JPH07234721A - Collision avoiding method - Google Patents

Collision avoiding method

Info

Publication number
JPH07234721A
JPH07234721A JP6052880A JP5288094A JPH07234721A JP H07234721 A JPH07234721 A JP H07234721A JP 6052880 A JP6052880 A JP 6052880A JP 5288094 A JP5288094 A JP 5288094A JP H07234721 A JPH07234721 A JP H07234721A
Authority
JP
Japan
Prior art keywords
target
collision
valley
ship
mountains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6052880A
Other languages
Japanese (ja)
Inventor
Hiroshi Isshiki
浩 一色
Makoto Fujiyoshi
誠 藤吉
Akira Watanabe
明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP6052880A priority Critical patent/JPH07234721A/en
Publication of JPH07234721A publication Critical patent/JPH07234721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To securely avoid a collision by assuming virtual to prography where an arrival target is judged to be a valley and a target being the object of colli sion avoidance as a mountain and obtaining the most steeply dividing direction where water flows in topography as a collision avoiding direction. CONSTITUTION:Virtual and three-dimensional to prography where the arrival target 1 is set to be the valley 1' and the other ships 3 and 4 to by mountains 3' and 4' is assumed. When water is caused to flow in the to toprography, the water avoids the mountains 3' and 4' without fail and goes towards the valley 1' of the arrival target. Thus, collision with the other ships 3 and 4 can securely and logically be avoided when a system advances to the most steeply diving direction where water flows so as to reach the arrival target 1. Thus, the best collision avoiding direction taking the shortest circuit can speedily be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、船舶,自動車,航空機
等の移動物体(輸送機器)が目標に向って進む際の他の
物標との衝突回避方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of avoiding a collision with another target when a moving object (transportation device) such as a ship, an automobile or an aircraft travels toward a target.

【0002】[0002]

【従来の技術】従来、自動操船の分野においては他船等
の衝突回避が重要な課題である。そして、三菱重工技報
「AIを用いた自動操船・運航システムの開発」、Vo
l.29〔No.2〕p.92−99(1992−3)
(以下文献1という)には、自船を中心とする衝突危険
判定用の円形の閉そく領域をとり、この領域内に他船が
侵入しないような経路をいわゆる深さ優先探索法で求め
る回避方法が記載されている。
2. Description of the Related Art Conventionally, in the field of automatic marine vessel maneuvering, avoiding collision with other vessels has been an important issue. And Mitsubishi Heavy Industries Technical Report "Development of automatic ship handling and navigation system using AI", Vo
l. 29 [No. 2] p. 92-99 (1992-3)
In (hereinafter referred to as Document 1), a method for avoiding a circular block area for collision risk determination centering on the own ship and obtaining a route that prevents other ships from entering this area by the so-called depth-first search method Is listed.

【0003】また、関西造船協会誌「Fuzzy制御に
よる自動避航システムに関する研究」、〔第205号〕
関西造船協会p.1〜10(昭和62年6月)(以下文
献2という)には、最接近距離(DCPA),最接近時
間(TCPA)の値から衝突危険度(CR)をファジィ
推論で求め、衝突危険度と他船の針路から自船の進路と
速度をファジィ推論で求める回避方法が記載されてい
る。
[0003] The Kansai Shipbuilding Association magazine "Study on Automatic Flight Avoidance System by Fuzzy Control", [No. 205].
Kansai Shipbuilding Association p. 1 to 10 (June 1987) (hereinafter referred to as Reference 2), the collision risk (CR) is obtained from the values of the closest approach distance (DCPA) and the closest approach time (TCPA) by fuzzy inference, and the collision risk degree is calculated. And the avoidance method to obtain the course and speed of the own ship from the course of the other ship by fuzzy reasoning is described.

【0004】[0004]

【発明が解決しようとする課題】前記文献1の回避方法
の場合、自船を内包する円形の閉そく領域を用意し、こ
の領域に他船が侵入しないような方向を衝突回避方向と
するため、いかなる場合も衝突しないという論理的な保
証を有するが、その解を求めるのに推論等の複雑,高度
な処理が必要で時間を要する問題点がある。
In the case of the avoidance method of the above-mentioned document 1, since a circular block region containing the own ship is prepared and the direction in which another ship does not enter this region is set as the collision avoidance direction, Although there is a logical guarantee that they will not collide in any case, there is a problem that complicated and sophisticated processing such as inference is required to find the solution and it takes time.

【0005】また、文献2の回避方法の場合、自船の進
路と速度を推論するに止まり、その推論のルール構成で
はいかなる場合も衝突しないという論理的な保証が得ら
れず、衝突を確実に回避し得ない問題点がある。しか
も、前記文献1,2のいずれの方法においても、回避方
向に進むことが必ずしも最短路をとることにはならない
問題点がある。
Further, in the case of the avoidance method of Document 2, it is only possible to infer the course and speed of the own ship, and the rule construction of the inference does not provide a logical guarantee that a collision will not occur in any case. There are problems that cannot be avoided. Moreover, in any of the methods of Documents 1 and 2, there is a problem that the process of proceeding in the avoiding direction does not always take the shortest path.

【0006】そして、船舶の衝突回避の場合だけでな
く、自動車,航空機及び工場のロボット搬送車等の種々
の移動物体の衝突回避の場合にも同様の問題点が生じ
る。
Similar problems occur not only in avoiding collisions of ships, but also in avoiding collisions of various moving objects such as automobiles, airplanes and robot carriers of factories.

【0007】本発明は、確実に衝突を回避でき、しか
も、ほぼ最短路をとることになる衝突回避方向を、迅速
に求め得る衝突回避方法を提供することを目的とする。
It is an object of the present invention to provide a collision avoidance method capable of surely avoiding a collision and capable of promptly obtaining a collision avoidance direction which takes a shortest path.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明の衝突回避方法においては、到達目標を
谷,衝突回避対象の物標を山と見たてた仮想的な地形を
想定し、該地形に水が流れるような最急降下方向を衝突
回避方向として求める。
In order to achieve the above-mentioned object, in the collision avoidance method of the present invention, a virtual landform in which the reaching target is a valley and the target object of the collision avoidance is a mountain is formed. Assuming that, the steepest descent direction in which water flows through the terrain is determined as the collision avoidance direction.

【0009】[0009]

【作用】前記のように構成された本発明の衝突回避方法
の場合、到達目標が谷底に位置し、他船等の衝突回避対
象の物標が山を形成するとして、それらの関係が仮想的
な地形で把握される。そして、この仮想的な地形の水が
流れるような最急降下方向が衝突回避方向として求めら
れ、このとき、最急降下方向は前記の山を避けながら常
に到達目標を目指して進むほぼ最短路の方向になる。
In the case of the collision avoidance method of the present invention configured as described above, it is assumed that the target to be reached is located at the valley bottom and the target of collision avoidance such as another ship forms a mountain, and their relationship is virtual. It is grasped by the various topography. Then, the steepest descent direction in which the water of this virtual terrain flows is obtained as the collision avoidance direction. At this time, the steepest descent direction is the direction of the shortest route that always goes toward the target while avoiding the mountains. Become.

【0010】しかも、到達目標の谷,物標の山の起伏を
合成してその傾きを求める簡単な数式演算により、高
度,複雑な推論処理等を行うことなく、迅速に最急降下
方向が求まる。そのため、論理的に衝突が発生し得ない
手法により、確実に衝突が回避でき、しかも、ほぼ最短
路をとることになる最善の衝突回避方向を迅速に求める
ことができる。
Furthermore, the simplest mathematical operation for synthesizing the undulations of the target valley and the mountain of the target to obtain the slope thereof can quickly find the steepest descent direction without performing altitude and complicated inference processing. Therefore, it is possible to surely avoid the collision by a method in which the collision cannot logically occur, and moreover, it is possible to quickly find the best collision avoidance direction that takes the shortest path.

【0011】[0011]

【実施例】1実施例について、図1及び図2を参照して
説明する。この実施例においては、図1に示すように到
達目標1を目指す自船2の初期設定航路が破線Aに設定
され、衝突回避対象の物標としての他船3,4が前記初
期設定航路と交差する実線B,Cの方向に進む場合に適
用する。
EXAMPLE One example will be described with reference to FIGS. In this embodiment, as shown in FIG. 1, the initial setting route of the own ship 2 aiming at the reaching target 1 is set to the broken line A, and the other ships 3 and 4 as the target of collision avoidance are set to the initial setting route. It is applied when proceeding in the direction of intersecting solid lines B and C.

【0012】この場合、到達目標1については、図1の
破線の等高線に示すように、この目標1を谷底の点と
し、この谷底の点を通る鉛直線を軸とする釣鐘状の谷
1’に見たてる。また、他線3,4については、図1の
実線の等高線に示すように、他線3,4の中心を通る鉛
直線上に山頂が位置する釣鐘状の山3’,4’に見たて
る。
In this case, as for the reaching target 1, as shown by the dashed contour lines in FIG. 1, the target 1 is a valley bottom point, and a bell-shaped valley 1'having a vertical line passing through the valley bottom point as an axis. To see. The other lines 3 and 4 can be seen in the bell-shaped mountains 3'and 4'in which the peaks are located on the vertical line passing through the centers of the other lines 3 and 4 as shown by the solid contour lines in FIG. .

【0013】そして、コンピュータシミュレーション等
により、図2に示すように、到達目標1を谷1’,他船
3,4を山3’,4’に見たてた仮想的な3次元の地形
を想定する。このとき、水平面(2次元平面)での到達
目標1,自船2の位置(座標)を(X0 ,Y0 ),
(X,Y)とし、自船2から到達目標1までの距離(ベ
クトル量)をr0 とすると、r0 は{X−X0 ),(Y
−Y0 )}になる。
Then, as shown in FIG. 2, a virtual three-dimensional terrain is obtained by looking at the target 1 as the valley 1'and the other vessels 3, 4 as the mountains 3 ', 4'by computer simulation or the like. Suppose. At this time, the position (coordinates) of the target 1 and the own ship 2 on the horizontal plane (two-dimensional plane) are (X 0 , Y 0 ),
And (X, Y) and the distance from the ship 2 until reaching the target 1 when the (vector quantity) and r 0, r 0 is {X-X 0), ( Y
-Y 0 )}.

【0014】そして、到達目標1の高さを基準(=0)
とすると、谷1’の影響に基づく自船2の高さは、c0
・r0 (c0 は定数)として求まる。また、他船3,4
を一般化してi(1,…,N)番目の他船の水平面での
位置を(Xi,Yi)とし、自船2の中心からi番目の
他船の中心までの距離をriとすると、riは{(X−
Xi),(Y−Yi)}になる。
Then, the height of the target 1 is set as a reference (= 0)
Then, the height of the own ship 2 due to the influence of the valley 1'is c 0
It is obtained as r 0 (c 0 is a constant). In addition, other vessels 3, 4
If the position of the i (1, ..., N) -th other ship in the horizontal plane is (Xi, Yi) and the distance from the center of the ship 2 to the center of the i-th other ship is ri, ri is {(X-
Xi), (Y-Yi)}.

【0015】そして、i番目の他船の山の高さをhiと
し、その水平方向の広がり(大きさ)をaiとすると、
この他船の山の影響に基づく自船2の高さは、hi・e
xp(−ri2 /ai2 )として求まる。したがって、
到達目標1の谷1’及び各他船の山の影響を総合した自
船2の高さは、この高さをZとして、つぎの数1の式か
ら求まる。
If the height of the mountain of the i-th other ship is hi and its horizontal extent (size) is ai,
The height of own ship 2 due to the influence of mountains of other ships is hi · e
It is obtained as xp (-ri 2 / ai 2 ). Therefore,
The height of the ship 2 that integrates the influence of the valley 1'of the target 1 and the mountains of each other ship is obtained from the following formula 1 with Z being this height.

【0016】[0016]

【数1】 [Equation 1]

【0017】すなわち、図1の場合の自船2の各時点で
の高さは、各時点での到達目標1の谷1’及び他船3,
4の山3’,4’の起伏を加算合成して求まる。なお、
谷1’の深さ,山3’,4’の高さ及びその広がりは船
の大きさ,速度等を考慮して衝突が生じ得ない適当な大
きさに設定される。
That is, in the case of FIG. 1, the height of the own ship 2 at each time point is the valley 1'of the target 1 to be reached at each time point and the other vessels 3,
It is obtained by adding and synthesizing the undulations of the 4's mountains 3'and 4 '. In addition,
The depth of the valley 1 ', the heights of the mountains 3'and 4'and their spreads are set in consideration of the size, speed, etc. of the ship so that a collision cannot occur.

【0018】また、それらの値は通常は一定としてよい
が、自船2と谷1’,山3’,4’との相対的な位置関
係等を考慮し、例えば他船3,4のDCPA,TCP
A,針路等から数式或いはファジィ推論で時間とともに
可変して設定すれば、回避精度等の面で一層好ましい。
Although these values may normally be constant, the relative positional relationship between the own ship 2 and the valley 1 ', the mountains 3', 4 ', etc. is taken into consideration, for example, the DCPA of the other ships 3,4. , TCP
It is more preferable in terms of avoidance accuracy and the like if the setting is made variable with time by mathematical formulas or fuzzy inference from A, course, etc.

【0019】例えば山3’,4’の高さhiについて
は、高さhiが高くなる程回避量が多くなるため、他船
3,4が自船2から離れているときは高さhiをあまり
高くとらず、自船2に接近するにしたがって高くすれば
よい。そして、図2の地形に水を流すと、この水は必ず
山3’,4’を避けて到達目標1の谷底に向うため、こ
の水が流れるような最急降下方向に進めば、理論上から
も他船3,4との衝突を確実に回避して到達目標1に達
し得る。
For example, regarding the heights hi of the mountains 3'and 4 ', the higher the height hi, the greater the avoidance amount. Therefore, when the other vessels 3 and 4 are separated from the own vessel 2, the height hi is It does not take too high, and may be increased as it approaches the ship 2. Then, when water is poured over the terrain shown in Fig. 2, this water always goes to the valley bottom of the target 1 while avoiding the mountains 3'and 4 ', so if you proceed in the steepest descent direction of this water, theoretically, Can surely avoid the collision with the other ships 3 and 4 and reach the target 1.

【0020】しかも、最急降下方向に進むことにより、
常に到達目標1を目指しつつ衝突を回避することにな
り、近似的に衝突を回避し得る最短路を通ることにな
る。そして、最急降下方向は高さZをX,Yについて微
分し、その傾きを求めるつぎの数2の演算から求まる。
Moreover, by proceeding in the steepest descent direction,
Collision is always avoided while aiming at the target 1, and the shortest path that can approximately avoid collision is taken. Then, the steepest descent direction is obtained by differentiating the height Z with respect to X and Y, and obtaining the inclination thereof by the following calculation of the equation 2.

【0021】[0021]

【数2】 [Equation 2]

【0022】この最急降下方向をくり返し求めてその方
向に進めば、自船2は図1の実線Dに沿って到達目標1
に達し、このとき、その航路は他船3,4を確実に回避
する近似的な最短路になる。そして、数1,数2の数式
演算のみを行う極めて簡単で,しかも理論上衝突し得な
い手法により衝突回避方向が求まるため、従来より極め
て簡単な手法により、より高速で信頼性が高い衝突回避
方法を提供できる。
If this steepest descent direction is repeatedly obtained and proceeded in that direction, the ship 2 will reach the target 1 along the solid line D in FIG.
At this time, the route becomes an approximate shortest route that surely avoids the other ships 3 and 4. Then, the collision avoidance direction is obtained by a method that is extremely simple to perform only the mathematical expressions 1 and 2 and that cannot theoretically cause a collision. Therefore, the collision avoidance direction is faster and more reliable than the conventional method. A method can be provided.

【0023】なお、自船2の高さを求める数式等が実施
例と異なる場合にも適用できるのは勿論である。また、
他船の数が実施例と異なる場合,船舶以外の物標がある
場合及び物標が静止している場合等の種々の状況下の場
合に適用できるのは勿論である。そして、船舶の衝突回
避の場合だけでなく、自動車,航空機及び工場ロボット
の搬送車等の種々の移動物体の衝突回避に適用できる。
Needless to say, the present invention can be applied to the case where the mathematical formula for obtaining the height of the ship 2 is different from that of the embodiment. Also,
It is needless to say that the present invention can be applied to various cases such as a case where the number of other ships is different from that of the embodiment, a case where there is a target other than the ship, and a case where the target is stationary. The present invention can be applied not only to avoiding collisions of ships, but also to avoiding collisions of various moving objects such as automobiles, airplanes, and carrier vehicles of factory robots.

【0024】[0024]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。到達目標1
が谷底に位置し、他船3,4等の衝突回避対象の物標が
山3’,4’を形成するとして、それらの関係が仮想的
な地形で把握され、この仮想的な地形の水が流れるよう
な最急降下方向が衝突回避方向として求められる。
Since the present invention is configured as described above, it has the following effects. Goal 1
Is located at the bottom of the valley, and it is assumed that the target of collision avoidance such as another ship 3 or 4 forms mountains 3'and 4 ', their relations are grasped by virtual topography, and the water of this virtual topography is The steepest descent direction in which is flowing is obtained as the collision avoidance direction.

【0025】このとき、最急降下方向が前記の山3’,
4’を避けながら常に到達目標1を目指して進むほぼ最
短路の方向になり、しかも、到達目標1の谷1’,物標
の山3’,4’の起伏を合成してその傾きを求める簡単
な数式演算により、高度,複雑な推論処理等を行うこと
なく、迅速に最急降下方向が求まるため、論理的に衝突
が発生し得ない手法により、確実に衝突が回避でき、し
かも、ほぼ最短路をとることになる最善の衝突回避方向
を迅速に求めることができる。
At this time, the steepest descent direction is the above-mentioned mountain 3 ',
It will be the direction of the shortest path that always goes toward the target 1 while avoiding 4 ', and the slope is calculated by combining the undulations of the valley 1'of the target 1 and the mountains 3', 4'of the target. A simple mathematical operation can be used to quickly find the steepest descent direction without performing advanced or complicated inference processing, etc. Therefore, a method that logically prevents collisions can be used to reliably avoid collisions, and also to minimize the collision time. The best collision avoidance direction to take the road can be quickly found.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝突回避方法の1実施例の模式図であ
る。
FIG. 1 is a schematic diagram of an embodiment of a collision avoidance method of the present invention.

【図2】図1の衝突回避方向を求める仮想的な地形の説
明図である。
FIG. 2 is an explanatory diagram of virtual terrain for determining a collision avoidance direction in FIG.

【符号の説明】[Explanation of symbols]

1 到達目標 1’ 谷 2 自船 3,4 他船 3’,4’ 山 1 Target 1'Valley 2 Own ship 3,4 Other ship 3 ', 4' Mountain

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G08G 5/04 A 7740−3H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G08G 5/04 A 7740-3H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 到達目標を谷,衝突回避対象の物標を山
と見たてた仮想的な地形を想定し、該地形に水が流れる
ような最急降下方向を衝突回避方向として求める衝突回
避方法。
1. A collision avoidance method that assumes a virtual terrain in which a target is a valley and a target object for collision avoidance is a mountain, and a steepest descent direction in which water flows through the terrain is determined as a collision avoidance direction. Method.
JP6052880A 1994-02-24 1994-02-24 Collision avoiding method Pending JPH07234721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6052880A JPH07234721A (en) 1994-02-24 1994-02-24 Collision avoiding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6052880A JPH07234721A (en) 1994-02-24 1994-02-24 Collision avoiding method

Publications (1)

Publication Number Publication Date
JPH07234721A true JPH07234721A (en) 1995-09-05

Family

ID=12927204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6052880A Pending JPH07234721A (en) 1994-02-24 1994-02-24 Collision avoiding method

Country Status (1)

Country Link
JP (1) JPH07234721A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125675A (en) * 1997-10-23 1999-05-11 Japan Radio Co Ltd Automatic collision prevention aiding device
JP2006228227A (en) * 2005-02-17 2006-08-31 Northrop Grumman Corp Mixed integer linear programming method for automatically generating trajectory for terrain following flight under circumstances having threat object
JP2013212716A (en) * 2012-03-30 2013-10-17 Nec Corp Underwater sailing body coping method recommendation system, underwater sailing body coping method recommendation method and program therefor
CN107677275A (en) * 2017-09-15 2018-02-09 北京航空航天大学 The heterogeneous aircraft paths planning method in one kind mixing spatial domain and device
CN110007603A (en) * 2019-05-13 2019-07-12 南京航空航天大学 A kind of low latitude unmanned plane conflict Resolution method and system based on kernel solution
US11853066B2 (en) 2018-12-27 2023-12-26 Nec Corporation Control device, formation determination device, control method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125675A (en) * 1997-10-23 1999-05-11 Japan Radio Co Ltd Automatic collision prevention aiding device
JP2006228227A (en) * 2005-02-17 2006-08-31 Northrop Grumman Corp Mixed integer linear programming method for automatically generating trajectory for terrain following flight under circumstances having threat object
JP2013212716A (en) * 2012-03-30 2013-10-17 Nec Corp Underwater sailing body coping method recommendation system, underwater sailing body coping method recommendation method and program therefor
CN107677275A (en) * 2017-09-15 2018-02-09 北京航空航天大学 The heterogeneous aircraft paths planning method in one kind mixing spatial domain and device
US11853066B2 (en) 2018-12-27 2023-12-26 Nec Corporation Control device, formation determination device, control method, and program
CN110007603A (en) * 2019-05-13 2019-07-12 南京航空航天大学 A kind of low latitude unmanned plane conflict Resolution method and system based on kernel solution

Similar Documents

Publication Publication Date Title
US3781530A (en) Navigational apparatus
US6097996A (en) Method for the lateral avoidance of a mobile zone by a vehicle
EP1365301B1 (en) Method and system for maneuvering a movable object
US4313115A (en) Collision avoidance apparatus
AU2005276241B2 (en) Collision avoidance system
Lazarowska A discrete artificial potential field for ship trajectory planning
EP1307869B1 (en) Method and apparatus for providing accurate boundaries of predicted areas of danger for collision avoidance
EP3683550A1 (en) Vehicle driving assistance system and method
US11776411B2 (en) Ship navigation assisting device
US5416713A (en) Obstacle avoidance apparatus
AU2001271462A1 (en) Method and apparatus for providing accurate boundaries of predicted areas of danger for collision avoidance
CN112578793A (en) Obstacle avoiding method for fast moving surface boat
Lenart Collision threat parameters for a new radar display and plot technique
CN114387824A (en) Collision-prevention steering judgment method conforming to international maritime collision-prevention rule
CN114200945A (en) Safety control method of mobile robot
JPH07234721A (en) Collision avoiding method
CN117215317B (en) Unmanned ship local path planning method, equipment and storage medium
CN110796142B (en) Method for acquiring relative fields among ships based on ship cluster situation
CN110414042B (en) Ship cluster situation analysis method under conflict meeting situation
CN112101558A (en) Unmanned ship situation perception and collision avoidance decision method and device based on D-S evidence theory
JPH11249734A (en) Autonomous guidance device
Kim et al. Field experiment of autonomous ship navigation in canal and surrounding nearshore environments
CN111984006B (en) Unmanned ship multi-target meeting collision avoidance method integrating ocean current and scale difference influences
CN115373394A (en) Narrow water channel unmanned ship collision avoidance local path planning method
Zhao Step-by-step multi-ship collision avoidance navigation path planning based on particle swarm optimization