JPH07234390A - Method for mounting high speed optical element - Google Patents

Method for mounting high speed optical element

Info

Publication number
JPH07234390A
JPH07234390A JP2782794A JP2782794A JPH07234390A JP H07234390 A JPH07234390 A JP H07234390A JP 2782794 A JP2782794 A JP 2782794A JP 2782794 A JP2782794 A JP 2782794A JP H07234390 A JPH07234390 A JP H07234390A
Authority
JP
Japan
Prior art keywords
electrode
optical
optical element
speed
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2782794A
Other languages
Japanese (ja)
Inventor
Hirohisa Sano
博久 佐野
Tatsumi Ido
立身 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2782794A priority Critical patent/JPH07234390A/en
Publication of JPH07234390A publication Critical patent/JPH07234390A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06226Modulation at ultra-high frequencies

Abstract

PURPOSE:To provide a high speed frequency characteristic without being limited based on element capacity of an optical element by dividing an electrode pattern provided on an optical waveguide to at least two parts or above and electrically connecting respective divided electrodes in series. CONSTITUTION:Although an optical modulator 2 divides the electrode pattern on the optical waveguide to two parts, and makes them the electrode 1-1 and the electrode 1-2, capacity in respective electrodes 1-1 and 1-2 are reduced monotonically by dividing. Further, an interval between bonding pad parts 3 provided on respective electrodes of the electrode 1-1 and the electrode 1-2 is connected in series by a bonding wire 9, and one end is connected to a through hole 8 connected to a chip carrier base 5 through a terminating resistor 7, and the other end is connected to a strip line path 6 formed on a high frequency substrate 4. The frequency characteristic independent of element capacity is obtained by dividing the electrode and connecting to the line path provided with inductance matching with the divided capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光素子の電極構成を改
善して高速化を行った高速光素子の実装法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mounting a high-speed optical element in which the electrode structure of the optical element is improved to increase the speed.

【0002】[0002]

【従来の技術】近年の光伝送の高速化に伴い、使用され
る光素子にも高速な動作が要求されるようになってい
る。したがって、本発明は光素子の高周波特性を改善し
て、光伝送の高速化をはかろうとするものである。光素
子の高速応答を達成する要因としては、光素子の動作速
度と負荷抵抗の積であるCR時定数がある。従来の光素
子では上記CR時定数を低減して高速動作を得るため
に、光素子容量の低減がはかられてきた。その代表的な
例としては、1989年度秋期応用物理学会全国大会、
27p−ZH−9における小高、脇田、三富、川村、浅
井らの「PN接合分離型InGaAs/InAlAs
MQW高速光変調器」があげられる。上記代表例はアン
ドープ層の光吸収層を厚くして素子容量を0.3pF以
下にまで低減し、素子動作速度の向上をはかった例であ
り、その結果として40GHzにおよぶ周波数応答を実
現している。
2. Description of the Related Art With the recent increase in the speed of optical transmission, the optical elements used are required to operate at high speed. Therefore, the present invention intends to improve the high frequency characteristics of the optical element to speed up the optical transmission. A factor for achieving a high-speed response of an optical element is a CR time constant which is a product of an operating speed of the optical element and a load resistance. In the conventional optical element, the optical element capacitance has been reduced in order to reduce the CR time constant and obtain a high speed operation. A typical example is the 1989 National Congress of Applied Physics,
27p-ZH-9, Otaka, Wakita, Mitomi, Kawamura, Asai et al., "PN Junction InGaAs / InAlAs".
"MQW high-speed optical modulator". The above-mentioned representative example is an example in which the light absorption layer of the undoped layer is thickened to reduce the device capacitance to 0.3 pF or less to improve the device operation speed, and as a result, a frequency response up to 40 GHz is realized. There is.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、光素
子の動作速度を向上させるために、素子容量を低減させ
る目的でアンドープ層である光吸収層を厚膜化してお
り、このために、電界印加効果の低下による駆動電圧の
増加が避けられない。上記のように光素子の容量は、一
般にその他の光素子特性と代替交換される関係にあり、
ある特性の向上をはかれば他の特性の低下を招き、単純
な素子容量の低減だけでは、性能の本質的な向上を達成
することが難しい。
In the above-mentioned prior art, in order to improve the operation speed of the optical element, the light absorption layer which is an undoped layer is made thicker for the purpose of reducing the element capacitance. An increase in drive voltage due to a decrease in electric field application effect cannot be avoided. As described above, the capacity of the optical element is generally in the relationship of being replaced by other optical element characteristics,
If one characteristic is improved, another characteristic is deteriorated, and it is difficult to achieve an essential improvement in performance only by simply reducing the element capacitance.

【0004】本発明の目的は、CR時定数による速度限
界を回避することにより、光素子の他の性能を劣化させ
ることなく、光素子の動作速度を大幅に向上する高速光
素子の実装法を得ることである。
It is an object of the present invention to provide a high-speed optical device mounting method which can greatly improve the operating speed of the optical device without deteriorating other performances of the optical device by avoiding the speed limit due to the CR time constant. Is to get.

【0005】[0005]

【課題を解決するための手段】上記目的は、光導波路上
に電極パタンを有する高速光素子の実装法において、上
記電極パタンを少なくとも2以上に分割し、分割した各
電極を電気的に直列接続することによって達成される。
The above-mentioned object is to mount a high-speed optical element having an electrode pattern on an optical waveguide in a method for mounting the electrode pattern, divide the electrode pattern into at least two, and electrically connect the divided electrodes in series. It is achieved by

【0006】また、上記分割した各電極の電気的直列接
続は、ボンディングワイヤまたは実装基板上に作製した
線路であることによって達成される。
Further, the electric series connection of the divided electrodes is achieved by a bonding wire or a line formed on a mounting substrate.

【0007】[0007]

【作用】よく知られているように、並列接続された容量
Cと直列接続されたインピーダンスLとの共振接続回路
は、LC共振周波数以下の領域において、Z=√(L/
C)というインピーダンスを有する線路で近似される。
上記インピーダンスZを駆動線路のインピーダンスに等
しく設定することによって、光素子に入力された電気信
号は歪むことなく光素子各部の電極に印加される。ま
た、この場合は容量性素子の駆動時に問題になる電気信
号の反射も生じない。したがって、CR時定数によらな
い素子動作が可能になる。上記素子動作が可能になるの
はLC共振周波数以下の領域においてだけであるが、上
記共振周波数は電極分割により個々の容量Cを小さく抑
えることによって、所望周波数以上に高めることが可能
であり、全素子容量とは無関係に設定することができ
る。すなわち、光素子の電極を2個以上に分割し、個々
の電極部の容量を所定設計値以下に低減する。この場
合、各電極間の絶縁抵抗は1kΩ以上あれば十分である
から、各電極間には特別な分離構造を必要としない。こ
のとき、各電極を直列接続するための線路は、光素子上
に設けたものであっても光素子の外部に設けたものであ
っても、いずれに配置されたものでもよい。上記インダ
クタンス性の線路が素子容量の作用を補償することによ
り、CR時定数に依存しない素子動作が可能になる。
As is well known, the resonance connection circuit of the capacitance C connected in parallel and the impedance L connected in series is Z = √ (L / L in the region below the LC resonance frequency.
It is approximated by a line having an impedance of C).
By setting the impedance Z equal to the impedance of the drive line, the electric signal input to the optical element is applied to the electrodes of each part of the optical element without distortion. Further, in this case, the reflection of electric signals, which is a problem when driving the capacitive element, does not occur. Therefore, it is possible to operate the device without depending on the CR time constant. The device can be operated only in the region below the LC resonance frequency, but the resonance frequency can be increased above the desired frequency by keeping the individual capacitance C small by dividing the electrodes. It can be set independently of the element capacitance. That is, the electrode of the optical element is divided into two or more, and the capacitance of each electrode portion is reduced to a predetermined design value or less. In this case, it is sufficient that the insulation resistance between the electrodes is 1 kΩ or more, so that no special isolation structure is required between the electrodes. At this time, the line for connecting the respective electrodes in series may be provided on the optical element, external to the optical element, or arranged anywhere. Since the inductance line compensates for the effect of the element capacitance, the element operation independent of the CR time constant becomes possible.

【0008】上記のように、電極分割とその分割容量に
整合したインダクタンスを有する線路との接続によっ
て、素子容量には依存しない周波数特性を実現すること
ができる。
As described above, the frequency characteristic independent of the element capacitance can be realized by connecting the electrode division and the line having the inductance matched with the division capacitance.

【0009】さらに、上記のような本発明の高速光素子
実装法により実装した光素子を有する光モジュールを用
いると、伝送速度を向上させることにより従来に比して
多重化度を増した、高性能で伝送コストが低い光伝送装
置を得ことが可能である。
Further, when the optical module having the optical element mounted by the high-speed optical element mounting method of the present invention as described above is used, the transmission rate is improved to increase the degree of multiplexing as compared with the conventional one. It is possible to obtain an optical transmission device having low performance and high transmission cost.

【0010】[0010]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0011】図1は本発明による高速光素子実装法の一
実施例を示す図、図2は上記実施例の等価回路によって
計算した光素子の特性を示す図、図3は本発明の他の実
施例を示す図、図4は本発明のさらに他の実施例とし
て、上記高速光素子実装法により実装した高速光素子を
用いた超高速光伝送装置の構成を示す図である。
FIG. 1 is a diagram showing an embodiment of a high-speed optical device mounting method according to the present invention, FIG. 2 is a diagram showing characteristics of an optical device calculated by an equivalent circuit of the above embodiment, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a diagram showing an embodiment, and FIG. 4 is a diagram showing a configuration of an ultrahigh-speed optical transmission device using a high-speed optical element mounted by the high-speed optical element mounting method as still another embodiment of the present invention.

【0012】本発明の一実施例を示す図1は、高速光素
子の実装法における基本的な素子構造およびその実装状
態を示す図で、(a)はチップキャリアベース5上に形
成した高周波基板4に対し、光素子としての光変調器2
を配置してボンディングワイヤ9により接続し実装した
状態の平面図を示し、(b)は上記実装状態における側
面図を示し、(c)は上記実装状態における等価回路を
示す図である。本実施例で用いた光素子は、多重量子井
戸(MQW)13を吸収層とした電界吸収型の光変調器
2であり、素子容量がpin接合部の接合容量と分割電
極を接続するボンディングパッド部3の浮遊容量との和
によって表わされるが、本実施例では上記ボンディング
パッド部3の下部を、低誘電率材料であるポリイミド厚
膜で埋め込んでいるため、上記浮遊容量は50μmのパ
ッド径においても50fFであった。上記浮遊容量は約
0.5pFの接合容量に比べて十分に小さいため、電極
を分割することによってボンディングパッド部の数が増
加しても、全素子容量にはほとんど変化がない。上記光
変調器2は光導波路上の電極パタンを図1(a)に示す
ように2分割して電極1−1および電極1−2とした
が、上記各電極1−1および1−2における容量は、分
割することによって単調に減少する。
FIG. 1 showing an embodiment of the present invention is a diagram showing a basic element structure and its mounting state in a method of mounting a high-speed optical element. FIG. 1 (a) is a high frequency substrate formed on a chip carrier base 5. 4, the optical modulator 2 as an optical element
3A and 3B are plan views showing a state in which is mounted and connected by bonding wires 9 and mounted, FIG. 6B is a side view in the mounted state, and FIG. 6C is an equivalent circuit in the mounted state. The optical element used in this example is an electro-absorption type optical modulator 2 having a multi-quantum well (MQW) 13 as an absorption layer, and the element capacitance is a bonding pad for connecting the junction capacitance of the pin junction and the split electrode. Although represented by the sum of the stray capacitance of the portion 3, in the present embodiment, the lower portion of the bonding pad portion 3 is filled with a thick polyimide film which is a low dielectric constant material, so that the stray capacitance is at a pad diameter of 50 μm. Was also 50 fF. Since the stray capacitance is sufficiently smaller than the junction capacitance of about 0.5 pF, even if the number of bonding pad portions is increased by dividing the electrode, the total element capacitance hardly changes. In the optical modulator 2, the electrode pattern on the optical waveguide is divided into two as shown in FIG. 1A to form an electrode 1-1 and an electrode 1-2. In each of the electrodes 1-1 and 1-2, The capacity decreases monotonically by dividing.

【0013】また、電極1−1および電極1−2の間を
電気的に分離するために、上記両電極間の間隔を10μ
mとし、上記分離した電極間における高ドープキャップ
層はエッチングにより取り除いた。このようにすること
により、約1kΩの電極間分離抵抗が得られた。上記電
極1−1と電極1−2とのそれぞれの電極に設けたボン
ディングパッド部3の間隔は0.5mmであり、この間
をボンディングワイヤ9により接続して、一端はチップ
キャリアベース5に接続されたスルーホール8に終端抵
抗7を介して接続されるとともに、他端は高周波基板4
上に形成されたストリップ線路6に接続されている。上
記ボンディングワイヤ9は約1nH/mmのインダクタ
ンスを有しているので、上記両電極間を接続するボンデ
ィングワイヤは約0.5nHのインダクタンスをもつこ
とになる。
In order to electrically separate the electrodes 1-1 and 1-2, the distance between the electrodes is 10 μm.
m, and the highly doped cap layer between the separated electrodes was removed by etching. By doing so, an electrode separation resistance of about 1 kΩ was obtained. The spacing between the bonding pad portions 3 provided on the electrodes 1-1 and 1-2 is 0.5 mm, and the gaps are connected by the bonding wires 9 and one end is connected to the chip carrier base 5. Is connected to the through hole 8 via the terminating resistor 7, and the other end is connected to the high frequency substrate 4.
It is connected to the strip line 6 formed above. Since the bonding wire 9 has an inductance of about 1 nH / mm, the bonding wire connecting the both electrodes has an inductance of about 0.5 nH.

【0014】図1(c)は上記実装状態の実施例の等価
回路を示す。図において、Cpはボンディングパッド部
3の容量、Cjは光変調器2との接合容量で、Rinは光
変調器2の直列抵抗、Risoは上記電極1−1および電
極1−2間の抵抗、Rは終端抵抗7を示している。ま
た、Linは上記分割電極1−1とストリップ線路6との
間を、Loutは上記分割電極1−2と終端抵抗7との間
を、それぞれ接続するワイヤのインピーダンスを示し、
isoは上記ワイヤが接続されるそれぞれのボンディン
グパッド3間のインダクタンスを示している。なお、Z
oはストリップ線路6の特性インピーダンスを示すもの
である。
FIG. 1C shows an equivalent circuit of the embodiment in the mounted state. In the figure, C p is the capacitance of the bonding pad portion 3, C j is the junction capacitance with the optical modulator 2, R in is the series resistance of the optical modulator 2, and R iso is the electrode 1-1 and the electrode 1-2. A resistor R between them indicates a terminating resistor 7. In addition, L in represents the impedance between the split electrode 1-1 and the strip line 6, and L out represents the impedance of the wire connecting between the split electrode 1-2 and the terminating resistor 7, respectively.
L iso represents the inductance between the bonding pads 3 to which the wires are connected. In addition, Z
o indicates the characteristic impedance of the strip line 6.

【0015】図2は上記等価回路を使用して計算した光
素子の特性を示す図で、(a)は周波数の変化に対する
小信号応答係数の変化を示し、(b)は周波数の変化に
対する電気反射係数の変化を示している。インダクタン
ス成分を所定の値に設定することにより、(a)に示す
小信号応答係数の変化では、上記小信号応答係数におけ
る3dB帯域が、電極を分割しない場合の12GHzか
ら約2倍の23GHzに至るまで増加することを示し、
また、(b)に示すように本発明の方法によって電極を
分割することにより、電気反射係数は大幅に改善され、
例えば10GHzでは、電極を分割しない場合の−6d
Bから−21dBにまで低減されている。実際に光変調
器を作製して変調帯域を測定したところ、20GHzの
変調帯域を得ることができ、本発明にもとづく光素子の
構成およびその実装法の有効性を確認することができ
た。
2A and 2B are diagrams showing the characteristics of the optical element calculated by using the above equivalent circuit. FIG. 2A shows changes in the small signal response coefficient with respect to changes in frequency, and FIG. 2B shows electrical characteristics with respect to changes in frequency. The change in the reflection coefficient is shown. By setting the inductance component to a predetermined value, in the change of the small signal response coefficient shown in (a), the 3 dB band in the small signal response coefficient reaches 23 GHz, which is about double from 12 GHz when the electrode is not divided. Increase to
Also, by dividing the electrode by the method of the present invention as shown in (b), the electric reflection coefficient is significantly improved,
For example, at 10 GHz, -6d when the electrode is not divided
It is reduced from B to -21 dB. When an optical modulator was actually produced and the modulation band was measured, a modulation band of 20 GHz could be obtained, and the configuration of the optical element based on the present invention and the effectiveness of its mounting method could be confirmed.

【0016】なお、上記実施例では電極の分割数を2と
した場合について例示したが、本発明にもとづく3以上
の電極分割数の場合においても、上記実施例と同様に有
効であり、変調帯域は分割数に応じて増加する。
In the above embodiment, the case where the number of electrode divisions is set to 2 has been exemplified, but in the case where the number of electrode divisions is 3 or more according to the present invention, it is as effective as in the above embodiment and the modulation band. Increases according to the number of divisions.

【0017】つぎに、本発明の高速光素子実装法におけ
る他の実施例を図3に示す。図3において、(a)は高
周波基板を示す平面図、(b)は上記高周波基板の側面
図、(c)は光変調器の背面図、(d)は上記光変調器
の側面図、(e)は上記高周波基板上に上記光変調器を
実装した状態を示す図である。本実施例は、光素子であ
る光変調器2を実装基板である高周波基板4の表面上に
実装した場合の例を示すもので、前記実施例において分
割したそれぞれの電極を直列接続したワイヤボンディン
グの代りに、上記高周波基板4上に、所定のインダクタ
ンスを有するように形成したストリップ線路6を使用し
て分割電極1−1および分割電極1−2の間の接続を行
っている。上記高周波基板4上の各素子パタンと上記光
変調器2との間に浮遊容量が発生するのを防ぐために、
上記高周波基板4の上面または上記光変調器2の下面、
あるいはこれら両者の対向する接続面のそれぞれに、鍍
金等の方法によって金属の厚膜を設けるが、上記金属厚
膜の厚さは、上記光変調器2を上記高周波基板4の定位
値に配置した際に、両者間の間隔が約10μm隔てられ
るように形成する。このようにすることによって、上記
高周波基板4と光変調器2との間の浮遊容量は数十fF
以下となるので、素子特性に与える影響を十分に小さく
することができる。本実施例の特徴は、高周波基板4上
に形成した上記ストリップ線路6のパタンにおけるイン
ダクタンス成分を再現性よく設定できる点にある。ま
た、前記実施例のボンディングパットに相当する部分の
面積を小さくすることができるため、電極の分割数を増
した場合でも浮遊容量が増大はしない。したがって、電
極を分割することによって、より一層大きな効果を得る
ことができる。
Next, another embodiment of the high-speed optical device mounting method of the present invention is shown in FIG. 3, (a) is a plan view showing the high frequency substrate, (b) is a side view of the high frequency substrate, (c) is a rear view of the optical modulator, (d) is a side view of the optical modulator, FIG. 3E is a diagram showing a state in which the optical modulator is mounted on the high frequency substrate. This embodiment shows an example in which the optical modulator 2 which is an optical element is mounted on the surface of a high frequency substrate 4 which is a mounting substrate, and wire bonding in which the respective divided electrodes in the above embodiment are connected in series. Instead of the above, a strip line 6 formed so as to have a predetermined inductance is used on the high frequency substrate 4 to connect the split electrodes 1-1 and 1-2. In order to prevent stray capacitance from being generated between each element pattern on the high frequency substrate 4 and the optical modulator 2,
An upper surface of the high frequency substrate 4 or a lower surface of the optical modulator 2,
Alternatively, a metal thick film is provided on each of the connection surfaces facing each other by a method such as plating, and the thickness of the metal thick film is set such that the optical modulator 2 is located at the localization value of the high frequency substrate 4. At this time, they are formed so that the distance between them is about 10 μm. By doing so, the stray capacitance between the high frequency substrate 4 and the optical modulator 2 is several tens of fF.
Since it is as follows, it is possible to sufficiently reduce the influence on the device characteristics. The feature of this embodiment is that the inductance component in the pattern of the strip line 6 formed on the high frequency substrate 4 can be set with good reproducibility. Further, since the area of the portion corresponding to the bonding pad of the above-described embodiment can be reduced, the stray capacitance does not increase even when the number of divided electrodes is increased. Therefore, a greater effect can be obtained by dividing the electrodes.

【0018】図4に本発明のさらに他の実施例として、
上記各実施例に示した高速光素子の実装法により実装し
た光変調器モジュールを用いた超高速光伝送装置の構成
を示す。上記光伝送装置の送信器は図4に示すとおり、
入力電気信号を多重化して超高速電気信号を形成する多
重化器と、上記超高速電気信号から光変調器駆動信号を
形成する駆動回路と、光変調器モジュールおよび光源で
あるレーザとにより構成されている。また、上記送信器
より発信された光信号は光ファイバを経て受信器に伝送
されるが、上記受信器は、上記光信号を電気信号に変換
する受光素子と、上記電気信号を所定レベルまで増幅す
る増幅器と、増幅された電気信号を0または1のデジタ
ル信号に変換する識別器と、該識別器へのタイミング信
号を供給するクロック抽出回路および超高速信号を所定
速度の複数個の電気信号に分離する分離器とから構成さ
れている。ここで本発明による光変調器の実装法を上記
光伝送装置に適用することによって、従来、問題になっ
ていた光変調器部の動作速度の限界が解決されるため、
光伝送装置における伝送速度を大幅に向上させることが
可能になる。すなわち、従来に比べて多重化度を大幅に
向上させることができる。またこのことは、単に光伝送
装置が高性能化するだけでなく、1ビットあたりの伝送
コストの低減にも有効に働く。したがって、本発明によ
る高速光素子の実装法は、光素子の性能を向上させるだ
けでなく、光伝送装置全体の高性能化をはかり、かつ、
伝送コストの低減にも有効に作用する。
FIG. 4 shows another embodiment of the present invention.
The structure of an ultrahigh-speed optical transmission device using the optical modulator module mounted by the mounting method of the high-speed optical element shown in each of the above-mentioned embodiments will be shown. The transmitter of the optical transmission device is as shown in FIG.
It is composed of a multiplexer that multiplexes an input electric signal to form an ultrahigh-speed electric signal, a drive circuit that forms an optical modulator drive signal from the ultrahigh-speed electric signal, an optical modulator module, and a laser that is a light source. ing. Further, the optical signal transmitted from the transmitter is transmitted to the receiver via an optical fiber. The receiver includes a light receiving element for converting the optical signal into an electric signal, and the electric signal is amplified to a predetermined level. Amplifier, a discriminator that converts the amplified electric signal into a digital signal of 0 or 1, a clock extraction circuit that supplies a timing signal to the discriminator, and an ultrahigh-speed signal into a plurality of electric signals at a predetermined speed. It is composed of a separator for separating. Here, by applying the optical modulator mounting method according to the present invention to the optical transmission device, the operating speed limit of the optical modulator unit, which has been a problem in the past, is solved.
It is possible to significantly improve the transmission speed in the optical transmission device. That is, the degree of multiplexing can be significantly improved as compared with the related art. Further, this effectively works not only to improve the performance of the optical transmission device but also to reduce the transmission cost per bit. Therefore, the method of mounting a high-speed optical element according to the present invention not only improves the performance of the optical element, but also improves the performance of the entire optical transmission device, and
It also effectively reduces the transmission cost.

【0019】上記説明においては、光素子として光変調
器を用いて説明を行ったが、本発明は上記光変調器に限
らず、半導体レーザで代表されるような導波路型デバイ
スに対して広く適用することができる。
In the above description, the optical modulator is used as the optical element, but the present invention is not limited to the optical modulator, and is widely applied to waveguide type devices represented by semiconductor lasers. Can be applied.

【0020】[0020]

【発明の効果】上記のように本発明による高速光素子の
実装法は、光導波路上に電極パタンを有する高速光素子
の実装法において、上記電極パタンを少なくとも2以上
に分割し、分割した各電極を電気的に直列接続すること
により、上記光素子の素子容量にもとづく制限を受ける
ことなく、高速な周波数特性を実現することができる。
また、上記実装法によって実装した光変調器を使用する
ことによって、伝送速度を向上し、伝送コストを低減し
た高性能な光伝送装置を得ることができる。
As described above, according to the method of mounting a high-speed optical element according to the present invention, in the method of mounting a high-speed optical element having an electrode pattern on an optical waveguide, the electrode pattern is divided into at least two or more, and each divided By electrically connecting the electrodes in series, high-speed frequency characteristics can be realized without being limited by the element capacitance of the optical element.
Further, by using the optical modulator mounted by the mounting method described above, it is possible to obtain a high-performance optical transmission device with improved transmission speed and reduced transmission cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による高速光素子実装法の一実施例を示
す図で、(a)は光変調器の実装状態を示す平面図、
(b)は上記実装状態における側面図、(c)は上記実
装状態における等価回路を示す図である。
FIG. 1 is a diagram showing an embodiment of a high-speed optical device mounting method according to the present invention, in which (a) is a plan view showing a mounted state of an optical modulator,
(B) is a side view in the mounted state, and (c) is a diagram showing an equivalent circuit in the mounted state.

【図2】上記実施例の等価回路により計算した光素子の
特性を示す図で、(a)は周波数に対する小信号応答係
数の変化を示す図、(b)は周波数に対する電気反射係
数の変化を示す図である。
2A and 2B are graphs showing characteristics of an optical element calculated by the equivalent circuit of the above embodiment, FIG. 2A shows a change in small signal response coefficient with respect to frequency, and FIG. 2B shows a change in electric reflection coefficient with respect to frequency. FIG.

【図3】本発明による高速光素子実装法の他の実施例を
示す図で、(a)は高周波基板を示す平面図、(b)は
上記高周波基板の側面図、(c)は光変調器の背面図、
(d)は上記光変調器の側面図、(e)は上記高周波基
板に上記光変調器を実装した状態を示す図である。
3A and 3B are views showing another embodiment of the high-speed optical device mounting method according to the present invention, in which FIG. 3A is a plan view showing a high-frequency substrate, FIG. 3B is a side view of the high-frequency substrate, and FIG. Rear view of the vessel,
(D) is a side view of the optical modulator, and (e) is a diagram showing a state where the optical modulator is mounted on the high-frequency substrate.

【図4】本発明の高速光素子実装法により実装した光変
調器モジュールを用いた超高速光伝送装置の構成を示す
図である。
FIG. 4 is a diagram showing a configuration of an ultrahigh-speed optical transmission device using an optical modulator module mounted by the high-speed optical element mounting method of the present invention.

【符号の説明】[Explanation of symbols]

1−1、1−2 分割電極 2 光変調器 5 チップキャリアベース 6 ストリップ線路 9 ボンディングワイヤ 1-1, 1-2 Split electrode 2 Optical modulator 5 Chip carrier base 6 Strip line 9 Bonding wire

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】光導波路上に電極パタンを有する高速光素
子の実装法において、上記電極パタンを少なくとも2以
上に分割し、分割した各電極を電気的に直列接続したこ
とを特徴とする高速光素子の実装法。
1. A method for mounting a high-speed optical element having an electrode pattern on an optical waveguide, characterized in that the electrode pattern is divided into at least two and each divided electrode is electrically connected in series. Device mounting method.
【請求項2】上記分割した各電極の電気的な直列接続
は、ボンディングワイヤで行うことを特徴とする請求項
1記載の高速光素子の実装法。
2. The method of mounting a high-speed optical element according to claim 1, wherein the series connection of the divided electrodes is performed by a bonding wire.
【請求項3】上記分割した各電極の電気的な直列接続
は、実装基板上に作製した線路で行うことを特徴とする
請求項1記載の高速光素子の実装法。
3. The method for mounting a high-speed optical element according to claim 1, wherein the series connection of the divided electrodes is performed by a line formed on a mounting substrate.
【請求項4】上記請求項1から請求項3のいずれかに記
載の高速光素子の実装法を用いて実装した光素子を、内
部に少なくとも1個有する光モジュール。
4. An optical module having at least one optical element mounted therein using the method for mounting a high-speed optical element according to any one of claims 1 to 3.
【請求項5】上記請求項4に記載の光モジュールを用い
た光伝送装置。
5. An optical transmission device using the optical module according to claim 4.
JP2782794A 1994-02-25 1994-02-25 Method for mounting high speed optical element Pending JPH07234390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2782794A JPH07234390A (en) 1994-02-25 1994-02-25 Method for mounting high speed optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2782794A JPH07234390A (en) 1994-02-25 1994-02-25 Method for mounting high speed optical element

Publications (1)

Publication Number Publication Date
JPH07234390A true JPH07234390A (en) 1995-09-05

Family

ID=12231786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2782794A Pending JPH07234390A (en) 1994-02-25 1994-02-25 Method for mounting high speed optical element

Country Status (1)

Country Link
JP (1) JPH07234390A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738926A1 (en) * 1995-09-20 1997-03-21 Mitsubishi Electric Corp LIGHT MODULATOR MODULE AND METHOD FOR MANUFACTURING SUCH MODULE
EP1253462A1 (en) * 2001-04-27 2002-10-30 Alcatel Optical transmitter comprising a modulator made of a plurality of modulating elements
WO2003077014A1 (en) * 2002-03-12 2003-09-18 Nec Corporation Optical modulator exciting circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738926A1 (en) * 1995-09-20 1997-03-21 Mitsubishi Electric Corp LIGHT MODULATOR MODULE AND METHOD FOR MANUFACTURING SUCH MODULE
EP1253462A1 (en) * 2001-04-27 2002-10-30 Alcatel Optical transmitter comprising a modulator made of a plurality of modulating elements
FR2824152A1 (en) * 2001-04-27 2002-10-31 Cit Alcatel OPTICAL TRANSMITTER COMPRISING A MODULATOR COMPOSED OF A PLURALITY OF MODULATION ELEMENTS
WO2003077014A1 (en) * 2002-03-12 2003-09-18 Nec Corporation Optical modulator exciting circuit
US7023599B2 (en) 2002-03-12 2006-04-04 Nec Corporation Optical modulator exciting circuit

Similar Documents

Publication Publication Date Title
US10866439B2 (en) High-frequency transmission line and optical circuit
US5814871A (en) Optical semiconductor assembly having a conductive float pad
US7991029B2 (en) Optical module
US7489042B2 (en) Stem for optical element and optical semiconductor device using the same
US11012042B2 (en) Receiver module
US20040141535A1 (en) Optical transmitter
US20190324301A1 (en) Optical modulator
US20020105395A1 (en) DC block circuit and communication equipment
US20230139615A1 (en) Optical Semiconductor Chip
US5926308A (en) High-speed optical modulator module
JPH07234390A (en) Method for mounting high speed optical element
US7196909B2 (en) AC coupling circuit having a large capacitance and a good frequency response
US6990256B2 (en) Segmented modulator for high-speed opto-electronics
US20020003298A1 (en) High frequency package, wiring board, and high frequency module
EP0415318B1 (en) Semiconductor device
JP2005191347A (en) Chip carrier for semiconductor optical component, optical module, and optical transceiver
JPH06230328A (en) Method for mounting electric field absorption type optical modulator
US5097315A (en) Integrated capacitor disposed over damaged crystal area
EP1298734A2 (en) Module for optical communications for converting light to differential signals
US7085442B2 (en) Optoelectronic device, method of manufacturing thereof, and system including the same
US6950565B2 (en) Submount for high speed electronic devices
JP3785891B2 (en) Optical transmitter
US20230163563A1 (en) Optical Semiconductor Chip
JP5720261B2 (en) Electronic circuit and transmission / reception system
US7432575B2 (en) Two-layer electrical substrate for optical devices