JPH0723540Y2 - Inertial supercharger for internal combustion engine - Google Patents
Inertial supercharger for internal combustion engineInfo
- Publication number
- JPH0723540Y2 JPH0723540Y2 JP1987133925U JP13392587U JPH0723540Y2 JP H0723540 Y2 JPH0723540 Y2 JP H0723540Y2 JP 1987133925 U JP1987133925 U JP 1987133925U JP 13392587 U JP13392587 U JP 13392587U JP H0723540 Y2 JPH0723540 Y2 JP H0723540Y2
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- internal combustion
- combustion engine
- valve
- inertial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Supercharger (AREA)
- Characterised By The Charging Evacuation (AREA)
Description
【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、多気筒内燃機関の複数の気筒を吸気行程がオ
ーバーラップしない複数の気筒群に区分すると共に、各
気筒群に各気筒に接続された吸気通路を集合した集合部
を形成し、各集合部を各気筒群に対応して設けられた排
気ターボチャージャの各コンプレッサ下流側に接続する
一方、各気筒群の排気を各タービンに独立して導いた多
気筒内燃機関の慣性過給装置の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention divides a plurality of cylinders of a multi-cylinder internal combustion engine into a plurality of cylinder groups in which intake strokes do not overlap, and connects each cylinder group to each cylinder. The exhaust air of each cylinder group is independent of each turbine while the exhaust gas of each cylinder group is connected to the downstream side of each compressor of the exhaust turbocharger provided corresponding to each cylinder group. The present invention relates to the improvement of the inertia supercharger for a multi-cylinder internal combustion engine.
このような多気筒内燃機関の慣性過給装置としては、第
12図に示すようなものが知られている(実開昭60-4718
号公報)。As an inertial supercharging device for such a multi-cylinder internal combustion engine,
The one shown in Fig. 12 is known (Shokai Sho 60-4718).
Issue).
すなわち、6個の気筒1〜6を有するツインターボ過給
エンジンであり、互いに排気流が干渉しあわない気筒同
士を集合して2群に分けると共に、排気圧により駆動さ
れているタービン7a,7bに連結されたコンプレッサ8a,8b
の出口を吸気行程にある気筒に連結したものである。こ
のようにして、吸気干渉を防止しつつタービンに供給さ
れる排気圧を平均化してタービン効率の向上を図ってい
る。なお、17はエアクリーナ、18はマフラである。That is, it is a twin turbocharged engine having six cylinders 1 to 6, and the cylinders whose exhaust flows do not interfere with each other are collected into two groups and are driven by the exhaust pressure. Compressors 8a, 8b connected to
Is connected to the cylinder in the intake stroke. In this way, the exhaust pressure supplied to the turbine is averaged while the intake interference is prevented, and the turbine efficiency is improved. In addition, 17 is an air cleaner and 18 is a muffler.
しかしながら、このような従来の多気筒内燃機関の慣性
過給装置においては、各気筒1〜6に接続された吸気通
路9〜11,12〜14の集合部15,16は、各気筒群毎にターボ
チャージャのコンプレッサ8a,8bの下流側に接続されて
いるため、吸入行程で生じた負圧波が吸気通路を伝播し
ても、コンプレッサ8a,8bが絞りとして作用してこの負
圧波を吸収してしまい、各気筒1〜6へ反射波の伝播が
生じない。このため、かかる従来の慣性過給装置におい
ては、慣性効果や脈動効果を利用して有効に過給を行う
ことができないという問題が生ずる。However, in such an inertial supercharging device for a conventional multi-cylinder internal combustion engine, the collecting portions 15 and 16 of the intake passages 9 to 11 and 12 to 14 connected to the cylinders 1 to 6 are provided for each cylinder group. Since it is connected to the downstream side of the compressor 8a, 8b of the turbocharger, even if the negative pressure wave generated in the intake stroke propagates in the intake passage, the compressor 8a, 8b acts as a throttle and absorbs this negative pressure wave. Therefore, the reflected waves do not propagate to the cylinders 1 to 6. Therefore, in such a conventional inertial supercharging device, there arises a problem that the supercharging cannot be effectively performed by utilizing the inertial effect and the pulsating effect.
そこで本出願人は実願昭62-33867号において、前記集合
部を共鳴管により連通した装置を提案している。これを
第13図について第12図に対応する部分は同じ符号を付し
て説明する。Therefore, the present applicant proposes, in Japanese Utility Model Application No. 62-33867, a device in which the collecting portion is connected by a resonance tube. This will be described with reference to FIG. 13 by assigning the same reference numerals to the portions corresponding to FIG.
機関の吸気通路30はエアクリーナ17を介して2個の排気
ターボチャージャ31,32のコンプレッサ33,34にそれぞれ
接続されている。各コンプレッサ33,34下流側の吸気通
路35,36は、吸気行程が重複しないように区分された気
筒群毎に設けられた吸気通路の集合部としての吸気マニ
ホルド37,38にそれぞれ独立に接続されている。また、
各気筒群には、排気マニホルド39,40が接続されてお
り、各排気マニホルド39,40は前記コンプレッサ33,34に
連結されたタービン41,42に独立に接続されている。そ
して、タービン41,42下流側には、マフラ18が介装され
た排気通路43が接続されている。The intake passage 30 of the engine is connected via an air cleaner 17 to compressors 33 and 34 of two exhaust turbochargers 31 and 32, respectively. The intake passages 35, 36 on the downstream side of the compressors 33, 34 are independently connected to the intake manifolds 37, 38 as a collection portion of the intake passages provided for each cylinder group divided so that the intake strokes do not overlap. ing. Also,
Exhaust manifolds 39, 40 are connected to each cylinder group, and each exhaust manifold 39, 40 is independently connected to turbines 41, 42 connected to the compressors 33, 34. An exhaust passage 43 in which the muffler 18 is interposed is connected to the downstream side of the turbines 41, 42.
また、各吸気マニホルド37,38間は、共鳴管44により相
互に連通されている。このように構成され、第14図に示
すように、共鳴回転数a付近において、実線Aで示す慣
性吸気を行わない普通の機関に対し、一点鎖線B1で示す
ように、体積効率ηνが大幅に向上され、慣性効果が改
善される。しかし、第15図および第16図に示すように、
高速域ではポンピングロスは小さく、燃費は良いが、共
鳴回転数a付近の低速域においてポンピングロスが増加
し、そのため燃費が悪化し(第16図の斜線域)、回転速
度全域にわたって慣性効果が発揮されない不具合があ
る。Further, the intake manifolds 37 and 38 are connected to each other by a resonance pipe 44. As shown in FIG. 14, as shown in FIG. 14, in the vicinity of the resonance speed a, the volume efficiency ην is drastically increased as shown by the one-dot chain line B1 for an ordinary engine that does not perform inertial intake shown by the solid line A. And the inertial effect is improved. However, as shown in FIGS. 15 and 16,
Pumping loss is small and fuel consumption is good in the high-speed range, but pumping loss increases in the low-speed range near the resonance speed a, which deteriorates fuel consumption (shaded area in Fig. 16) and exerts inertial effect over the entire rotation speed. There is a problem that is not done.
また実開昭61-43941号公報には各気筒群の集合時間にバ
ルブを介装する技術が開示されているが、各集合部間を
共鳴管で連結していないので、集合部の共鳴は利用でき
ない。In addition, Japanese Utility Model Laid-Open No. 61-43941 discloses a technique of interposing a valve at the assembly time of each cylinder group, but since the collection tubes are not connected by a resonance tube, the resonance of the assembly is Not available.
したがって本考案の目的は、各集合部の共鳴を機関の回
転数に応じて最適にし、もって慣性効果を有効に発揮し
て燃費の改善を図ることがでる内燃機関の慣性過給装置
を提供するにある。Therefore, an object of the present invention is to provide an inertial supercharging device for an internal combustion engine, which can optimize the resonance of each collecting portion in accordance with the engine speed, thereby effectively exhibiting the inertial effect and improving fuel efficiency. It is in.
本考案によれば、多気筒内燃機関の複数の気筒を吸気行
程がオーバーラップしない複数の気筒群に区分すると共
に、各気筒群に各気筒に接続された吸気通路を集合した
集合部を形成し、各集合部を各気筒群に対応して設けら
れた排気ターボチャージャの各コンプレッサ下流側に接
続する一方、各気筒群の排気を各タービンに独立して導
いた多気筒内燃機関の慣性過給装置において、各気筒群
の集合部を共鳴管により連通し、各気筒群の集合部間を
バルブを介装した短絡通路により連通し、低速域で前記
バルブを開き高速域で前記バルブを閉じる制御ユニット
を設けてある。According to the present invention, a plurality of cylinders of a multi-cylinder internal combustion engine are divided into a plurality of cylinder groups whose intake strokes do not overlap, and each cylinder group is formed with an intake passage connected to each cylinder. While connecting each collecting part to the downstream side of each compressor of the exhaust turbocharger provided corresponding to each cylinder group, the inertial supercharging of the multi-cylinder internal combustion engine that independently guides the exhaust gas of each cylinder group to each turbine In the device, control is provided such that the collecting portions of each cylinder group are communicated with each other by a resonance tube, the collecting portions of each cylinder group are communicated with each other by a short-circuit passage having a valve, and the valve is opened in a low speed range and the valve is closed in a high speed range. A unit is provided.
したがって、低速域ではバルブを開いて共鳴回転数を高
速側に移動し、もって低速域のポンピングロスを小さく
して燃費を良くできる。また、高速域ではバルブを閉じ
て共鳴回転数を低速側に移動し、高速域のポンピングロ
スを小さくして燃費を良くし、その結果、回転速度全域
で慣性効果を発揮させ、燃費を改善することができる。Therefore, in the low speed range, the valve can be opened to move the resonance rotational speed to the high speed side, thereby reducing the pumping loss in the low speed range and improving the fuel consumption. Also, in the high speed range, the valve is closed and the resonance speed is moved to the low speed side to reduce pumping loss in the high speed range and improve fuel economy. As a result, the inertial effect is exerted over the entire rotational speed range and fuel economy is improved. be able to.
このように本考案によれば、各気筒に接続された吸気通
路を集合した集合部を互いに共鳴管で連通し、その間の
バルブにより開閉し、その回転域での体積効率を高めか
つポンピングロスを低下させることができる。As described above, according to the present invention, the collecting portions that collect the intake passages connected to the respective cylinders are communicated with each other through the resonance pipes, and the valves between them are opened and closed to increase the volume efficiency in the rotation range and to reduce the pumping loss. Can be lowered.
以下図面を参照して本考案の実施例を説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図において、第13図に示す吸気マニホルド37,38は
共鳴管44Aにより相互に連通され、その共鳴管44Aの途中
は、短絡通路45により連通されている。その短絡通路45
にはバタフライバルブ46が介装されており、バルブ46に
は第2図に示すように、ステッピングモータ47が取付け
られている。そのステッピングモータ47は制御ユニット
50に接続され、制御ユニット50には、機関回転センサ48
と負荷を検出するラック位置センサ49とが接続されてい
る。In FIG. 1, the intake manifolds 37, 38 shown in FIG. 13 are communicated with each other by a resonance pipe 44A, and a short-circuit passage 45 is formed in the resonance pipe 44A. Its short-circuit passage 45
A butterfly valve 46 is interposed in the valve, and a stepping motor 47 is attached to the valve 46 as shown in FIG. The stepping motor 47 is a control unit
Connected to the control unit 50, the engine speed sensor 48
And a rack position sensor 49 for detecting a load are connected.
従って、バルブ46を開くと、共鳴管44Aの途中が短絡さ
れ、共鳴管44Aの気柱長が短くなって強制振動が消勢さ
れ、第3図に示すように吸気マニホルド37,38の圧力の
振動特性はバルブ46を閉じた場合(実線Dで示す)に比
べて小さくなり、(鎖線E1で示す)、また、第4図に示
すように共鳴回転数aは高速側の回転数bに移動する。Therefore, when the valve 46 is opened, the resonance tube 44A is short-circuited midway, the length of the air column of the resonance tube 44A is shortened and the forced vibration is deactivated, and the pressure of the intake manifolds 37 and 38 is reduced as shown in FIG. The vibration characteristic becomes smaller than when the valve 46 is closed (shown by the solid line D) (shown by the chain line E1), and as shown in FIG. 4, the resonance rotational speed a moves to the rotational speed b on the high speed side. To do.
そこで、低速域ではバルブ46を開き、高速域ではバルブ
46を閉じるように、回転センサ48、ラック位置センサ49
からの信号に基づき制御ユニット50で制御する。これに
より第4図〜第6図において、低速域では特性C、高速
域では特性Bが得られ、ポンピングロスが小さく、燃費
が良くなり、回転速度全域において慣性効果を発揮させ
ることができる。Therefore, the valve 46 is opened in the low speed range, and the valve 46 is opened in the high speed range.
Rotation sensor 48, rack position sensor 49 to close 46
It is controlled by the control unit 50 based on the signal from the. As a result, in FIGS. 4 to 6, the characteristic C is obtained in the low speed range and the characteristic B is obtained in the high speed range, the pumping loss is small, the fuel consumption is improved, and the inertia effect can be exhibited in the entire rotation speed range.
第7図は本考案の別の実施例を示し、吸気マニホルド3
7,38をバルブ46を備えた短絡通路45Aにより直接短絡し
他を第2図と同様に構成した例である。この実施例で
は、バルブ46を開くと、第8図に示すように吸気マニホ
ルド37,38内の圧力変化はほとんどなくなり、また、第
9図〜第11図に示すように、特性Cを特性Aすなわち慣
性給気を行わない普通の内燃機関の特性なみにすること
ができ、第1図と同様の作用効果がある。FIG. 7 shows another embodiment of the present invention, in which the intake manifold 3
This is an example in which 7, 38 are directly short-circuited by a short-circuit passage 45A equipped with a valve 46 and the other parts are configured in the same manner as in FIG. In this embodiment, when the valve 46 is opened, the pressure change in the intake manifolds 37 and 38 is almost eliminated as shown in FIG. 8, and the characteristic C is changed to the characteristic A as shown in FIGS. 9 to 11. That is, the characteristics can be made similar to those of an ordinary internal combustion engine that does not perform inertial air supply, and the same operational effects as those in FIG. 1 can be obtained.
以上の通り、本考案によれば、下記のすぐれた効果を奏
する。As described above, the present invention has the following excellent effects.
(i) 各気筒に接続された給気通路を集合した集合部
間を共鳴管で連通してバルブでオンオフしたので、集合
部の共鳴回転数を変化できる。(I) Since the resonance pipes communicate between the collecting portions that collect the supply passages connected to the cylinders and the valves are turned on and off, the resonance rotational speed of the collecting portions can be changed.
(ii) 低速域、高速域共に体積効率をよくし、ポンピ
ングロスを低下できる。(Ii) The volume efficiency can be improved in both the low speed region and the high speed region, and the pumping loss can be reduced.
(iii) その結果、慣性過給によって生ずる燃費の悪
化をなくし、慣性効果を発揮できる。(Iii) As a result, the deterioration of fuel efficiency caused by inertial supercharging can be eliminated and the inertial effect can be exhibited.
第1図は本考案の実施例を示す要部の構成図、第2図は
バタフライバルブ回りの構成図、第3図は作用を説明す
る給気マニホルド内圧力の振動特性図、第4図、第5図
および第6図はそれぞれ効果を説明する体積効率・回転
数特性図、ポンピングロス・回転数特性図および燃費・
筒内噴射量特性図、第7図は本考案の別の実施例を示す
要部の構成図、第8図は作用を説明する第3図に相当す
る図面、第9図、第10図および第11図は効果を説明する
それぞれ第4図、第5図および第6図に相当する図面、
第12図および第13図はそれぞれ異なる従来装置を示す全
体構成図、第14図、第15図および第16図はそれぞれ第4
図、第5図および第6図の特性A、Bに相当する図面で
ある。 31,32……排気ターボチャージャ、33,34……コンプレッ
サ、35,36……吸気通路、37,38……給気マニホルド、4
1,42……タービン、44,44A……共鳴管、46……バタフラ
イバルブ、47……ステッピングモータ、48……機関回転
センサ、49……ラック位置センサ、50……制御ユニットFIG. 1 is a configuration diagram of a main part showing an embodiment of the present invention, FIG. 2 is a configuration diagram around a butterfly valve, and FIG. 3 is a vibration characteristic diagram of a pressure in a supply manifold for explaining the operation, FIG. Figures 5 and 6 show the volume efficiency / revolution speed characteristic diagram, pumping loss / revolution speed characteristic diagram, and fuel consumption
In-cylinder injection amount characteristic diagram, FIG. 7 is a configuration diagram of a main part showing another embodiment of the present invention, FIG. 8 is a diagram corresponding to FIG. 3 for explaining the action, FIG. 9, FIG. FIG. 11 is a drawing for explaining the effect, which corresponds to FIG. 4, FIG. 5 and FIG. 6, respectively.
12 and 13 are overall configuration diagrams showing different conventional devices, respectively, and FIGS. 14, 15, and 16 are respectively the fourth diagram.
7 is a drawing corresponding to characteristics A and B in FIGS. 5, 5 and 6. 31,32 …… Exhaust turbocharger, 33,34 …… Compressor, 35,36 …… Intake passage, 37,38 …… Supply manifold, 4
1,42 …… Turbine, 44,44A …… Resonance tube, 46 …… Butterfly valve, 47 …… Stepping motor, 48 …… Engine rotation sensor, 49 …… Rack position sensor, 50 …… Control unit
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 37/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area F02B 37/16
Claims (1)
オーバーラップしない複数の気筒群に区分すると共に、
各気筒群に各気筒に接続された吸気通路を集合した集合
部を形成し、各集合部を各気筒群に対応して設けられた
排気ターボチャージャの各コンプレッサ下流側に接続す
る一方、各気筒群の排気を各タービンに独立して導いた
多気筒内燃機関の慣性過給装置において、各気筒群の集
合部を共鳴管により連通し、各気筒群の集合部間をバル
ブを介装した短絡通路により連通し、低速域で前記バル
ブを開き高速域で前記バルブを閉じる制御ユニットを設
けたことを特徴とする内燃機関の慣性過給装置。1. A plurality of cylinders of a multi-cylinder internal combustion engine are divided into a plurality of cylinder groups whose intake strokes do not overlap,
Each cylinder group is formed with a collecting portion that collects the intake passages connected to each cylinder, and each collecting portion is connected to the downstream side of each compressor of the exhaust turbocharger provided corresponding to each cylinder group. In an inertial supercharger for a multi-cylinder internal combustion engine in which the exhaust gas of each group is independently guided to each turbine, the collecting parts of each cylinder group are connected by a resonance pipe, and a valve is provided between the collecting parts of each cylinder group. An inertial supercharging device for an internal combustion engine, comprising: a control unit that communicates through a passage and opens the valve in a low speed range and closes the valve in a high speed range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987133925U JPH0723540Y2 (en) | 1987-09-03 | 1987-09-03 | Inertial supercharger for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987133925U JPH0723540Y2 (en) | 1987-09-03 | 1987-09-03 | Inertial supercharger for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6439430U JPS6439430U (en) | 1989-03-09 |
JPH0723540Y2 true JPH0723540Y2 (en) | 1995-05-31 |
Family
ID=31392234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1987133925U Expired - Lifetime JPH0723540Y2 (en) | 1987-09-03 | 1987-09-03 | Inertial supercharger for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0723540Y2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6143941U (en) * | 1984-08-28 | 1986-03-22 | 日産ディーゼル工業株式会社 | Diesel engine supercharging device |
-
1987
- 1987-09-03 JP JP1987133925U patent/JPH0723540Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6439430U (en) | 1989-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11210449A (en) | Engine with turbo supercharger | |
JPH03151519A (en) | Multiple cylinder engine with turbo charger | |
JPS61210224A (en) | Engine with exhaust turbosupercharger | |
JPS63314320A (en) | Turbocharged engine | |
JPH0723540Y2 (en) | Inertial supercharger for internal combustion engine | |
JPH01106922A (en) | Intake apparatus of v-shaped engine | |
JPH0720342Y2 (en) | Inertial supercharger for internal combustion engine | |
JPS6234928B2 (en) | ||
JP2649372B2 (en) | Intake device for supercharged engine | |
JP2787157B2 (en) | Intake and exhaust system for turbocharged engines | |
JPS6143529B2 (en) | ||
JPH0716031Y2 (en) | Variable intake system for multi-cylinder internal combustion engine | |
JPH0643464Y2 (en) | Variable intake system for multi-cylinder internal combustion engine | |
JPH0716032Y2 (en) | Variable intake system for multi-cylinder internal combustion engine | |
JPH08246889A (en) | Supercharged engine | |
JPH0121135Y2 (en) | ||
JPH0329544Y2 (en) | ||
JPH0447157A (en) | Exhaust gas recirculation device for turbo-supercharged engine | |
JPS5836824Y2 (en) | Exhaust turbo supercharging device | |
JPH0643460Y2 (en) | Intake device for V-type internal combustion engine | |
JPH0218287Y2 (en) | ||
JPH0729245Y2 (en) | V-type engine negative pressure extraction structure | |
JP2888435B2 (en) | Exhaust system for multi-cylinder engine | |
JPH03202628A (en) | Twin turbo engine | |
JPH0643459Y2 (en) | Intake device for V-type 8-cylinder engine |