT1,T2,T4が設けられ、前
記各温度センサT1,T2,T4の検出温度に基づい
て、脱硫装置1、改質装置2及び変成装置4夫々が夫々
の反応可能な温度にまで加熱されると、電気ヒータ1
A、3A及び4Aの作動を停止させるとともに、燃焼用
ガス用開閉弁V4を閉成してガスバーナ2Aを消火して
起動運転制御を終了し、続いて、定常運転制御を実行す
る。
In the starting operation control, the electric heaters 1A, 3A
And 4A are operated, the fan 16A for blowing air for combustion is operated, and the on-off valve V4 for combustion gas is opened to burn the gas burner 2A, and the desulfurization apparatus 1, the reforming apparatus 2 and the shift conversion apparatus 4 are respectively Is heated to a temperature at which each reaction is possible, and steam is generated in the steam separator 3. Further, the on-off valve V7 is closed to operate the pump 21, and the opening degree of the flow rate adjusting valve V8 is adjusted so that the cooling water flows through the set amount, so that the cooling water is supplied from the reforming device 2. It also heats flue gas. Each of the desulfurizer 1, the reformer 2, and the shift converter 4 is provided with temperature sensors T1, T2, T4 as temperature detecting means for detecting respective temperatures, and the temperature sensors T1, T2, T4 are detected. When the desulfurization apparatus 1, the reforming apparatus 2 and the shift conversion apparatus 4 are each heated to a temperature at which they can react based on the temperature, the electric heater 1
While stopping the operation of A, 3A and 4A, the combustion gas on-off valve V4 is closed to extinguish the gas burner 2A to end the start-up operation control, and then the steady-state operation control is executed.

【0036】定常運転制御では、原燃料ガス調整弁V1
及び水蒸気調整弁V2を開成するとともに開度を調整
し、冷却水用開閉弁V5及び開閉弁V7をを開成し、フ
ァン5を作動させる。又、排熱回収用開閉弁V6を開成
する。
In the steady operation control, the raw fuel gas adjusting valve V1
Also, the water vapor adjusting valve V2 is opened and the opening is adjusted, the cooling water opening / closing valve V5 and the opening / closing valve V7 are opened, and the fan 5 is operated. Also, the exhaust heat recovery on-off valve V6 is opened.

【0037】さらに、改質装置2の温度を検出する温度
センサT2の検出情報に基づいて、改質装置2の温度が
設定温度になるように流量調整弁V8の開度を自動調整
することになる。つまり、温度が設定温度より高いと開
度を開き、且つ、温度が設定温度より低いと開度を閉じ
るように流量調整弁V8の開度を自動調整する。尚、温
度が設定温度より設定幅以上高いときには、燃焼用空気
送風用のファン16Aの回転数を定常回転数よりも設定
回転数増大させる。
Further, based on the detection information of the temperature sensor T2 for detecting the temperature of the reforming device 2, the opening degree of the flow rate adjusting valve V8 is automatically adjusted so that the temperature of the reforming device 2 becomes the set temperature. Become. That is, when the temperature is higher than the set temperature, the opening is opened, and when the temperature is lower than the set temperature, the opening is closed so as to close the opening. When the temperature is higher than the set temperature by the set width or more, the number of rotations of the combustion air blowing fan 16A is set higher than the steady number of rotations.

【0038】従って、定常運転においては、原燃料ガス
及び水蒸気が供給され、脱硫装置1、改質装置2及び変
成装置4夫々にて処理されて生成された燃料ガス、及
び、ファン5からの空気が燃料電池発電部6に供給され
て、燃料電池発電部6にて直流電力が発電される。又、
燃料ガス排出部6Cに排出される排燃料ガスが燃焼用ガ
スとしてバーナ用排ガス路15を通じてガスバーナ2A
に供給される。又、気水分離器3からの冷却水が冷却管
19及び20を通流して、燃料電池発電部6及び変成装
置4夫々が冷却される。又、排熱回収用開閉弁V6が開
成されることにより、気水分離器3から水蒸気が排熱回
収装置Hに供給されて排熱が回収されることになる。
尚、燃料電池発電部6の出力電力に応じた原燃料ガス及
び水蒸気が供給されるように、前記出力電力に応じて、
原燃料ガス調整弁V1及び水蒸気調整弁V2夫々の開度
が調整される。
Therefore, in the steady operation, the raw fuel gas and the steam are supplied, and the fuel gas produced by being processed in each of the desulfurization apparatus 1, the reforming apparatus 2 and the shift conversion apparatus 4, and the air from the fan 5 are supplied. Is supplied to the fuel cell power generation unit 6, and DC power is generated in the fuel cell power generation unit 6. or,
Exhaust fuel gas discharged to the fuel gas discharge portion 6C is used as combustion gas through the burner exhaust gas passage 15 and the gas burner 2A.
Is supplied to. Further, the cooling water from the steam separator 3 flows through the cooling pipes 19 and 20, and the fuel cell power generation unit 6 and the shift converter 4 are cooled. Further, by opening the exhaust heat recovery on-off valve V6, the steam is supplied from the steam separator 3 to the exhaust heat recovery device H and the exhaust heat is recovered.
In order to supply the raw fuel gas and steam according to the output power of the fuel cell power generation unit 6, according to the output power,
The openings of the raw fuel gas adjusting valve V1 and the steam adjusting valve V2 are adjusted.

【0039】前記運転操作部Uから、燃料電池発電装置
の運転停止が指令されると、原燃料ガス調整弁V1、水
蒸気調整弁V2、及び、冷却水用開閉弁V5を閉成し、
ファン5及び16Aを停止させるとともに、窒素ガス調
整弁V3を開成する。
When an instruction to stop the operation of the fuel cell power generator is issued from the operation unit U, the raw fuel gas adjusting valve V1, the steam adjusting valve V2, and the cooling water opening / closing valve V5 are closed.
The fans 5 and 16A are stopped, and the nitrogen gas regulating valve V3 is opened.

【0040】従って、ポンプ21にて、冷却水は気水分
離器3から燃料電池発電部6の冷却管19のみに供給さ
れる。従って、冷却管19における冷却水の通流によ
り、燃料電池発電部6は強制的に冷却され、冷却管20
における冷却水の通流は停止するので、変成装置4は自
然に冷却される。尚、燃料電池発電部6の温度を検出す
る温度センサT6の検出温度に基づき、燃料電池発電部
6が常温付近にまで冷却されると、排熱回収用開閉弁V
6を閉成し、ポンプ21を停止させる。
Therefore, the pump 21 supplies the cooling water from the steam separator 3 only to the cooling pipe 19 of the fuel cell power generation section 6. Therefore, the fuel cell power generation unit 6 is forcibly cooled by the flow of the cooling water through the cooling pipe 19, and the cooling pipe 20
Since the flow of cooling water at is stopped, the shift converter 4 is naturally cooled. When the fuel cell power generation unit 6 is cooled to near normal temperature based on the temperature detected by the temperature sensor T6 that detects the temperature of the fuel cell power generation unit 6, the exhaust heat recovery on-off valve V
6 is closed and the pump 21 is stopped.

【0041】又、窒素ガス調整弁V3の開成により、脱
硫装置1、エジェクタ8、改質装置2、変成装置4及び
燃料電池発電部6に窒素ガスが充填されるので、脱硫装
置1、エジェクタ8、改質装置2、変成装置4及び燃料
電池発電部6は不活性状態に維持される。
Further, by opening the nitrogen gas regulating valve V3, the desulfurization device 1, the ejector 8, the reforming device 2, the shift conversion device 4, and the fuel cell power generation section 6 are filled with nitrogen gas, so that the desulfurization device 1 and the ejector 8 are provided. , The reformer 2, the shift converter 4, and the fuel cell power generator 6 are maintained in an inactive state.

【0042】〔別実施例〕次に別実施例を列記する。 上記実施例では、変成装置4を備えさせて、その水
冷作用部20を設ける場合について例示したが、燃料電
池発電部6に対する水冷作用部19のみを水冷作用部M
として備えるものにも適用できる。
[Other Embodiments] Next, other embodiments will be listed. In the above embodiment, the transformation device 4 is provided and the water cooling action part 20 is provided, but only the water cooling action part 19 for the fuel cell power generation part 6 is provided in the water cooling action part M.
It can also be applied to those provided as

【0043】 上記実施例では、水量調整手段V8を
自動調整する場合について例示したが、手動調整する形
態で実施してもよい。また、自動調整する場合において
も、定常運転においてのみ自動調整する形態で実施して
もよい。
In the above embodiment, the case where the water amount adjusting means V8 is automatically adjusted has been exemplified, but it may be carried out in the form of manual adjustment. Further, even in the case of automatic adjustment, the automatic adjustment may be performed only in steady operation.

【0044】 水量調整手段V8としては、流量調整
弁に代えて、供給ポンプを設けて、このポンプの回転数
調整により調整する構成としてもよい。
As the water amount adjusting means V8, a supply pump may be provided instead of the flow rate adjusting valve, and adjustment may be made by adjusting the rotational speed of this pump.

【0045】 上記実施例では、加熱用バーナ2Aに
供給する空気量をも調整する形態について例示したが、
空気量の調整を省略しても良い。
In the above embodiment, the form in which the amount of air supplied to the heating burner 2A is also adjusted has been exemplified.
The adjustment of the air amount may be omitted.

【0046】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】燃料電池発電装置の全体構成図FIG. 1 is an overall configuration diagram of a fuel cell power generator.

【図2】要部の構成図FIG. 2 is a configuration diagram of a main part

【図3】制御構成のブロック図FIG. 3 is a block diagram of a control configuration.

【図4】従来例の構成図FIG. 4 is a block diagram of a conventional example

【符号の説明】[Explanation of symbols]

2 改質装置 2A 加熱用バーナ 3 気水分離器 24 排熱回収路 26 空気供給路 27 空気予熱用の熱交換手段 28 冷却水加熱用の熱交換手段 C 制御手段 H 排熱回収装置 M 水冷作用部 S 冷却水循環路 T2 温度検出手段 V8 水量調整手段 2 reformer 2A heating burner 3 steam-water separator 24 exhaust heat recovery path 26 air supply path 27 air preheating heat exchange means 28 cooling water heating heat exchange means C control means H exhaust heat recovery apparatus M water cooling action Part S Cooling water circulation path T2 Temperature detecting means V8 Water amount adjusting means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原燃料ガスを水素ガスを主成分とする改
質ガスに改質する改質装置(2)の加熱用バーナ(2
A)に対して、燃焼用空気を供給する空気供給路(2
6)が設けられ、 前記改質装置(2)からの燃焼排ガスにて前記空気供給
路(26)を通して供給される燃焼用空気を予熱する空
気予熱用の熱交換手段(27)が設けられ、 気水分離器(3)と水冷作用部(M)とに亘り冷却水を
循環させる冷却水循環路(S)が設けられ、 排熱回収装置(H)に水蒸気を供給するように、前記気
水分離器(3)と排熱回収装置(H)とを接続する排熱
回収路(24)が設けられた燃料電池発電装置であっ
て、 前記改質装置(2)から前記空気予熱用の熱交換手段
(27)に供給される燃焼排ガスにて前記冷却水を加熱
する冷却水加熱用の熱交換手段(28)が設けられ、 その冷却水加熱用の熱交換手段(28)を通流させる冷
却水量を調整する水量調整手段(V8)が設けられてい
る燃料電池発電装置。
1. A heating burner (2) of a reformer (2) for reforming a raw fuel gas into a reformed gas containing hydrogen gas as a main component.
Air supply path (2) for supplying combustion air to A)
6) is provided, and heat exchanging means (27) for air preheating for preheating the combustion air supplied through the air supply passage (26) with the combustion exhaust gas from the reformer (2) is provided. A cooling water circulation path (S) is provided to circulate the cooling water between the steam separator (3) and the water cooling section (M), and the steam is supplied to the exhaust heat recovery device (H). A fuel cell power generator provided with an exhaust heat recovery passageway (24) connecting a separator (3) and an exhaust heat recovery device (H), the heat for air preheating from the reforming device (2). A heat exchange means (28) for heating the cooling water is provided for heating the cooling water with the combustion exhaust gas supplied to the exchange means (27), and the heat exchange means (28) for heating the cooling water is caused to flow. Fuel cell power generator provided with water amount adjusting means (V8) for adjusting the amount of cooling water
【請求項2】 前記改質装置(2)の温度を検出する温
度検出手段(T2)が設けられ、 前記改質装置(2)の温度を設定適正温度に維持させる
ように、前記温度検出手段(T2)の検出情報に基づい
て水量調整手段(V8)を自動調整する制御手段(C)
が設けられている請求項1記載の燃料電池発電装置。
2. Temperature detecting means (T2) for detecting the temperature of the reforming device (2) is provided, and the temperature detecting means is provided so as to maintain the temperature of the reforming device (2) at a set proper temperature. Control means (C) for automatically adjusting the water amount adjusting means (V8) based on the detection information of (T2)
The fuel cell power generator according to claim 1, further comprising:
【請求項3】 前記制御手段(C)は、 運転開始が指令されるに伴って、設定量の冷却水を前記
冷却水加熱用の熱交換手段(28)に通流させるように
前記水量調整手段(V8)を自動調整する起動運転制御
を実行し、 その起動運転の終了に伴って、前記改質装置(2)の温
度を設定適正温度に維持させるように、前記温度検出手
段(T2)の検出情報に基づいて水量調整手段(29)
を自動調整する通常運転制御を実行するように構成され
ている請求項2記載の燃料電池発電装置。
3. The control means (C) adjusts the amount of water so that a set amount of cooling water is caused to flow through the heat exchange means (28) for heating the cooling water when an operation start is commanded. The temperature detection means (T2) is configured to perform start-up operation control for automatically adjusting the means (V8), and to keep the temperature of the reformer (2) at the set proper temperature upon completion of the start-up operation. Water quantity adjusting means (29) based on detection information of
The fuel cell power generator according to claim 2, which is configured to execute a normal operation control for automatically adjusting the fuel cell.
【請求項4】 前記改質装置(2)にて生成されて燃料
電池発電部(6)に供給される改質ガス中の一酸化炭素
ガスを水蒸気と反応させて二酸化炭素ガスに変成する変
成装置(4)が設けられ、 前記水冷作用部(M)として、前記燃料電池発電部
(6)に対する発電部用の水冷作用部(19)と、前記
変成装置(4)に対する変成装置用の水冷作用部(2
0)とが設けられている請求項1、2又は3記載の燃料
電池発電装置。
4. Metamorphism in which carbon monoxide gas in the reformed gas generated in the reformer (2) and supplied to the fuel cell power generation section (6) is reacted with steam to transform it into carbon dioxide gas. A device (4) is provided, and as the water cooling action unit (M), a water cooling action unit (19) for a power generation unit for the fuel cell power generation unit (6) and a water cooling action unit for the shift device (4). Action part (2
0) is provided, The fuel cell power generator according to claim 1, 2 or 3.
JP02870094A 1994-02-28 1994-02-28 Fuel cell generator Expired - Fee Related JP3362947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02870094A JP3362947B2 (en) 1994-02-28 1994-02-28 Fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02870094A JP3362947B2 (en) 1994-02-28 1994-02-28 Fuel cell generator

Publications (2)

Publication Number Publication Date
JPH07240223A true JPH07240223A (en) 1995-09-12
JP3362947B2 JP3362947B2 (en) 2003-01-07

Family

ID=12255749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02870094A Expired - Fee Related JP3362947B2 (en) 1994-02-28 1994-02-28 Fuel cell generator

Country Status (1)

Country Link
JP (1) JP3362947B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198073A (en) * 2000-12-22 2002-07-12 Honda Motor Co Ltd Control method of heat treatment system
US6692853B2 (en) 2000-12-22 2004-02-17 Honda Giken Kogyo Kabushiki Kaisha Recovery system of heat energy in a fuel cell system
KR100464202B1 (en) * 2002-03-07 2005-01-03 주식회사 엘지이아이 Heating system for fuel cell and control method thereof
US7037616B2 (en) 2000-12-27 2006-05-02 Honda Giken Kogyo Kabushiki Kaisha Fuel cell system having drain for condensed water stored in reforming reactor
WO2005076400A3 (en) * 2004-01-26 2006-07-27 Modine Mfg Co Coolant conditioning system and method for a fuel processing subsystem
JP2007070130A (en) * 2005-09-05 2007-03-22 Fuji Electric Holdings Co Ltd Hydrogen generating apparatus and power generating system equipped with the same
JP2010013302A (en) * 2008-07-02 2010-01-21 Panasonic Corp Hydrogen generating unit
JP2011210639A (en) * 2010-03-30 2011-10-20 Eneos Celltech Co Ltd Fuel cell system
US8241806B2 (en) 2004-11-08 2012-08-14 Honda Motor Co., Ltd. Fuel cell system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198073A (en) * 2000-12-22 2002-07-12 Honda Motor Co Ltd Control method of heat treatment system
US6692853B2 (en) 2000-12-22 2004-02-17 Honda Giken Kogyo Kabushiki Kaisha Recovery system of heat energy in a fuel cell system
US7037616B2 (en) 2000-12-27 2006-05-02 Honda Giken Kogyo Kabushiki Kaisha Fuel cell system having drain for condensed water stored in reforming reactor
KR100464202B1 (en) * 2002-03-07 2005-01-03 주식회사 엘지이아이 Heating system for fuel cell and control method thereof
WO2005076400A3 (en) * 2004-01-26 2006-07-27 Modine Mfg Co Coolant conditioning system and method for a fuel processing subsystem
US7548683B2 (en) 2004-01-26 2009-06-16 Modine Manufacturing Company Coolant conditioning system and method for a fuel processing subsystem
US8241806B2 (en) 2004-11-08 2012-08-14 Honda Motor Co., Ltd. Fuel cell system
JP2007070130A (en) * 2005-09-05 2007-03-22 Fuji Electric Holdings Co Ltd Hydrogen generating apparatus and power generating system equipped with the same
JP4640052B2 (en) * 2005-09-05 2011-03-02 富士電機システムズ株式会社 Hydrogen generator and power generation system provided with the same
JP2010013302A (en) * 2008-07-02 2010-01-21 Panasonic Corp Hydrogen generating unit
JP2011210639A (en) * 2010-03-30 2011-10-20 Eneos Celltech Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP3362947B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JP3362947B2 (en) Fuel cell generator
JP2889807B2 (en) Fuel cell system
US8328886B2 (en) Fuel processor having temperature control function for co shift reactor and method of operating the fuel processor
JP4106356B2 (en) Fuel cell system
JP2791130B2 (en) Fuel cell power plant
JP3986430B2 (en) Hydrogen utilization system using solid oxide fuel cell
JP3530458B2 (en) Method and apparatus for starting polymer electrolyte fuel cell
JP3585249B2 (en) Fuel cell power generator
JP3564812B2 (en) Fuel cell power generation equipment
JP3679792B2 (en) Solid polymer fuel cell power generator
JP3448567B2 (en) Polymer electrolyte fuel cell power generator
JP2825285B2 (en) Fuel cell power generation system
KR101070594B1 (en) temperature and humidity control apparatus of fuel gas for fuel cell stack and method thereof
JP4660910B2 (en) Fuel cell power generation apparatus and starting method thereof
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JPH07122285A (en) Method and device for cooling transformer for fuel cell power generator
JPH07240222A (en) Water treatment apparatus for fuel cell power generation device
JP2004296266A (en) Fuel cell system
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
JPH0992316A (en) Method of raising temperature of fuel cell power generating device
JP3561706B2 (en) Polymer electrolyte fuel cell power generator
JP2000285940A (en) Solid polymer fuel cell power generation system
JPH05275103A (en) Method and device for starting fuel cell generating device
JPH1126006A (en) Power-generating device of fuel cell
JPH06196189A (en) Fuel cell power generating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees