JPH07235803A - Coaxial high power low pass filter - Google Patents

Coaxial high power low pass filter

Info

Publication number
JPH07235803A
JPH07235803A JP2765694A JP2765694A JPH07235803A JP H07235803 A JPH07235803 A JP H07235803A JP 2765694 A JP2765694 A JP 2765694A JP 2765694 A JP2765694 A JP 2765694A JP H07235803 A JPH07235803 A JP H07235803A
Authority
JP
Japan
Prior art keywords
coaxial
low
pass filter
conductor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2765694A
Other languages
Japanese (ja)
Inventor
Kazuo Haginuma
一夫 萩沼
Ikuo Hosoda
育生 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2765694A priority Critical patent/JPH07235803A/en
Publication of JPH07235803A publication Critical patent/JPH07235803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To provide the high power low pass filter in which a sufficient block band is provided up to a band being a multiple of 15 of that of a fundamental wave and no high frequency discharge is caused even when a continuous wave whose power is nearly 100W and which is operated stably thermally. CONSTITUTION:The filter consists of a coaxial inner conductor 1, a coaxial outer conductor 2 each comprising combination of a low impedance line and a high impedance line, and of a dielectric body 3 inserted between the inner conductor 1 and the outer conductor 2. A straight pipe without a step difference is adopted for the outer conductor 2 to prevent discharge, and the inner conductor 1 is made up of two coaxial low pass filters A,B whose cut-off frequency differs and which are connected directly by a 50ohm line 4 and the dielectric body 3 is made of an aluminum nitride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波通信装置に
関し、特にマイクロ波通信装置に於ける最終段高出力増
幅器の出力側に設置される高周波除去用低域フィルタに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave communication device, and more particularly to a low frequency filter for high frequency elimination installed on the output side of a final stage high power amplifier in the microwave communication device.

【0002】[0002]

【従来の技術】例えは゛、通信衛星に於いては、種々の
ミッションを遂行する為に複数のマイクロ波通信装置が
搭載される。こうしたマイクロ波通信装置は種々の周波
数・電力の信号が共存する中で、比較的低い送信周波数
の機器から出力する高周波成分が、高い受信周波数の機
器に入力し干渉する事がない様に設計されなければな
い。この為、基本波を例えれば2GHzとすると基本波
の15倍迄の広帯域(即ち30GHz迄)に於て充分な
阻止量を有する事が出来、且つ100Wピーク程度の基
本波が印加されても、高周波放電する事なく、また熱的
にも安定に動作する高電力用低域フィルタが必要とされ
る。
2. Description of the Related Art For example, in a communication satellite, a plurality of microwave communication devices are mounted to carry out various missions. Such a microwave communication device is designed so that high frequency components output from a device with a relatively low transmission frequency do not enter and interfere with a device with a high reception frequency in the presence of signals of various frequencies and powers. There is not. Therefore, if the fundamental wave is, for example, 2 GHz, it can have a sufficient blocking amount in a wide band up to 15 times the fundamental wave (that is, up to 30 GHz), and even if a fundamental wave of about 100 W peak is applied, There is a need for a high-power low-pass filter that does not generate high-frequency discharge and that operates stably thermally.

【0003】従来の同軸型低減フィルタは、図3に示す
様に、太径円柱部11と細径部12とを交互に組み合わ
せた同軸内導体1、同軸外導体2、太径円柱部11と同
軸外導体2との間に配置されたテフロン製の誘電体13
並びに外部回路との接続を為す50Ω線路4から構成さ
れていた。図3の従来の同軸型低域フィルタは、技術
書”MICROWAVE FILTERS,IMPED
ANCE−MATCHING NETWORKS,AN
D COUPLING STRUCTURES”Geo
rge L.Matthael et al,McGR
AW−HILLBOOK COMPANY,PP371
に記載のものの要部である。この同軸型低域フィルタで
は、太径円柱部11は同軸外導体2及びその間に配置さ
れた誘電体13と相俟って低特性インピーダンス部を形
成する。この低特性インピーダンス部が等価的な容量性
素子となる。一方、細径部12は同軸外導体2と相俟っ
て高インピーダンス部を形成する。この高インピーダン
ス部が等価的な誘導性素子となる。この様にして図3の
回路の等価回路は、容量性素子と誘導性素子とが交互に
接続されている梯子型回路となり、低域フィルタ特性を
具現するものである。各太径円柱部11の長さ及び各細
径部12の長さは、与えられた低/高特性インピーダン
ス条件の下で、フィルタの遮断周波数から一義的に決定
される。
As shown in FIG. 3, a conventional coaxial type reduction filter has a coaxial inner conductor 1, a coaxial outer conductor 2, and a large diameter cylinder portion 11 in which a large diameter cylinder portion 11 and a small diameter portion 12 are alternately combined. Teflon dielectric 13 disposed between the coaxial outer conductor 2
In addition, it was composed of a 50Ω line 4 for connection with an external circuit. The conventional coaxial low-pass filter shown in FIG. 3 is provided by the technical document "MICROWAVE FILTERS, IMPED.
AANCE-MATCHING NETWORKS, AN
D COUPLING STRUCTURES “Geo
rge L.L. Matthael et al, McGR
AW-HILLBOOK COMPANY, PP371
It is an essential part of the one described in. In this coaxial low-pass filter, the large-diameter cylindrical portion 11 forms a low-characteristic impedance portion together with the coaxial outer conductor 2 and the dielectric 13 arranged between them. This low characteristic impedance part becomes an equivalent capacitive element. On the other hand, the small diameter portion 12 forms a high impedance portion in cooperation with the coaxial outer conductor 2. This high impedance portion becomes an equivalent inductive element. In this way, the equivalent circuit of the circuit of FIG. 3 becomes a ladder type circuit in which capacitive elements and inductive elements are alternately connected, and realizes a low-pass filter characteristic. The length of each large-diameter cylindrical portion 11 and the length of each small-diameter portion 12 are uniquely determined from the cutoff frequency of the filter under given low / high characteristic impedance conditions.

【0004】[0004]

【発明が解決しようとする課題】この従来の同軸型低域
フィルタでは、図4に示される細径部12の長さLLi
i=1〜3の各々に於いて、その長さが大体、λ0/2
の整数倍となる周波数(茲でλ0は自由空間波長であ
る)に於いて共振する為に、図5に示される様に、遮断
周波数の約4倍以上の周波数領域では減衰量が確保でき
なくなる。即ち、従来の同軸型低域フィルタを用いたの
では、広範囲に互って減衰量を確保することが不可能で
あるから、同じ通信衛星に搭載される高い周波数を取扱
う他の機器への干渉を防止できなかった。
In this conventional coaxial low-pass filter, the length L Li of the small diameter portion 12 shown in FIG.
In each of the i = 1 to 3, the length is approximately, λ 0/2
Since it resonates at a frequency that is an integral multiple of (where λ 0 is the free space wavelength), as shown in FIG. 5, the amount of attenuation can be secured in the frequency range of about 4 times the cutoff frequency or more. Disappear. That is, since it is impossible to secure the attenuation amount over a wide range by using the conventional coaxial low-pass filter, it is possible to interfere with other devices that handle high frequencies mounted on the same communication satellite. Could not be prevented.

【0005】また、この従来の同軸形低域フィルタに1
00Wピーク程度の高電力を印加すると、図6に示され
る様に太径円柱部11の端縁に於いて電界が集中しマイ
クロ波放電を引き起こしてしまう。更に、一般にマイク
ロ波回路の材料として用いられるテフロン材を誘電体1
3の材料として使用していたが、テフロンは熱抵抗が高
いので、高い熱抵抗の誘電体13が内、外導体間に介在
する図3の従来構造では、同軸内導体1の温度が外導体
2に比べて著しく高温となり、誘電体13が熱変形し、
減衰特性が変動することがあった。
In addition, the conventional coaxial low-pass filter has
When a high power of about 00 W peak is applied, the electric field is concentrated on the edge of the large-diameter cylindrical portion 11 as shown in FIG. 6, and microwave discharge is caused. Furthermore, a Teflon material generally used as a material for microwave circuits is used as the dielectric 1
Although Teflon has a high thermal resistance, the temperature of the coaxial inner conductor 1 is the same as that of the outer conductor in the conventional structure of FIG. 3 in which the dielectric 13 having a high heat resistance is interposed between the inner and outer conductors. The temperature becomes extremely higher than that of 2, and the dielectric 13 is thermally deformed,
The damping characteristics sometimes fluctuated.

【0006】このように、従来の同軸形低域フィルタに
は、周波数帯域、通過電力および特性の安定性に関し解
決すべき課題があった。
As described above, the conventional coaxial low-pass filter has problems to be solved in terms of frequency band, passing power, and stability of characteristics.

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
めに本発明は次の手段を提供する。
In order to solve the above problems, the present invention provides the following means.

【0008】低特性インピーダンス線路と高特性イン
ピーダンス線路が組み合わされた同軸内導体と、同軸外
導体と、該同軸内導体と該同軸外導体との間に延在して
挿入された円筒直管誘電体とからなり、該同軸外導体は
段差のない同一径の直管とし、該同軸内導体は互いに異
なる遮断周波数を有する2つの同軸低域フィルタ用同軸
内導体を50Ω線路で直接に接続したものとし、該円筒
直管誘電体が窒化アルミニウムでなることを特徴とする
同軸形高電力低域フィルタ。
[0008] A coaxial inner conductor in which a low characteristic impedance line and a high characteristic impedance line are combined, a coaxial outer conductor, and a cylindrical straight pipe dielectric inserted to extend between the coaxial inner conductor and the coaxial outer conductor. The coaxial outer conductor is a straight pipe having the same diameter without a step, and the coaxial inner conductor is formed by directly connecting two coaxial inner conductors for coaxial low-pass filters having different cutoff frequencies with a 50Ω line. And a coaxial high-power low-pass filter in which the cylindrical straight tube dielectric is made of aluminum nitride.

【0009】遮断周波数f1の同軸低域フィルタA
と、遮断周波数f2(f1<f2)の同軸低域フィルタB
と、前記同軸低域フィルタA及びBを直列に接続する5
0Ω同軸線路とでなり、前記同軸低域フィルタA及びB
並びに前記50Ω同軸線路は、該50Ω同軸線路の両端
を前記同軸低域フィルタA及びBの各端で挟んだ形に配
置されているとともに、1つの円筒形導体をそれぞれの
外導体として共用しており、前記円筒形導体の内壁に密
着して該円筒形導体と同軸の円筒形誘電体が設けられて
おり、前記同軸低域フィルタA及びBの内導体は太径円
柱部と細径部とを軸方向に交互に配置してなることを特
徴とする同軸形高電力用低域フィルタ。
Coaxial low-pass filter A with cut-off frequency f 1
And a coaxial low-pass filter B with a cutoff frequency f 2 (f 1 <f 2 ).
And the coaxial low-pass filters A and B are connected in series 5
The coaxial low-pass filters A and B are composed of a 0Ω coaxial line.
The 50Ω coaxial line is arranged such that both ends of the 50Ω coaxial line are sandwiched between the ends of the coaxial low-pass filters A and B, and one cylindrical conductor is shared as each outer conductor. And a cylindrical dielectric body coaxial with the cylindrical conductor is provided in close contact with the inner wall of the cylindrical conductor, and the inner conductors of the coaxial low-pass filters A and B have a large diameter cylindrical portion and a small diameter portion. A coaxial high-power low-pass filter characterized by being alternately arranged in the axial direction.

【0010】前記同軸低域フィルタAにおける前記太
径円柱部および細径部の軸方向長さは前記同軸低域フィ
ルタBにおける太径円柱部および細径部の軸方向長さよ
りそれぞれ長いことを特徴とする上記に記載の同軸形
高電力用低域フィルタ。
The axial lengths of the large-diameter cylindrical portion and the small-diameter portion of the coaxial low-pass filter A are longer than the axial lengths of the large-diameter cylindrical portion and the small-diameter portion of the coaxial low-pass filter B, respectively. The coaxial high-power low-pass filter described above.

【0011】[0011]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の2GHzを送信周波数と
するミションに使用する同軸高電力用低域フィルタの断
面図である。図1に於いて1は同軸内導体であり、2は
同軸外導体、3は同軸内導体1と同軸外導体2との間に
延在する円筒直管誘電体であり、窒化アルミニウム材で
なっている。同軸外導体2は段差をもたない同一径の直
管である。同軸内導体1は、遮断周波数3GHzの低域
フィルタA用内導体と遮断周波数9GHzの低域フィル
タB用内導体とから成っている。低域フィルタA及びB
は50Ω線路4にて直接に接続されている。
The present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a coaxial high-power low-pass filter used for a mission having a transmission frequency of 2 GHz according to an embodiment of the present invention. In FIG. 1, 1 is a coaxial inner conductor, 2 is a coaxial outer conductor, 3 is a cylindrical straight pipe dielectric extending between the coaxial inner conductor 1 and the coaxial outer conductor 2, and is made of an aluminum nitride material. ing. The coaxial outer conductor 2 is a straight pipe having the same diameter and no step. The coaxial inner conductor 1 is composed of an inner conductor for a low-pass filter A having a cutoff frequency of 3 GHz and an inner conductor for a low-pass filter B having a cutoff frequency of 9 GHz. Low pass filters A and B
Are directly connected by a 50Ω line 4.

【0012】各低域フィルタ用内導体は、太径円柱部1
1による低特性インピーダンス線路及び細径部12よる
高特性インピーダンス線路を交互に組み合わせてなり、
容量性素子と誘導性素子との梯子形回路を形成し、各遮
断周波数の低域フィルタを具現している。遮断周波数3
GHzの低域フィルタAの減衰量特性は図5に示され
る。この低域フィルタAの遮断周波数が低域フィルタB
の遮断周波数に比べて低い。そこで、低域フィルタAに
おける太径円柱部11および細径部12の長手方向の各
寸法が比較的長い。従って、低域フィルタAの共振点は
低い所にある。
The inner conductor for each low-pass filter has a large-diameter cylindrical portion 1.
The low characteristic impedance line according to 1 and the high characteristic impedance line due to the small diameter portion 12 are alternately combined,
A ladder type circuit of a capacitive element and an inductive element is formed to realize a low pass filter with each cutoff frequency. Cutoff frequency 3
The attenuation characteristic of the low-pass filter A of GHz is shown in FIG. The cutoff frequency of the low-pass filter A is the low-pass filter B.
Lower than the cutoff frequency of. Therefore, each of the large-diameter cylindrical portion 11 and the small-diameter portion 12 in the low-pass filter A has a relatively long dimension in the longitudinal direction. Therefore, the resonance point of the low-pass filter A is low.

【0013】低域フィルタAの減衰特性は、図5に示さ
れる様に、13GHz近辺から悪化している。一方、遮
断周波数9GHzの低域フィルタBの減衰特性は、図2
に示される。低域フィルタBの遮断周波数が高いから、
低域フィルタBの内導体1における太径円柱部11およ
び細径部12の長手方向の各寸法が比較的短かい。それ
故、低域フィルタBにおける共振点は38GHz以上の
所にあり、13〜30GHzの領域で減衰量を確保でき
る。但し3〜10GHzの範囲内の減衰量は期待できな
い。この様な減衰特性の低域フィルタA及びBを50Ω
同軸線路4で直接に接続すると、減衰量はほぼ両フィル
タの和になる。3〜12GHzは低域フィルタAによ
り、12〜30GHzは低域フィルタBにより減衰量が
それぞれ保証されるので、3〜30GHzという非常な
広範囲に互って減衰量を確保できる。尚、2GHzの基
本波送信周波数に於いて低域フィルタA及びB共に整合
しているので、図1の実施例により基本波を良好に伝送
する事が可能である。
As shown in FIG. 5, the attenuation characteristic of the low-pass filter A deteriorates from around 13 GHz. On the other hand, the attenuation characteristic of the low-pass filter B having a cutoff frequency of 9 GHz is shown in FIG.
Shown in. Since the cutoff frequency of the low-pass filter B is high,
Each of the large-diameter cylindrical portion 11 and the small-diameter portion 12 in the inner conductor 1 of the low-pass filter B has relatively short longitudinal dimensions. Therefore, the resonance point in the low-pass filter B is located at 38 GHz or higher, and the amount of attenuation can be secured in the region of 13 to 30 GHz. However, the amount of attenuation within the range of 3 to 10 GHz cannot be expected. The low-pass filters A and B having such attenuation characteristics are set to 50Ω.
When directly connected by the coaxial line 4, the amount of attenuation is almost the sum of both filters. The attenuation amount of 3 to 12 GHz is guaranteed by the low-pass filter A, and the attenuation amount of 12 to 30 GHz is guaranteed by the low-pass filter B. Therefore, the attenuation amount can be secured in a very wide range of 3 to 30 GHz. Since the low-pass filters A and B are matched at the fundamental wave transmission frequency of 2 GHz, the fundamental wave can be satisfactorily transmitted by the embodiment shown in FIG.

【0014】100Wピーク程度の高電力を印加する
と、図3の従来例では、図6に示すように、太径円柱部
11の端縁における電界集中により放電破壊に至った
が、本実施例によれば、図1に示される様に、同軸内導
体1と同軸外導体2との間に、軸方向に延在して円筒直
管誘導電体3が介在しているので太径円柱部11の端縁
における電界集中はあっても、空間電子は誘電体3に遮
られて同軸外導体2に到達できないので、マイクロ波放
電は起らない。また太径円柱部11の端縁と同軸外導体
2との間に印加される電圧に対しても窒化アルミニウム
材の誘電体3は、充分な絶縁耐圧を有するので、破壊さ
れない。
When a high power of about 100 W peak is applied, in the conventional example of FIG. 3, electric discharge is concentrated on the edge of the large diameter cylindrical portion 11 as shown in FIG. According to this, as shown in FIG. 1, since the cylindrical straight pipe induction body 3 extends in the axial direction between the coaxial inner conductor 1 and the coaxial outer conductor 2, the large-diameter cylindrical portion 11 is provided. Although the electric field is concentrated on the edge of the space, the space electrons are blocked by the dielectric 3 and cannot reach the coaxial outer conductor 2, so that the microwave discharge does not occur. Further, the dielectric 3 made of an aluminum nitride material has a sufficient withstand voltage against a voltage applied between the end of the large-diameter cylindrical portion 11 and the coaxial outer conductor 2, and therefore is not destroyed.

【0015】同軸内導体1の挿入損失により発生する熱
は、金属アルミニウムに匹敵する良好な熱伝導率を有す
る窒化アルミニウム材で構成された誘電体3を通して熱
伝導にて同軸外導体2、即ちケース側に逃げてしまうの
で、同軸内導体1が高温化して誘電体3等の各部を破壊
することはない。したがって、本実施例の周波数特性
は、使用時間によって変化せず、安定である。
The heat generated by the insertion loss of the coaxial inner conductor 1 is conducted by heat conduction through the dielectric 3 made of an aluminum nitride material having a good thermal conductivity comparable to that of metallic aluminum, that is, the case. Since it escapes to the side, the temperature of the coaxial inner conductor 1 does not rise and the parts such as the dielectric 3 are not destroyed. Therefore, the frequency characteristic of the present embodiment is stable and does not change with the use time.

【0016】尚、説明の便宣上、遮断周波数3GHzと
9GHzの低域フィルタA,Bを組み合わせて説明した
が、他の遮断周波数の低域フィルタの組み合わせでも本
願発明が実施できることは自明である。
Incidentally, for convenience of explanation, the description has been made by combining the low-pass filters A and B having the cut-off frequencies of 3 GHz and 9 GHz, but it is obvious that the invention of the present application can be implemented by combining the low-pass filters having other cut-off frequencies. .

【0017】[0017]

【発明の効果】以上に述べた如く、本発明によれば、非
常に広い周波数帯域に於いて充分な減衰量を確保でき、
しかも高電力印加に耐えられ、さらに特性の安定な低域
フィルタを提供でき、本発明は実用上益する事、甚々大
である。
As described above, according to the present invention, a sufficient amount of attenuation can be secured in a very wide frequency band,
Moreover, it is possible to provide a low-pass filter that can withstand application of high power and has stable characteristics, and the present invention is of great benefit in practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の縦断面図。FIG. 1 is a vertical sectional view of an embodiment of the present invention.

【図2】遮断周波数9GHzの低域フィルタBの減衰特
性図。
FIG. 2 is an attenuation characteristic diagram of a low-pass filter B having a cutoff frequency of 9 GHz.

【図3】従来の低域フィルタの縦断面図。FIG. 3 is a vertical cross-sectional view of a conventional low pass filter.

【図4】図3に示した従来の低域フィルタの長手方向各
部の寸法を示す図。
FIG. 4 is a diagram showing the dimensions of each part in the longitudinal direction of the conventional low-pass filter shown in FIG.

【図5】遮断周波数3GHzの低域フィルタAの減衰特
性図。
FIG. 5 is an attenuation characteristic diagram of a low-pass filter A having a cutoff frequency of 3 GHz.

【図6】太径円柱部11の端縁に於ける電界集中による
放電を示す概念図。
FIG. 6 is a conceptual diagram showing discharge due to electric field concentration at the edge of the large-diameter cylindrical portion 11.

【符号の説明】 1 同軸内導体1 2 同軸外導体2 3 円筒直管誘電体 4 50Ω線路 11 太径円柱部 12 細径部 13 誘電体[Explanation of Codes] 1 inner coaxial conductor 1 2 outer coaxial conductor 2 3 cylindrical straight tube dielectric 4 50 Ω line 11 large diameter cylindrical portion 12 small diameter portion 13 dielectric

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低特性インピーダンス線路と高特性イン
ピーダンス線路が組み合わされた同軸内導体と、同軸外
導体と、該同軸内導体と該同軸外導体との間に延在して
挿入された円筒直管誘電体とからなり、該同軸外導体は
段差のない同一径の直管とし、該同軸内導体は互いに異
なる遮断周波数を有する2つの同軸低域フィルタ用同軸
内導体を50Ω線路で直接に接続したものとし、該円筒
直管誘電体が窒化アルミニウムでなることを特徴とする
同軸形高電力低域フィルタ。
1. A coaxial inner conductor, in which a low characteristic impedance line and a high characteristic impedance line are combined, a coaxial outer conductor, and a cylindrical straight line inserted to extend between the coaxial inner conductor and the coaxial outer conductor. The coaxial outer conductor is a straight pipe having the same diameter without a step, and the coaxial inner conductor is formed by directly connecting two coaxial low-pass filter coaxial inner conductors having different cutoff frequencies with a 50Ω line. A coaxial high-power low-pass filter, characterized in that the cylindrical straight tube dielectric is made of aluminum nitride.
【請求項2】 遮断周波数f1の同軸低域フィルタA
と、遮断周波数f2(f1<f2)の同軸低域フィルタB
と、前記同軸低域フィルタA及びBを直列に接続する5
0Ω同軸線路とでなり、 前記同軸低域フィルタA及びB並びに前記50Ω同軸線
路は、該50Ω同軸線路の両端を前記同軸低域フィルタ
A及びBの各端で挟んだ形に配置されているとともに、
1つの円筒形導体をそれぞれの外導体として共用してお
り、 前記円筒形導体の内壁に密着して該円筒形導体と同軸の
円筒形誘電体が設けられており、 前記同軸低域フィルタA及びBの内導体は太径円柱部と
細径部とを軸方向に交互に配置してなることを特徴とす
る同軸形高電力用低域フィルタ。
2. A coaxial low-pass filter A having a cutoff frequency f 1.
And a coaxial low-pass filter B with a cutoff frequency f 2 (f 1 <f 2 ).
And the coaxial low-pass filters A and B are connected in series 5
0Ω coaxial line, and the coaxial low-pass filters A and B and the 50Ω coaxial line are arranged such that both ends of the 50Ω coaxial line are sandwiched by the respective ends of the coaxial low-pass filters A and B. ,
One cylindrical conductor is shared as each outer conductor, and a cylindrical dielectric body coaxial with the cylindrical conductor is provided in close contact with the inner wall of the cylindrical conductor, and the coaxial low-pass filter A and The inner conductor of B is a coaxial high-power low-pass filter characterized in that a large-diameter cylindrical portion and a small-diameter portion are alternately arranged in the axial direction.
【請求項3】 前記同軸低域フィルタAにおける前記太
径円柱部および細径部の軸方向長さは前記同軸低域フィ
ルタBにおける太径円柱部および細径部の軸方向長さよ
りそれぞれ長いことを特徴とする請求項2に記載の同軸
形高電力用低域フィルタ。
3. The axial lengths of the large-diameter cylindrical portion and the small-diameter portion of the coaxial low-pass filter A are longer than the axial lengths of the large-diameter cylindrical portion and the small-diameter portion of the coaxial low-pass filter B, respectively. The coaxial low-pass filter for high power according to claim 2.
JP2765694A 1994-02-25 1994-02-25 Coaxial high power low pass filter Pending JPH07235803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2765694A JPH07235803A (en) 1994-02-25 1994-02-25 Coaxial high power low pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2765694A JPH07235803A (en) 1994-02-25 1994-02-25 Coaxial high power low pass filter

Publications (1)

Publication Number Publication Date
JPH07235803A true JPH07235803A (en) 1995-09-05

Family

ID=12226978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2765694A Pending JPH07235803A (en) 1994-02-25 1994-02-25 Coaxial high power low pass filter

Country Status (1)

Country Link
JP (1) JPH07235803A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030205A1 (en) * 1998-11-12 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Low-pass filter
JP2006279462A (en) * 2005-03-29 2006-10-12 Hitachi Metals Ltd Electric noise filter and electric noise removal method
JP2013518473A (en) * 2010-01-22 2013-05-20 ヌボトロニクス,エルエルシー Thermal control
US9505613B2 (en) 2011-06-05 2016-11-29 Nuvotronics, Inc. Devices and methods for solder flow control in three-dimensional microstructures
US9515364B1 (en) 2006-12-30 2016-12-06 Nuvotronics, Inc. Three-dimensional microstructure having a first dielectric element and a second multi-layer metal element configured to define a non-solid volume
US9570789B2 (en) 2007-03-20 2017-02-14 Nuvotronics, Inc Transition structure between a rectangular coaxial microstructure and a cylindrical coaxial cable using step changes in center conductors thereof
US9583856B2 (en) 2011-06-06 2017-02-28 Nuvotronics, Inc. Batch fabricated microconnectors
US9608303B2 (en) 2013-01-26 2017-03-28 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US9888600B2 (en) 2013-03-15 2018-02-06 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US10002818B2 (en) 2007-03-20 2018-06-19 Nuvotronics, Inc. Integrated electronic components and methods of formation thereof
US10074885B2 (en) 2003-03-04 2018-09-11 Nuvotronics, Inc Coaxial waveguide microstructures having conductors formed by plural conductive layers
US10193203B2 (en) 2013-03-15 2019-01-29 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
US10310009B2 (en) 2014-01-17 2019-06-04 Nuvotronics, Inc Wafer scale test interface unit and contactors
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10497511B2 (en) 2009-11-23 2019-12-03 Cubic Corporation Multilayer build processes and devices thereof
US10511073B2 (en) 2014-12-03 2019-12-17 Cubic Corporation Systems and methods for manufacturing stacked circuits and transmission lines
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296405A (en) * 1991-03-26 1992-10-20 Sumitomo Electric Ind Ltd Insulating member
JP4102303B2 (en) * 2001-09-26 2008-06-18 チュウ,ティシュ Methods and compositions for treating or preventing bacterial infections

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296405A (en) * 1991-03-26 1992-10-20 Sumitomo Electric Ind Ltd Insulating member
JP4102303B2 (en) * 2001-09-26 2008-06-18 チュウ,ティシュ Methods and compositions for treating or preventing bacterial infections

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255920B1 (en) 1998-11-12 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Low-pass filter
WO2000030205A1 (en) * 1998-11-12 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Low-pass filter
US10074885B2 (en) 2003-03-04 2018-09-11 Nuvotronics, Inc Coaxial waveguide microstructures having conductors formed by plural conductive layers
JP2006279462A (en) * 2005-03-29 2006-10-12 Hitachi Metals Ltd Electric noise filter and electric noise removal method
US9515364B1 (en) 2006-12-30 2016-12-06 Nuvotronics, Inc. Three-dimensional microstructure having a first dielectric element and a second multi-layer metal element configured to define a non-solid volume
US10002818B2 (en) 2007-03-20 2018-06-19 Nuvotronics, Inc. Integrated electronic components and methods of formation thereof
US9570789B2 (en) 2007-03-20 2017-02-14 Nuvotronics, Inc Transition structure between a rectangular coaxial microstructure and a cylindrical coaxial cable using step changes in center conductors thereof
US10431521B2 (en) 2007-03-20 2019-10-01 Cubic Corporation Integrated electronic components and methods of formation thereof
US10497511B2 (en) 2009-11-23 2019-12-03 Cubic Corporation Multilayer build processes and devices thereof
JP2013518473A (en) * 2010-01-22 2013-05-20 ヌボトロニクス,エルエルシー Thermal control
US9505613B2 (en) 2011-06-05 2016-11-29 Nuvotronics, Inc. Devices and methods for solder flow control in three-dimensional microstructures
US9583856B2 (en) 2011-06-06 2017-02-28 Nuvotronics, Inc. Batch fabricated microconnectors
US9608303B2 (en) 2013-01-26 2017-03-28 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US9888600B2 (en) 2013-03-15 2018-02-06 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US10193203B2 (en) 2013-03-15 2019-01-29 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
US10257951B2 (en) 2013-03-15 2019-04-09 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US10361471B2 (en) 2013-03-15 2019-07-23 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
US10310009B2 (en) 2014-01-17 2019-06-04 Nuvotronics, Inc Wafer scale test interface unit and contactors
US10511073B2 (en) 2014-12-03 2019-12-17 Cubic Corporation Systems and methods for manufacturing stacked circuits and transmission lines
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10553511B2 (en) 2017-12-01 2020-02-04 Cubic Corporation Integrated chip scale packages

Similar Documents

Publication Publication Date Title
JPH07235803A (en) Coaxial high power low pass filter
US4424496A (en) Divider/combiner amplifier
EP0455485B1 (en) Spatial field power combiner
Rhodes The generalized direct-coupled cavity linear phase filter
GB2316543A (en) High power broadband termination for K-band amplifier combiners
EP1346431A1 (en) Waveguide to microstrip transition
US3660784A (en) Energy absorber and evaporative cooling system
US4365215A (en) High power coaxial power divider
EP0214238A1 (en) Coaxial phase shifter for transverse electromagnetic transmission line.
US20170170793A1 (en) Splitter/combiner system for rf waves
JPH06318804A (en) Resistive terminator
JPS58195301A (en) Waveguide-microstrip mode converter
US4684908A (en) Circular window for ultra-high frequency waveguide
US20140266961A1 (en) Mode Filter
Cong et al. The low-noise 115-GHz receiver on the Columbia-GISS 4-ft radio telescope
US3576460A (en) Impedance match for periodic microwave circuits and tubes using same
JP2014236362A (en) Dual band resonator and dual band pass filter using the same
JPH0257363B2 (en)
US4429286A (en) Divider/combiner amplifier
US6657514B1 (en) Dielectric transmission line attenuator, dielectric transmission line terminator, and wireless communication device
US3940719A (en) Microwave waveguide dissipative load comprising fluid cooled lossy waveguide section
US3434076A (en) Waveguide window having circulating fluid of critical loss tangent for dampening unwanted mode
JP2000236203A (en) Broadband transmission line/balun
CA2200279C (en) Field effect transistor amplifier
US4289992A (en) Microwave device