JPH07234701A - Disturbance non-interference controller - Google Patents

Disturbance non-interference controller

Info

Publication number
JPH07234701A
JPH07234701A JP2666894A JP2666894A JPH07234701A JP H07234701 A JPH07234701 A JP H07234701A JP 2666894 A JP2666894 A JP 2666894A JP 2666894 A JP2666894 A JP 2666894A JP H07234701 A JPH07234701 A JP H07234701A
Authority
JP
Japan
Prior art keywords
output
disturbance
combustion gas
flow rate
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2666894A
Other languages
Japanese (ja)
Inventor
Kazufumi Kusakabe
和文 草壁
Makoto Kato
誠 加藤
Osamu Shinada
治 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2666894A priority Critical patent/JPH07234701A/en
Publication of JPH07234701A publication Critical patent/JPH07234701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Feedback Control In General (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To improve the controllability of gas turbine output in a combined cycle, to remove influence especially by means of disturbance and to improve the responsibility of output to the set output value. CONSTITUTION:Main compensators 31 and 33 suppressing a fluctuation in the flow rate of fuel and that of primary air to a gasification fuel 11 and the pressure disturbance of combustion gas supplied from the gasification fuel 11 to a gas turbine 16 by feedback control and cross compensators 37 and 38 by feed forward control, which precedently pressure-correct combustion gas by correcting an output deviation as against the flow rate of fuel and that of primary air, and provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス化コンバインドサ
イクルにおける燃焼用ガス圧力の外乱による変動を制御
する外乱不干渉制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disturbance non-interference control device for controlling fluctuation of combustion gas pressure due to disturbance in a gasification combined cycle.

【0002】[0002]

【従来の技術】例えばIGCC(Integrated Coal Gasi
fication Conbined Cycle )等のガス化コンバインドサ
イクルにおいて、燃焼用ガス圧力が燃料や空気流量また
はスーツブロワ噴射などの外乱によって変動する場合の
出力制御及び圧力制御を行なう方式として従来は、ガス
タービンリード方式、ガスタービンフォロー方式、プラ
ント強調制御方式の3種類のいずれかが採られていた。
2. Description of the Related Art For example, IGCC (Integrated Coal Gasi)
In the gasification combined cycle such as fication Conbined Cycle), as a method for performing output control and pressure control when the combustion gas pressure fluctuates due to disturbance such as fuel or air flow rate or suit blower injection, conventionally, the gas turbine lead system, Either one of the gas turbine follow method and the plant emphasis control method was adopted.

【0003】図3は一般的なIGCCプラントの制御方
式を示すもので、図中の11が制御対象となるガス化炉、
12がガス化炉11への石炭の流入量を調整する石炭調整
部、13はガス化炉11への空気の流入量を調整する空
気調整部、14はガス化炉11からガスタービン16への燃焼
ガス流入量を調整する石炭ガス調整部、15はガス化炉11
から蒸気タービン17への蒸気の流入量を調整する蒸気調
整部である。
FIG. 3 shows a control method of a general IGCC plant, where 11 in the figure is a gasification furnace to be controlled,
12 is a coal adjusting unit that adjusts the inflow amount of coal into the gasification furnace 11, 13 is an air adjusting unit that adjusts the inflow amount of air into the gasification furnace 11, and 14 is from the gasification furnace 11 to the gas turbine 16. Coal gas adjusting unit for adjusting the amount of combustion gas inflow, 15 is a gasification furnace 11
It is a steam adjusting unit that adjusts the amount of steam flowing into the steam turbine 17 from.

【0004】ガスタービン16及び蒸気タービン17の出力
値(回転数)が減数として加算器18に与えられ、この加
算器18で出力設定値との差が求められてその差が出力制
御部19に与えられる。
The output values (rotational speeds) of the gas turbine 16 and the steam turbine 17 are given to the adder 18 as a decrement, the adder 18 obtains the difference from the output set value, and the difference is sent to the output control section 19. Given.

【0005】また、ガス化炉11のガス圧力が減数として
加算器20に与えられ、この加算器20で圧力設定値との差
が求められてその差が圧力制御部21に与えられる。しか
るにガスタービンリード方式は、図中に右上がりの密な
ハッチングを用いた矢印で示す如く、発電出力は石炭ガ
ス調整部14によりガスタービン16への燃焼ガス流入量で
調整し、これに伴って変化する燃焼ガス圧力は石炭調整
部12及び空気調整部13により燃料と空気投入量を調整す
る方式である。
Further, the gas pressure of the gasification furnace 11 is given to the adder 20 as a decrement, the difference from the pressure set value is obtained by the adder 20, and the difference is given to the pressure control unit 21. However, in the gas turbine reed system, the power generation output is adjusted by the combustion gas inflow amount to the gas turbine 16 by the coal gas adjusting unit 14, as indicated by the arrow using dense upward hatching in the figure. The changing combustion gas pressure is a method in which the coal adjusting unit 12 and the air adjusting unit 13 adjust the amount of fuel and air input.

【0006】またガスタービンフォロー方式は、図中に
破線の矢印で示す如く、発電出力を石炭調整部12及び空
気調整部13により燃料と空気投入量で調整し、これに伴
って変化する燃焼ガス圧力を石炭ガス調整部14によりガ
スタービン16の燃焼ガス消費量で調整する方式である。
Further, in the gas turbine follow system, as shown by a dashed arrow in the figure, the power generation output is adjusted by the coal adjusting unit 12 and the air adjusting unit 13 by the amount of fuel and air input, and the combustion gas that changes with it is adjusted. This is a system in which the pressure is adjusted by the coal gas adjusting unit 14 by the combustion gas consumption of the gas turbine 16.

【0007】さらにプラント強調制御方式は、上記ガス
タービンリード方式を基に応答性の改善を図ったもので
あり、図中に右上がりの密なハッチングを用いた矢印に
加えて右下がりの粗なハッチングを用いた矢印で示す如
く、発電出力の指令信号(F.F)から燃料と空気投入
量に対する先行信号を作り、燃焼ガス圧力偏差のフィー
ドバックによる操作信号(ΔP)を加えて燃焼指令を作
り、燃料と空気投入量を決める方式である。このプラン
ト強調制御方式では、さらに圧力制御偏差による負荷制
御の抑制を行なう場合もある。
Further, the plant emphasis control system is intended to improve the responsiveness based on the above gas turbine reed system, and in addition to the arrow using the dense upward-sloping hatching in the figure, the downward-sloping coarse control is performed. As shown by the arrow using hatching, the advance signal for the fuel and air input amount is made from the command signal (FF) of the power generation output, and the combustion command is made by adding the operation signal (ΔP) by the feedback of the combustion gas pressure deviation. It is a method of determining the amount of fuel and air input. In this plant emphasis control method, load control may be further suppressed due to pressure control deviation.

【0008】[0008]

【発明が解決しようとする課題】上記のような各制御方
式にあって、ガスタービン16の出力は燃焼ガス圧力に影
響される。したがって、燃料や空気流量変動、スーツブ
ロワ噴射の作動や排圧の変動などによって燃焼ガス圧力
が変動すると、ガスタービン16の出力にも影響を与え
る。これは上記従来のガスタービンリード方式、ガスタ
ービンフォロー方式、プラント強調制御方式のいずれに
も共通の問題であり、従来はフィードフォワード制御に
よる外乱抑制にのみ注意が払われてきた。そのため、燃
焼ガス圧力に対する外乱の抑制が不充分な場合にはガス
タービン16の出力に影響を及ぼすという不具合が残る。
In each of the control methods described above, the output of the gas turbine 16 is affected by the combustion gas pressure. Therefore, if the combustion gas pressure fluctuates due to fluctuations in the flow rate of fuel or air, fluctuations in suit blower injection, fluctuations in exhaust pressure, etc., the output of the gas turbine 16 is also affected. This is a problem common to any of the conventional gas turbine lead system, gas turbine follow system, and plant emphasis control system, and conventionally, attention has been paid only to disturbance suppression by feedforward control. Therefore, when the suppression of the disturbance with respect to the combustion gas pressure is insufficient, there remains a problem that the output of the gas turbine 16 is affected.

【0009】本発明は上記のような実情に鑑みてなされ
たもので、その目的とするところは、コンバインドサイ
クルにおけるガスタービン出力の制御性の向上、特に外
乱による影響の排除と出力設定値に対する出力の追従性
の向上を図ることが可能な外乱不干渉制御装置を提供す
ることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to improve the controllability of the gas turbine output in a combined cycle, particularly to eliminate the influence of disturbance and output against the output set value. An object of the present invention is to provide a disturbance non-interference control device capable of improving the followability of.

【0010】[0010]

【課題を解決するための手段及び作用】すなわち本発明
は、 (1) ガス化コンバインドサイクルの燃焼ガス圧力を
制御する外乱不干渉制御装置において、燃料及び一次空
気のガス化炉への流量変動とこのガス化炉からガスター
ビンに供される燃焼ガスの圧力外乱とをフィードバック
制御により抑制するメイン補償器と、上記燃料流量及び
一次空気の流量に対する出力偏差を修正することで先行
的に燃焼ガスの圧力修正を行なうフィードフォワード制
御によるクロス補償器とを備えるようにしたものであ
る。
Means for Solving the Problems and Actions That is, the present invention is as follows: (1) In a disturbance non-interference control device for controlling combustion gas pressure in a gasification combined cycle, fluctuations in the flow rate of fuel and primary air to a gasification furnace and The main compensator that suppresses the pressure disturbance of the combustion gas supplied from the gasification furnace to the gas turbine by feedback control, and the output deviation with respect to the fuel flow rate and the primary air flow rate are corrected in advance to correct the combustion gas And a cross compensator by feedforward control that corrects pressure.

【0011】このような構成とすることにより、コンバ
インドサイクルにおけるガスタービン出力の制御性の向
上、特に外乱による影響の排除と出力設定値に対する出
力の追従性の向上を図ることが可能となる。 (2) 上記(1)項において、メイン補償器はPID
演算器で構成し、上記クロス補償器は比例遅れ演算器で
構成して多変数直列補償器を実現するようにしたもので
ある。 このような構成とすることにより、制御系の設計と調整
とを簡易化することができる。
With such a structure, it is possible to improve the controllability of the gas turbine output in the combined cycle, particularly to eliminate the influence of disturbance and improve the output followability with respect to the output set value. (2) In the above item (1), the main compensator is a PID.
The cross compensator is composed of a proportional delay calculator to realize a multivariable series compensator. With such a configuration, the design and adjustment of the control system can be simplified.

【0012】[0012]

【実施例】以下図面を参照して本発明の一実施例を説明
する。図1はその制御方式を示すもので、制御対象周辺
の基本的な構成は上記図3に示した従来と同様の構成で
あるため、同一部分には同一符号を付してその説明は省
略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the control method. Since the basic configuration around the controlled object is the same as the conventional configuration shown in FIG. 3, the same parts are designated by the same reference numerals and the description thereof is omitted. .

【0013】しかして、加算器18の出力する出力設定値
とガスタービン16及び蒸気タービン17の出力値(回転
数)との差が出力制御を行なうメイン補償器(C11
(s))31に送られる。このメイン補償器31は、例えば
PID演算器で構成されるもので、ガス化炉11から蒸気
タービン17への蒸気流量を調整する蒸気調整部15を直接
制御すると共に、ガス化炉11からガスタービン16への石
炭ガス流量を調整する石炭ガス調整部14を伝達調整部
(Σ)32を介して制御する。
The difference between the output set value output by the adder 18 and the output values (rotation speed) of the gas turbine 16 and the steam turbine 17 controls the main compensator (C11).
(S)) sent to 31. The main compensator 31 is composed of, for example, a PID calculator, and directly controls the steam adjusting unit 15 that adjusts the flow rate of steam from the gasification furnace 11 to the steam turbine 17, and also from the gasification furnace 11 to the gas turbine. A coal gas adjusting unit 14 for adjusting the flow rate of coal gas to 16 is controlled via a transfer adjusting unit (Σ) 32.

【0014】また、加算器20の出力する圧力設定値とガ
ス化炉11の燃焼ガス圧力の出力値との差が圧力制御を行
なうメイン補償器(C22(s))33に送られる。このメ
イン補償器33にはさらに、上記出力設定値が保持部(F
y)34を介して入力される。このメイン補償器33は、上
記メイン補償器31と同じく例えばPID演算器で構成さ
れるもので、ガス化炉11への燃料(石炭)の流量を調整
する石炭調整部12及び同じく一次空気流量を調整する空
気調整部13を伝達調整部(Σ)35を介して制御する。
Further, the difference between the pressure set value output from the adder 20 and the output value of the combustion gas pressure of the gasification furnace 11 is sent to a main compensator (C22 (s)) 33 for controlling pressure. The main compensator 33 is further provided with the above-mentioned output set value in the holding section (F
y) is input via 34. The main compensator 33 is composed of, for example, a PID calculator like the main compensator 31 described above. The main compensator 33 adjusts the flow rate of fuel (coal) to the gasification furnace 11 and the primary air flow rate. The air adjusting unit 13 to be adjusted is controlled via the transmission adjusting unit (Σ) 35.

【0015】この伝達調整部35にはまた、ガス化炉11へ
のスーツブロワ噴射による外乱と石炭調整部12及び空気
調整部13への外乱とが保持部(FD )36を介して入力さ
れる。
Disturbances due to soot blower injection to the gasification furnace 11 and disturbances to the coal adjusting unit 12 and the air adjusting unit 13 are also input to the transmission adjusting unit 35 via the holding unit (FD) 36. .

【0016】しかして、上記伝達調整部32での伝達度を
補償制御するものとしてクロス補償器(C′12(s))
37が、伝達調整部35での伝達度を補償制御するものとし
てクロス補償器(C′21(s))38がそれぞれ設けられ
る。
Therefore, a cross compensator (C'12 (s)) is used to compensate and control the degree of transmission in the transmission adjusting section 32.
A cross compensator (C'21 (s)) 38 is provided as 37 for compensating and controlling the degree of transmission in the transmission adjusting unit 35.

【0017】クロス補償器37は、例えばPL(比例遅
れ)演算器によって構成されるもので、メイン補償器33
によるスイッチ回路39の投入によって動作する。同様
に、クロス補償器38は、例えばPL演算器によって構成
されるもので、メイン補償器31によるスイッチ回路40の
投入によって動作する。
The cross compensator 37 is composed of, for example, a PL (proportional delay) calculator, and the main compensator 33 is used.
The switch circuit 39 is turned on to operate. Similarly, the cross compensator 38 is composed of, for example, a PL calculator, and operates when the switch circuit 40 is turned on by the main compensator 31.

【0018】次いで上記実施例の動作について説明す
る。ここでは、制御対象であるガス化炉11、ガスタービ
ン16及び蒸気タービン17とそれらの操作端伝達関数行列
P(s)で表わし、直列補償器の伝達関数行列をC
(s)で表わす。このときP(s)が正則であれば、与
えられた対角行列G(s)に対してP-1(s)とG
(s)の積としてC(s)を求めることができるが、そ
の非対角項Cij(s)を次式で示す対角項のメイン補償
器Cij(s)とクロス補償器C′ij(s)の積として構
成するものとする。すなわち、 Cij(s)=gij(s)[adjP(s)]ij/detP(s) …(1) C′ij(s)=[adjP(s)]ij/[detP(s)]ij …(2) (但し、i,j=1,2。) このとき、一巡伝達関数行列も対角となり、図2に示す
ようにフィードフォワードがある制御量に対して加算さ
れたとしても、他の制御量に対して影響を与えない制御
系を得ることができる。
Next, the operation of the above embodiment will be described. Here, the gasification furnace 11, the gas turbine 16 and the steam turbine 17 to be controlled and their operating end transfer function matrices P (s) are represented, and the transfer function matrix of the series compensator is represented by C
It is represented by (s). At this time, if P (s) is regular, P −1 (s) and G are given to the given diagonal matrix G (s).
Although C (s) can be obtained as the product of (s), its off-diagonal term Cij (s) is represented by the following equation: the main compensator Cij (s) and the cross compensator C'ij ( s). That is, Cij (s) = gij (s) [adjP (s)] ij / detP (s) (1) C'ij (s) = [adjP (s)] ij / [detP (s)] ij ... (2) (However, i, j = 1, 2.) At this time, the open loop transfer function matrix also becomes diagonal, and even if the feedforward is added to a certain control amount as shown in FIG. It is possible to obtain a control system that does not affect the control amount.

【0019】例えば、2入力2出力の場合の非対角項は
次のようになる。すなわち、 C12(s)=C′12(s)C22(s),C21(s)=C′21(s)C11(s) …(3) また、上記メイン補償器31,32をPID演算器で、クロ
ス補償器37,38をPL演算器でそれぞれ構成したことに
より、近時的な外乱不干渉制御系を得ることができる。
これは、例えばPL演算器として一次遅れを用いた場合
に、 CPL1 (s)=KP (1+KC /(s+TC )) …(4) (但し、KP :比例ゲイン、TC :クロス時定数、KC
:クロスゲイン。)となる。ここで、Kij,TijをPi
j(s)の近時ゲインと時定数とすると、一般的なPL
演算器は次式で表わすことができる。すなわち、
For example, the off-diagonal terms in the case of 2-input 2-output are as follows. That is, C12 (s) = C'12 (s) C22 (s), C21 (s) = C'21 (s) C11 (s) (3) Further, the main compensators 31 and 32 are replaced by PID calculators. By configuring the cross compensators 37 and 38 with PL calculators, respectively, it is possible to obtain a recent disturbance non-interference control system.
For example, when a first-order delay is used as a PL calculator, CPL1 (s) = KP (1 + KC / (s + TC)) (4) (where, KP: proportional gain, TC: cross time constant, KC
: Cross gain. ). Where Kij and Tij are Pi
If the near-term gain of j (s) and the time constant are
The arithmetic unit can be expressed by the following equation. That is,

【0020】[0020]

【数1】 [Equation 1]

【0021】2入力2出力の場合について補償器の構成
例を次に示す。制御対象伝達関数行列P(s)、直列補
償器伝達関数行列C(s)、前向き伝達関数行列G
(s)を次のように記述する。
A configuration example of the compensator for the case of two inputs and two outputs is shown below. Control target transfer function matrix P (s), series compensator transfer function matrix C (s), forward transfer function matrix G
(S) is described as follows.

【0022】[0022]

【数2】 [Equation 2]

【0023】このとき、上記(1),(2)式において
P(s)が正則であれば、望ましいG(s)を与える
と、メイン、クロスの各補償器31,33,37,38は次のよ
うになる。すなわち、
At this time, if P (s) in the above equations (1) and (2) is regular and the desired G (s) is given, the main and cross compensators 31, 33, 37, 38 will become It looks like this: That is,

【0024】[0024]

【数3】 [Equation 3]

【0025】また、上記メイン補償器31,33をPID演
算器とし、制御対象伝達関数行列を一次遅れで近時した
上記クロス補償器37,38を一次のPL演算器で構成する
ことにより
Further, the main compensators 31 and 33 are PID calculators, and the cross compensators 37 and 38 whose control target transfer function matrix has been delayed with a first-order delay are composed of first-order PL calculators.

【0026】[0026]

【数4】 ここで、P(s)は次のように仮定しており、必ずしも
正則でなくてよい。このときG(s)は次のような対角
行列になる。
[Equation 4] Here, P (s) is assumed to be as follows and is not necessarily regular. At this time, G (s) becomes the following diagonal matrix.

【0027】[0027]

【数5】 [Equation 5]

【0028】これは制御対象の逆システムの対角項の逆
システムをメイン補償器31,33で制御することに相当す
る。因みに、2入力2出力の場合のパラメータ調整例と
して次式を示す。 C12(s):KP =−K12/K11,KC =T12,KC =K11(T11−T12) …(19) C21(s):KP =−K21/K22,KC =T21,KC =K22(T22−T21) …(20) 上記のような制御方法を採ることにより、ガスタービン
16に流入する燃焼ガスの圧力が負荷変化やスーツブロワ
噴射などの既知外乱により変動することに対してはフィ
ードフォワード制御により、また燃料流量や空気流量な
どの未知外乱により変動することに対してはフィードバ
ック制御によって、それらの変動の影響が燃焼ガス圧力
に及ぶことを抑制すると同時に燃焼ガス圧力の制御偏差
の影響がガスタービン出力に波及することを不干渉制御
によって抑制する。
This corresponds to controlling the diagonal inverse system of the inverse system to be controlled by the main compensators 31 and 33. Incidentally, the following equation is shown as an example of parameter adjustment in the case of 2-input 2-output. C12 (s): KP = -K12 / K11, KC = T12, KC = K11 (T11-T12) (19) C21 (s): KP = -K21 / K22, KC = T21, KC = K22 (T22-) T21) (20) By adopting the above control method, the gas turbine
For the pressure of the combustion gas flowing into 16 to fluctuate due to known disturbances such as load change and suit blower injection, to the feedforward control, and to fluctuate due to unknown disturbances such as fuel flow rate and air flow rate. The feedback control suppresses the influence of those fluctuations on the combustion gas pressure, and at the same time suppresses the influence of the control deviation of the combustion gas pressure on the gas turbine output by the non-interference control.

【0029】このような二重の防止機構による外乱抑制
効果によって、ガスタービン16の出力の制御性の向上、
特に外乱による影響の排除と出力設定値に対する出力の
追従性の向上を図ることができる。
Due to the disturbance suppression effect by such a double prevention mechanism, the controllability of the output of the gas turbine 16 is improved,
In particular, it is possible to eliminate the influence of disturbance and improve the output followability of the output set value.

【0030】また、特にPID演算器をメイン補償器3
1,33として活用し、簡易なPL演算器をクロス補償器3
7,38として用いることによって、制御系の設計と調整
を簡易化することができる。
In particular, the PID calculator is used as the main compensator 3
It is used as 1, 33 and a simple PL calculator is used as the cross compensator 3
By using it as 7, 38, the design and adjustment of the control system can be simplified.

【0031】さらに、図1に示す如くクロス補償器37,
38に対するスイッチ回路39,40を設け、使用時と除外時
とを簡易に切換設定可能としたことにより、クロス補償
器37,38の効果が得られない状況ではクロス補償器37,
38の接続を一時的に断って、従来通りのPID演算器の
みによる制御系に復帰させることができるので、システ
ム全体の安全性と信頼性を保持することができる。
Further, as shown in FIG. 1, the cross compensator 37,
By providing switch circuits 39 and 40 for 38 and easily switching between use and exclusion, the cross compensator 37, 38 can be used in a situation where the effect of the cross compensator 37, 38 cannot be obtained.
Since the connection of 38 can be temporarily cut off and the conventional control system using only the PID calculator can be restored, the safety and reliability of the entire system can be maintained.

【0032】なお、上記実施例のみならず本発明にあっ
て、ガスタービンの出力制御及びガス圧力制御の主たる
入出力関係の遅れ次数が、従たる入出力関係の遅れ次数
よりも低い限りにおいては、多入力多出力に対してもシ
ステマチックに拡張することができる。
In the present invention as well as the above embodiment, as long as the delay order of the main input / output relation of the output control and the gas pressure control of the gas turbine is lower than the delay order of the subordinate input / output relation. , It can be systematically extended to multiple inputs and multiple outputs.

【0033】[0033]

【発明の効果】以上に述べた如く本発明によれば、コン
バインドサイクルにおけるガスタービン出力の制御性の
向上、特に外乱による影響の排除と出力設定値に対する
出力の追従性の向上を図ることが可能な外乱不干渉制御
装置を提供することができる。
As described above, according to the present invention, it is possible to improve the controllability of the gas turbine output in the combined cycle, especially to eliminate the influence of disturbance and to improve the output followability with respect to the output set value. It is possible to provide a simple disturbance non-interference control device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る制御回路構成を示すブ
ロック図。
FIG. 1 is a block diagram showing a control circuit configuration according to an embodiment of the present invention.

【図2】同実施例に係る動作を説明するための図。FIG. 2 is a diagram for explaining an operation according to the embodiment.

【図3】従来一般のコンバインドサイクルの制御回路構
成を示すブロック図。
FIG. 3 is a block diagram showing a conventional general combined cycle control circuit configuration.

【符号の説明】[Explanation of symbols]

11…ガス化炉、12…石炭調整部、13…空気調整部、14…
石炭ガス調整部、15…蒸気調整部、16…ガスタービン、
17…蒸気タービン、18,20…加算器、19…出力制御部、
21…圧力制御部、31,33…メイン補償器、32,35…伝達
調整部、34,36…保持部、37,38…クロス補償器、39,
40…スイッチ回路。
11 ... Gasification furnace, 12 ... Coal adjusting section, 13 ... Air adjusting section, 14 ...
Coal gas adjusting unit, 15 ... Steam adjusting unit, 16 ... Gas turbine,
17 ... Steam turbine, 18, 20 ... Adder, 19 ... Output control unit,
21 ... Pressure control unit, 31, 33 ... Main compensator, 32, 35 ... Transmission adjusting unit, 34, 36 ... Holding unit, 37, 38 ... Cross compensator, 39,
40 ... Switch circuit.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02C 6/00 C 9/28 C F23N 1/02 101 5/00 F G05B 11/36 L 7531−3H 501 B 7531−3H Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location F02C 6/00 C 9/28 C F23N 1/02 101 5/00 F G05B 11/36 L 7531-3H 501 B 7531-3H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス化コンバインドサイクルの燃焼ガス
圧力を制御する外乱不干渉制御装置において、 燃料及び一次空気のガス化炉への流量変動とこのガス化
炉からガスタービンに供される燃焼ガスの圧力外乱とを
フィードバック制御により抑制するメイン補償手段と、 上記燃料流量及び一次空気の流量に対する出力偏差を修
正することで先行的に燃焼ガスの圧力修正を行なうフィ
ードフォワード制御によるクロス補償手段とを具備した
ことを特徴とする外乱不干渉制御装置。
1. A disturbance non-interference control device for controlling combustion gas pressure in a gasification combined cycle, comprising: fluctuation of flow rate of fuel and primary air to a gasification furnace; and combustion gas supplied from the gasification furnace to a gas turbine. Main compensating means for suppressing the pressure disturbance by feedback control, and cross compensating means by feed forward control for correcting the combustion gas pressure in advance by correcting the output deviation with respect to the fuel flow rate and the primary air flow rate. A disturbance non-interference control device characterized by the above.
【請求項2】 上記メイン補償手段はPID演算器で構
成し、上記クロス補償手段は比例遅れ演算器で構成して
多変数直列補償器を実現することを特徴とする請求項1
記載の外乱不干渉制御装置。
2. The multi-variable series compensator is realized by forming the main compensating means by a PID calculator and the cross compensating means by a proportional delay calculator.
The disturbance non-interference control device described.
JP2666894A 1994-02-24 1994-02-24 Disturbance non-interference controller Pending JPH07234701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2666894A JPH07234701A (en) 1994-02-24 1994-02-24 Disturbance non-interference controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2666894A JPH07234701A (en) 1994-02-24 1994-02-24 Disturbance non-interference controller

Publications (1)

Publication Number Publication Date
JPH07234701A true JPH07234701A (en) 1995-09-05

Family

ID=12199791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2666894A Pending JPH07234701A (en) 1994-02-24 1994-02-24 Disturbance non-interference controller

Country Status (1)

Country Link
JP (1) JPH07234701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038629A1 (en) 2004-10-05 2006-04-13 Jgc Corporation Gasifying complex power generation system, control method therefor, fuel gas producing method
US7832191B2 (en) 2005-06-02 2010-11-16 Jgc Corporation Integrated gasification combined cycle and the control method
JP2015161176A (en) * 2014-02-26 2015-09-07 三菱日立パワーシステムズ株式会社 Fuel controller, combustor, gas turbine, control method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038629A1 (en) 2004-10-05 2006-04-13 Jgc Corporation Gasifying complex power generation system, control method therefor, fuel gas producing method
US7877979B2 (en) 2004-10-05 2011-02-01 Jgc Corporation Integrated gasification combined cycle plant, method of controlling the plant, and method of producing fuel gas
US7832191B2 (en) 2005-06-02 2010-11-16 Jgc Corporation Integrated gasification combined cycle and the control method
JP2015161176A (en) * 2014-02-26 2015-09-07 三菱日立パワーシステムズ株式会社 Fuel controller, combustor, gas turbine, control method, and program

Similar Documents

Publication Publication Date Title
US8056317B2 (en) Apparatus and system for gas turbine engine control
US7685802B2 (en) Methods and apparatus to facilitate gas turbine fuel control
CN1654882A (en) Method and apparatus for drum level control for drum-type boilers
EP1806492A2 (en) Method and apparatus for reducing or eliminating oscillations in a gas turbine fuel control system
KR101707290B1 (en) Gas turbine control device and power generation system
JPS6123364B2 (en)
JPH07234701A (en) Disturbance non-interference controller
JP3479672B2 (en) Gas turbine control method and control device
JP2014229172A (en) Controller and controller of hot water supply system
JP3716014B2 (en) Pressure control equipment for gasification plant
JP2001082701A (en) Boiler/turbine generator control system
JPS5912106A (en) Output control device of combined cycle power generating system
JP2004027891A (en) Fuel valve opening degree controlling system
JP3061881B2 (en) Control device for coal gasification power plant
JPH02267328A (en) Controller of gas turbine engine and controlling method
JPH07310902A (en) Steam temperature control for once-through boiler
CN114924483A (en) Fault-tolerant control method for actuating mechanism of aero-engine based on LQR-CA
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JPH10212906A (en) Flow control valve control system for steam turbine
JPH07224610A (en) Load control device for steam turbine
JPH02157407A (en) Plant control system for fluctuation in system frequency
JPH039004A (en) Control method and device for power generating plant
JPH07281706A (en) Automatic preceding element addition/removal controller
JP2612023B2 (en) Gas turbine control device
JPH10213322A (en) Furnace pressure control device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021022