JPH0723510B2 - Method for producing hot coil of boron-containing austenitic stainless steel - Google Patents

Method for producing hot coil of boron-containing austenitic stainless steel

Info

Publication number
JPH0723510B2
JPH0723510B2 JP63018532A JP1853288A JPH0723510B2 JP H0723510 B2 JPH0723510 B2 JP H0723510B2 JP 63018532 A JP63018532 A JP 63018532A JP 1853288 A JP1853288 A JP 1853288A JP H0723510 B2 JPH0723510 B2 JP H0723510B2
Authority
JP
Japan
Prior art keywords
slab
stainless steel
austenitic stainless
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63018532A
Other languages
Japanese (ja)
Other versions
JPH01195243A (en
Inventor
慶治 大崎
裕 川合
錬 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63018532A priority Critical patent/JPH0723510B2/en
Publication of JPH01195243A publication Critical patent/JPH01195243A/en
Publication of JPH0723510B2 publication Critical patent/JPH0723510B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,含硼素オーステナイト系ステンレス鋼のホッ
トコイルの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a hot coil of boron-containing austenitic stainless steel.

〔従来の技術〕[Conventional technology]

含硼素オーステナイト系ステンレス鋼は,熱中性子吸収
断面積が大きいという特質があり且つ耐食性にも優れる
ことから熱中性子遮蔽材料として好適である。しかし,
鋼中のBとFeやCrが化合した硼化物を中心とする金属間
化合物の析出によって熱間加工性を著しく害するので,
鋼帯の製造が難しい。
Boron-containing austenitic stainless steel is suitable as a thermal neutron shielding material because it has a characteristic of having a large thermal neutron absorption cross section and is excellent in corrosion resistance. However,
Since the precipitation of intermetallic compounds, mainly boride, which is a combination of B and Fe or Cr in steel, significantly impairs hot workability,
Steel strips are difficult to manufacture.

特公昭57−45464号公報は,含Bステンレス鋼の熱間加
工性はAlの添加によって改善されると教示する。
Japanese Patent Publication No. 57-45464 teaches that the hot workability of B-containing stainless steel is improved by the addition of Al.

特開昭55−89459号公報は,含Bステンレス鋼にVを添
加すると硼化物の形態が改善されるので熱間加工性が改
善されると教示する。
JP 55-89459 teaches that the addition of V to B-containing stainless steels improves the hot workability by improving the morphology of the borides.

しかし,これらの合金元素の添加による熱間加工性の改
善効果の教示にかかわらず,通常の熱間圧延機によって
含硼素オーステナイト系ステンレス鋼帯を製造すること
は困難である。事実,前記の公報はいずれも含Bステン
レス鋼帯の製造法を記載していない。
However, it is difficult to produce a boron-containing austenitic stainless steel strip by an ordinary hot rolling mill, regardless of the teaching of the effect of improving the hot workability by adding these alloying elements. In fact, none of the above publications describe a method for producing a B-containing stainless steel strip.

本発明者らは,特願昭61−240244号において,Bを0.2〜
1.2重量%含有するオーステナイト系ステンレス鋼のス
ラブまたは鋼塊を1150℃以上1200℃以下の温度に加熱
し,粗圧延機と仕上圧延機を用いて圧延終了温度が1000
℃以上となるように熱間圧延を行うことからなる含硼素
オーステナイト系ステンレス鋼の熱延鋼帯の製造法の発
明を提案した。
In the Japanese Patent Application No. 61-240244, the present inventors set B to 0.2 to
An austenitic stainless steel slab or ingot containing 1.2% by weight is heated to a temperature of 1150 ° C to 1200 ° C, and the rolling end temperature is set to 1000 using a rough rolling mill and a finish rolling mill.
The invention of a method for producing a hot-rolled steel strip of a boron-containing austenitic stainless steel, which comprises hot rolling at a temperature of ℃ or higher, was proposed.

〔発明の目的〕[Object of the Invention]

本発明は,前記特願昭61−240244号に提案した方法の一
層の改善を目的としたものである。すなわち,本発明者
らは含硼素オーステナイト系ステンレス鋼の熱間加工性
についてさらに研究を続けてきたが,先に提案した該方
法においてはホットコイルに割れ疵の発生することもあ
り,その原因究明と共にこれの防止を目的としたもので
ある。
The present invention is intended to further improve the method proposed in Japanese Patent Application No. 61-240244. That is, the present inventors have further researched the hot workability of boron-containing austenitic stainless steel, but in the previously proposed method, crack defects may occur in the hot coil, and the cause thereof has been investigated. Along with this, the purpose is to prevent this.

〔発明の構成〕[Structure of Invention]

本発明は含硼素オーステナイト系ステンレス鋼のホット
コイルを割れ疵なく製造する方法を提供するものであ
り,その要旨とするところは,Bを0.2〜1.2重量%含有す
るオーステナイト系ステンレス鋼の鋼塊を製造し,この
鋼塊を1150℃以上1200℃以下の温度に加熱して20〜70%
の圧下を行なう分塊スラブ製造工程と,得られた分塊ス
ラブを1150℃以上1200℃以下の温度に加熱して20〜70%
圧下を行なう中間スラブ製造工程とを経たうえ,該中間
スラブを1150℃以上1200℃以下の温度に加熱して鋼帯に
まで熱延することを特徴とする。また連続鋳造を行なう
場合においては,Bは0.2〜1.2重量%含有するオーステナ
イト系ステンレス鋼の連鋳スラブを製造し,この連鋳ス
ラブを1150℃以上1200℃以下の温度に加熱して20〜70%
圧下を行なう中間スラブ製造工程を経たうえ,該中間ス
ラブを1150℃以上1200℃以下の温度に加熱して鋼帯にま
で熱延することを特徴とする。
The present invention provides a method for producing a hot coil of a boron-containing austenitic stainless steel without cracks and flaws. The gist of the present invention is to provide an austenitic stainless steel ingot containing 0.2 to 1.2% by weight of B. 20 to 70% by manufacturing and heating this steel ingot to a temperature of 1150 ℃ to 1200 ℃
20 ~ 70% by heating the obtained slab of slab to a temperature of 1150 ℃ to 1200 ℃.
It is characterized in that, after undergoing an intermediate slab manufacturing process in which reduction is performed, the intermediate slab is heated to a temperature of 1150 ° C to 1200 ° C and hot-rolled to a steel strip. In the case of continuous casting, a continuous casting slab of austenitic stainless steel containing 0.2 to 1.2% by weight of B is manufactured, and the continuous casting slab is heated to a temperature of 1150 ° C to 1200 ° C for 20 to 70 ° C. %
The method is characterized in that, after undergoing an intermediate slab manufacturing process in which reduction is performed, the intermediate slab is heated to a temperature of 1150 ° C to 1200 ° C and hot-rolled to a steel strip.

〔発明の詳述〕[Detailed Description of the Invention]

本発明者らはB添加オーステナイト系ステンレス鋼の熱
間加工性について種々の試験研究を行ったところ,該B
添加鋼の熱間加工性はひずみ速度の増加によって顕著に
低下するが,いったん高温での鍛造加工(つまり圧下)
を行ったあと適切に熱処理すると,高温引張による破断
が顕著に改善されることを見出した。より具体的には,
該B添加鋼の高温引張による破断は,硼化物を起点とし
て或いは硼化物とマトリックスとの境界において生じる
ことが明らかにされたのであるが,鍛造加工(圧下)と
熱処理を適切に行なうと該硼化物を微細に分散させるこ
とができ,破壊の起点となる箇所が微細に分散される結
果,熱間加工性が著しく向上することがわかった。本発
明はこの知見事実を実際のホットコイルの製造ラインに
おいて実現したものであり,通常のように分塊スラブま
たは連続鋳造スラブを直接熱間圧延してホットコイルを
製造するのではなく,途中に中間スラブを製造する工程
を追加し,ここで鍛造効果と熱処理効果を十分に発揮さ
せてから仕上げ熱間圧延を行なうのであり,この方法に
よると,Bを多量に含有する含硼素オーステナイト系ステ
ンレス鋼であっても割れ疵のないホットコイルが安定し
て得られることがわかった。
The present inventors conducted various test studies on the hot workability of the B-added austenitic stainless steel.
The hot workability of the added steel decreases significantly with the increase of strain rate, but once forged at high temperature (that is, reduction)
It was found that the rupture due to high-temperature tension is remarkably improved if the heat treatment is appropriately performed after the heat treatment. More specifically,
It has been clarified that the fracture of the B-added steel due to high temperature tension occurs at the starting point of the boride or at the boundary between the boride and the matrix. However, when the forging (reduction) and heat treatment are properly performed, It was found that the hot workability was remarkably improved as a result of the fact that the compound can be finely dispersed and the location that is the starting point of fracture is finely dispersed. The present invention realizes this finding in an actual hot coil production line. Instead of directly hot rolling a slab of slabs or a continuous cast slab as usual, a hot coil is produced in the middle. The process of manufacturing the intermediate slab is added, and after the forging effect and heat treatment effect are fully exerted, the final hot rolling is performed. According to this method, the boron-containing austenitic stainless steel containing a large amount of B is used. However, it was found that a hot coil with no cracks can be obtained stably.

本発明はB含有量が0.2〜1.2重量%のオーステナイト系
ステンレス鋼を対象とするが,これは,B添加による熱中
性子減衰効果を得るには少なくとも0.2重量%のBの含
有を必要とし,またB含有量が1.2重量%を超えるよう
な鋼では加工性および靭性が極度に悪くなるし,そのよ
うな多量のBの添加を要せずとも熱中性子減衰効果が十
分に満たされる場合が多いからである。なお,B以外には
オーステナイト系ステンレス鋼とするに必要な諸元素が
鋼中に含有されることは勿論であり,ベースのオーステ
ナイト系ステンレス鋼としては実質上あらゆる種類のも
のが本発明法の対象となり得るものである。
The present invention is directed to an austenitic stainless steel having a B content of 0.2 to 1.2% by weight, which requires at least 0.2% by weight of B to obtain the thermal neutron damping effect by the addition of B. The workability and toughness of steels with a B content exceeding 1.2% by weight are extremely poor, and the thermal neutron decay effect is often sufficiently satisfied without the need to add such a large amount of B. Is. In addition to B, it goes without saying that the elements contained in the steel required to form an austenitic stainless steel are contained in the steel, and virtually all types of base austenitic stainless steel are covered by the method of the present invention. It can be.

第1図は,後記の第1表に示した供試鋼No.2と3につい
て,各種スラブをひずみ速度:1/secのもとで高温引張試
験に供したさいの試験温度と断面収縮率との関係を示し
たものである。また,第2図はひずみ速度:50/secとし
た以外は第1図と同様の関係を示したものである。ここ
で,ひずみ速度;1/sec(第1図)は,分塊スラブおよび
中間スラブ製造時の粗圧延での熱間加工の通常のひずみ
速度に相当し,ひずみ速度:50/sec(第2図)は,仕上
熱間圧延での通常のひずみ速度に相当するものである。
Fig. 1 shows the test temperature and the cross-sectional shrinkage ratio of various slabs for the test steel Nos. 2 and 3 shown in Table 1 below when they were subjected to a high temperature tensile test at a strain rate of 1 / sec. It shows the relationship with. Further, FIG. 2 shows the same relationship as in FIG. 1 except that the strain rate is 50 / sec. Here, the strain rate of 1 / sec (Fig. 1) corresponds to the normal strain rate of hot working in rough rolling during the production of lump slabs and intermediate slabs, and strain rate: 50 / sec (second The figure) corresponds to the normal strain rate in finish hot rolling.

供試した各スラブは次のものである。The slabs tested are as follows.

●印:供試鋼No.2の連鋳スラブ, ■印:供試鋼No.3の鋼塊を圧下率67%で圧下して得た分
塊スラブ, ▲印:供試鋼No.2の連鋳スラブを1180℃に加熱して圧下
率30%で圧下して得た中間スラブ, ◆印:供試鋼No.3の鋼塊を圧下率65%で圧下して得た分
塊スラブを更に1180℃に加熱して圧下率22%で圧下して
得た中間スラブ。
● mark: continuous cast slab of test steel No. 2, ■ mark: slab obtained by rolling down the steel ingot of test steel No. 3 at a reduction rate of 67%, ▲ mark: test steel No. 2 Intermediate slab obtained by heating the continuous cast slab of No. 3 at 1180 ° C and reducing it at a reduction rate of 30%, ◆: Slab slab obtained by reducing the steel ingot of sample steel No. 3 at a reduction rate of 65% Is further heated to 1180 ° C and rolled at a reduction rate of 22% to obtain an intermediate slab.

第1図の結果から明らかなように,粗圧延のようにひず
み速度が遅い熱間加工の場合においては含硼素オーステ
ナイト系ステンレス鋼であっても断面収縮率が比較的高
く,連鋳スラブと言えども,特に1100〜1200℃の範囲で
は変形能が良好であり割れ疵のない中間スラブを得るこ
とができる。鋼塊から分塊スラブあるいは中間スラブを
得る場合も同様である。そして,中間スラブの方が元の
分塊スラブや連鋳スラブより変形能が高くなっている。
As is clear from the results shown in Fig. 1, even in the case of hot working with a low strain rate such as rough rolling, the cross-sectional shrinkage rate is relatively high even with boron-containing austenitic stainless steel, and it can be said that it is a continuous cast slab. In particular, in the range of 1100 to 1200 ° C, the deformability is good and an intermediate slab with no cracks can be obtained. The same applies to the case of obtaining a slab or an intermediate slab from a steel ingot. The deformability of the intermediate slab is higher than that of the original slab or continuous cast slab.

しかし,第2図のように仕上げ熱間圧延に相当するよう
な早いひずみ速度のもとでは全体に断面収縮率が低くな
る。特に連鋳スラブまま,および分塊スラブままではそ
の傾向が強い。したがって連鋳スラブまま或いは鋼塊か
ら製造した分塊スラブままでは変形能が劣り,これを仕
上熱間圧延するとホットコイルに割れが発生しやすくな
る。特に1000℃以下での仕上熱間圧延ではその傾向が強
くなる。これに対して,連鋳スラブから製造した中間ス
ラブおよび鋼塊から分塊スラブを経て製造した中間スラ
ブはひずみ速度が速い場合にも変形能が向上しており,
特に1100〜1200℃の範囲でその傾向が顕著である。
However, as shown in Fig. 2, the cross-sectional shrinkage rate becomes low under the high strain rate equivalent to that of finish hot rolling. This tendency is particularly strong with continuous cast slabs and with agglomerated slabs. Therefore, the deformability of the continuous cast slab as it is or the as-cast slab manufactured from steel ingot is inferior, and if it is hot-rolled for finishing, cracks are likely to occur in the hot coil. This tendency is particularly strong in finish hot rolling at 1000 ° C or lower. In contrast, the intermediate slab manufactured from the continuous cast slab and the intermediate slab manufactured from the steel ingot through the slab slab have improved deformability even when the strain rate is high.
This tendency is particularly remarkable in the range of 1100 to 1200 ° C.

両図に見られるように,含硼素オーステナイト系ステン
レス鋼の高温での変形能は温度低下に伴って低下するた
め,熱間加工時の加熱温度はできる限り高いことが望ま
しい。しかし,両図の結果に示されるように,含硼素オ
ーステナイト系ステンレス鋼の変形能は1200℃を越える
と極端に低下し殆んど加工が出来ないことがわかる。す
なわち粗圧延のようなひずみ速度が遅い場合も仕上熱延
のようにひずみ速度が早い場合も共にその加工温度は12
00℃を超えてはならないのである。これは硼化物が1200
℃を超える温度では溶融することに起因すると考えられ
る。
As shown in both figures, the deformability of boron-containing austenitic stainless steel at high temperatures decreases with decreasing temperature, so it is desirable that the heating temperature during hot working be as high as possible. However, as shown in the results of both figures, it is clear that the deformability of boron-containing austenitic stainless steel extremely decreases above 1200 ° C and almost no processing is possible. That is, the processing temperature is 12% both when the strain rate is slow as in rough rolling and when it is fast as in hot rolling for finishing.
It should not exceed 00 ° C. This is 1200 boride
It is thought that this is due to melting at a temperature above ° C.

先の特願昭61−240244号では,含Bオーステナイト系ス
テンレス鋼のスラブまたは鋼塊を1150℃以上1200℃以下
の温度に加熱して粗圧延機と仕上圧延機を用いて圧延終
了温度が1000℃以上となるように熱間圧延を行うことを
提案した。これは,第2図で言えば●印や■印の連鋳ス
ラブや分塊スラブを1150℃〜1200℃に加熱して熱延終了
温度を1000℃で熱延することを意味している。この場合
には,熱延は可能であるが,得られる熱延鋼帯には割れ
疵(特に耳割れ)の発生を見ることがある。しかし,第
2図の▲印や◆印に見られるように,一たん中間スラブ
を製造して(その製造は第1図の結果に見られるように
1150℃〜1200℃の温度で十分にできる)から,これを11
50℃〜1200℃に加熱して熱延終了温度を1000℃で熱延す
るならば,●印や■印の場合よりも加工性に富むので割
れ疵なくホットコイルが製造できるのである。なお,第
1図や第2図ではいずれも1100℃以上の温度でも十分な
変形能を示しているが,1150℃ではさらに良好な変形能
を示す傾向が見られる。したがって本発明法の実施にさ
いし,ひずみ速度の遅い分塊スラブ,その中間スラブ,
さらには連鋳スラブからの中間スラブの製造にさいして
は加熱温度は1150〜1200℃の範囲とし,またこれらから
仕上熱延する場合の加熱温度も1150〜1200℃の範囲とす
るのがよい。そして,仕上熱延温度についても,第2図
の結果に見られるように,1000℃より低い温度となると
変形能の低下が大きくなるので1000℃以上の温度で熱延
を終了するのがよく,このために仕上熱延温度は1000℃
以上とするのがよい。
In the above-mentioned Japanese Patent Application No. 61-240244, a slab or ingot of B-containing austenitic stainless steel is heated to a temperature of 1150 ° C or higher and 1200 ° C or lower, and the rolling end temperature is set to 1000 by using a rough rolling mill and a finish rolling mill. It was proposed to carry out hot rolling so that the temperature becomes ℃ or higher. This means that the continuous casting slab and the agglomerated slab marked with ● or ■ are heated to 1150 ° C to 1200 ° C and hot rolled at a hot rolling end temperature of 1000 ° C. In this case, hot rolling is possible, but cracks (particularly ear cracks) may occur in the hot rolled steel strip obtained. However, as shown by the ▲ and ◆ marks in Fig. 2, the intermediate slab was manufactured (as shown in the results in Fig. 1).
This can be done at a temperature of 1150 ℃ to 1200 ℃).
If it is heated to 50 ℃ -1200 ℃ and hot-rolled at 1000 ℃, the hot coil can be manufactured without cracks because it has better workability than those marked with ● or ■. 1 and 2 show sufficient deformability at a temperature of 1100 ° C or higher, but at 1150 ° C, there is a tendency to show better deformability. Therefore, in carrying out the method of the present invention, a lump slab having a low strain rate, its intermediate slab,
Furthermore, when manufacturing an intermediate slab from a continuous cast slab, the heating temperature is preferably in the range of 1150 to 1200 ° C, and the heating temperature for finish hot rolling from these is preferably in the range of 1150 to 1200 ° C. As for the finishing hot rolling temperature, as shown in the results of Fig. 2, when the temperature is lower than 1000 ° C, the deterioration of the deformability becomes large, so it is preferable to finish the hot rolling at a temperature of 1000 ° C or higher, For this reason, the finishing hot rolling temperature is 1000 ° C.
The above is preferable.

このように,一たん中間スラブを製造する工程を採用す
ると含硼素オーステナイト系ステンレス鋼の仕上熱延で
の変形能を高めることができるのであるが,これはおよ
そ次のように考えることができる。すなわち,含硼素オ
ーステナイト系ステンレス鋼に現れる変形能の低下は硼
化物の存在によるが,特に,凝固時の硼化物の極端な偏
析が変形能の低下を更に促進する。中間スラブを製造す
る工程を追加すると,その再圧下による鍛造効果と再加
熱による熱処理効果が現れて硼化物の偏析が緩和し,硼
化物が微細に分散した組織となり,この組織状態を維持
した状態では変形能が大きくこの状態で仕上熱延すれば
割れ疵のないホットコイルの製造ができることになる。
As described above, if the process for producing the intermediate slab is adopted, the deformability of the boron-containing austenitic stainless steel in the finish hot rolling can be enhanced. This can be considered as follows. In other words, the decrease in deformability that appears in boron-containing austenitic stainless steel is due to the presence of boride, but in particular, the extreme segregation of boride during solidification further promotes the decrease in deformability. When the process for manufacturing the intermediate slab is added, the forging effect due to the re-pressing and the heat treatment effect due to the reheating appear, the segregation of boride is relaxed, and a structure in which boride is finely dispersed is formed, and this microstructure is maintained. Then, the deformability is large, and if hot rolling is performed in this state, hot coils can be manufactured without cracks.

なお,鋼帯までの仕上熱間圧延に先立ち,中間スラブの
製造加工回数を繰返すほど硼化物の偏析が緩和され変形
能が向上する。しかし,いたずらに加工回数を重ねるこ
とは製造費用の増大を招くので好ましくなく,鋼塊法に
おいては分塊スラブ製造と中間スラブ製造の2回を適当
とし,また連続鋳造法においては中間スラブ製造の1回
を適当とし,これだけによっても本発明の目的が達成で
きる。なお分塊スラブあるいは中間スラブ製造1回当り
の総圧下率は20〜70%とする必要がある。これは,圧下
率が20%未満では硼化物を分散し偏析を緩和する効果が
得られず,他方,圧下率が70%を超えると累積ひずみの
増大,および加工所要時間の増加に伴う温度低下によっ
て変形能が低下し,割れ発生の危険があるからである。
Before the finish hot rolling to the steel strip, the more the number of times the intermediate slab is manufactured and processed, the more the boride segregation is relaxed and the deformability is improved. However, it is not preferable to unnecessarily increase the number of times of machining, because it increases the manufacturing cost. Therefore, it is appropriate to use slab production and intermediate slab production twice in the steel ingot method, and intermediate slab production in the continuous casting method. The object of the present invention can be achieved only once, and only once. The total rolling reduction per production of the slab or intermediate slab must be 20 to 70%. This is because when the rolling reduction is less than 20%, the effect of dispersing boride and relaxing segregation is not obtained, while when the rolling reduction exceeds 70%, the cumulative strain increases and the temperature decreases with the increase of the processing time. This reduces the deformability and may cause cracking.

〔実施例〕〔Example〕

第1表に示した化学成分を有する含硼素オーステナイト
系ステンレス鋼の連続鋳造スラブと鋼塊を製造した。
Continuously cast slabs and ingots of boron-containing austenitic stainless steel having the chemical composition shown in Table 1 were produced.

これらのスラブまたは鋼塊を,第2表に示す分塊スラブ
製造条件および中間スラブ製造条件に従って中間スラブ
を製造したあと,第2表に示す熱延条件で鋼帯にまで熱
間圧延した。また比較のために,中間スラブを製造しな
いで鋼帯にまで熱間圧延した例も第2表に示した。得ら
れたホットコイルの割れ疵の状態を調べ,その結果を第
2表に示した。
These slabs or steel ingots were manufactured into intermediate slabs according to the slab production conditions and intermediate slab production conditions shown in Table 2, and then hot rolled into steel strips under the hot rolling conditions shown in Table 2. For comparison, Table 2 also shows an example of hot rolling into a steel strip without producing an intermediate slab. The state of cracks and flaws in the obtained hot coil was investigated, and the results are shown in Table 2.

第2表の結果に見られるように,鋼塊では分塊スラブ製
造+中間スラブ製造後に熱間圧延した方が,分塊スラブ
製造のみの後熱間圧延した場合に比べて割れ疵のない良
好な結果が得られている。また,連続鋳造スラブでは中
間スラブ製造後熱間圧延した方が,中間スラブを製造す
ることなく直接熱間圧延した場合に比べて良好な結果が
得られている。したがって,本発明法に従うと割れ疵の
ない含硼素オーステナイト系ステンレス鋼のホットコイ
ルが良好に製造できることがわかる。
As can be seen from the results in Table 2, in steel ingots, hot rolling after slab production + intermediate slab production has no cracks and cracks compared with post-hot rolling only slab production. Good results have been obtained. In addition, in the case of continuous cast slabs, better results are obtained when hot rolling is performed after the intermediate slab is manufactured than when it is directly hot rolled without manufacturing the intermediate slab. Therefore, according to the method of the present invention, it can be seen that a hot coil of boron-containing austenitic stainless steel without cracks can be satisfactorily manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は含硼素オーステナイト系ステンレス鋼をひずみ
速度1/secにて高温引張試験した場合の試験温度と断面
収縮率の関係図。第2図は含硼素オーステナイト系ステ
ンレス鋼をひずみ速度50/secにて高温引張試験をした場
合の試験温度と断面収縮率の関係図である。
FIG. 1 is a diagram showing the relationship between the test temperature and the cross-sectional shrinkage rate when a boron-containing austenitic stainless steel was subjected to a high temperature tensile test at a strain rate of 1 / sec. FIG. 2 is a diagram showing the relationship between the test temperature and the cross-sectional shrinkage rate when a boron-containing austenitic stainless steel was subjected to a high temperature tensile test at a strain rate of 50 / sec.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Bを0.2〜1.2重量%含有するオーステナイ
ト系ステンレス鋼の鋼塊を製造し,この鋼塊を1150℃以
上1200℃以下の温度に加熱して20〜70%の圧下を行なう
分塊スラブ製造工程と,得られた分塊スラブを1150℃以
上1200℃以下の温度に加熱して20〜70%圧下を行なう中
間スラブ製造工程とを経たうえ,該中間スラブを1150℃
以上1200℃以下の温度に加熱して鋼帯にまで熱延するこ
とからなる含硼素オーステナイト系ステンレス鋼のホッ
トコイルの製造方法。
1. A steel ingot of austenitic stainless steel containing 0.2 to 1.2% by weight of B is produced, and the ingot is heated to a temperature of 1150 ° C. to 1200 ° C. to reduce it by 20 to 70%. The lump slab manufacturing process and the intermediate slab manufacturing process in which the obtained slab mass slab is heated to a temperature of 1150 ° C to 1200 ° C and subjected to 20 to 70% reduction, and the intermediate slab is heated to 1150 ° C
A method for producing a hot coil of boron-containing austenitic stainless steel, which comprises heating to a temperature of 1200 ° C or lower and hot rolling to a steel strip.
【請求項2】Bを0.2〜1.2重量%含有するオーステナイ
ト系ステンレス鋼の連鋳スラブを製造し,この連鋳スラ
ブを1150℃以上1200℃以下の温度に加熱して20〜70%圧
下を行なう中間スラブ製造工程を経たうえ,該中間スラ
ブを1150℃以上1200℃以下の温度に加熱して鋼帯にまで
熱延することからなる含硼素オーステナイト系ステンレ
ス鋼のホットコイルの製造方法。
2. A continuous casting slab of austenitic stainless steel containing 0.2 to 1.2% by weight of B is manufactured, and the continuous casting slab is heated to a temperature of 1150 ° C. to 1200 ° C. to reduce it by 20 to 70%. A method for manufacturing a hot coil of boron-containing austenitic stainless steel, which comprises heating an intermediate slab to a temperature of 1150 ° C. or higher and 1200 ° C. or lower and then hot rolling the steel strip after an intermediate slab manufacturing process.
JP63018532A 1988-01-30 1988-01-30 Method for producing hot coil of boron-containing austenitic stainless steel Expired - Lifetime JPH0723510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63018532A JPH0723510B2 (en) 1988-01-30 1988-01-30 Method for producing hot coil of boron-containing austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63018532A JPH0723510B2 (en) 1988-01-30 1988-01-30 Method for producing hot coil of boron-containing austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPH01195243A JPH01195243A (en) 1989-08-07
JPH0723510B2 true JPH0723510B2 (en) 1995-03-15

Family

ID=11974238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63018532A Expired - Lifetime JPH0723510B2 (en) 1988-01-30 1988-01-30 Method for producing hot coil of boron-containing austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH0723510B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203711A1 (en) * 2002-01-31 2003-08-14 Sms Demag Ag Process and plant for the production of hot strip from austenitic stainless steels
PT3063305T (en) * 2013-10-28 2021-03-05 Nanosteel Co Inc Metal steel production by slab casting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201726A (en) * 1985-03-01 1986-09-06 Sumitomo Special Metals Co Ltd Manufacture of b-containing austenitic stainless steel

Also Published As

Publication number Publication date
JPH01195243A (en) 1989-08-07

Similar Documents

Publication Publication Date Title
CN107177793B (en) A kind of thick structural steel and iron of low-alloy spy and its manufacturing method of thickness 400-610mm
JP2536685B2 (en) Fe-Ni alloy for lead frame material having excellent Ag plating property and method for producing the same
JPS581012A (en) Production of homogeneous steel
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
JPH0723510B2 (en) Method for producing hot coil of boron-containing austenitic stainless steel
JPH0551633A (en) Production of high si-containing austenitic stainless steel
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
EP0247264B1 (en) Method for producing a thin casting of cr-series stainless steel
JP2953304B2 (en) Roll outer tube material for continuous sheet casting machine
JP2682335B2 (en) Manufacturing method of ferritic stainless steel hot rolled strip
KR100285651B1 (en) Method for manufacturing bismuth-sulfur free cutting steel wire rods with beautiful appearance
JPH11302739A (en) Production of ferritic stainless steel excellent in surface property and small in anisotropy
JP3243987B2 (en) Manufacturing method of high strength and high corrosion resistance martensitic stainless steel
JP3201711B2 (en) Age-hardened steel for die casting
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JP3493153B2 (en) Wire or steel bars and machine parts with excellent cold workability
JP3878051B2 (en) Manufacturing method of carburizing steel products with excellent grain size characteristics and machinability
KR20010076219A (en) Roll for rolling
JPH01123029A (en) Production of seamless stainless steel pipe
JP3224107B2 (en) Method for producing boron-containing austenitic stainless steel strip
JP2501438B2 (en) Low carbon steel wire rod and steel bar manufacturing method
JPS635464B2 (en)
KR100574447B1 (en) Surface crack reducing method on Fe-Cr-Al alloy rolled billets
JPS62205252A (en) Hot-working method for high ni-fe alloy
JPH0219724B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term